1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
|
{-# LANGUAGE Safe #-}
{-# LANGUAGE ScopedTypeVariables #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Bifoldable
-- Copyright : (C) 2011-2016 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- @since 4.10.0.0
----------------------------------------------------------------------------
module Data.Bifoldable
( Bifoldable(..)
, bifoldr'
, bifoldr1
, bifoldrM
, bifoldl'
, bifoldl1
, bifoldlM
, bitraverse_
, bifor_
, bimapM_
, biforM_
, bimsum
, bisequenceA_
, bisequence_
, biasum
, biList
, binull
, bilength
, bielem
, bimaximum
, biminimum
, bisum
, biproduct
, biconcat
, biconcatMap
, biand
, bior
, biany
, biall
, bimaximumBy
, biminimumBy
, binotElem
, bifind
) where
import Control.Applicative
import Data.Functor.Utils (Max(..), Min(..), (#.))
import Data.Maybe (fromMaybe)
import Data.Monoid
import GHC.Generics (K1(..))
-- $setup
-- >>> import Prelude
-- >>> import Data.Char
-- >>> import Data.Monoid (Product (..), Sum (..))
-- >>> data BiList a b = BiList [a] [b]
-- >>> instance Bifoldable BiList where bifoldr f g z (BiList as bs) = foldr f (foldr g z bs) as
-- | 'Bifoldable' identifies foldable structures with two different varieties
-- of elements (as opposed to 'Foldable', which has one variety of element).
-- Common examples are 'Either' and @(,)@:
--
-- > instance Bifoldable Either where
-- > bifoldMap f _ (Left a) = f a
-- > bifoldMap _ g (Right b) = g b
-- >
-- > instance Bifoldable (,) where
-- > bifoldr f g z (a, b) = f a (g b z)
--
-- Some examples below also use the following BiList to showcase empty
-- Bifoldable behaviors when relevant ('Either' and '(,)' containing always exactly
-- resp. 1 and 2 elements):
--
-- > data BiList a b = BiList [a] [b]
-- >
-- > instance Bifoldable BiList where
-- > bifoldr f g z (BiList as bs) = foldr f (foldr g z bs) as
--
-- A minimal 'Bifoldable' definition consists of either 'bifoldMap' or
-- 'bifoldr'. When defining more than this minimal set, one should ensure
-- that the following identities hold:
--
-- @
-- 'bifold' ≡ 'bifoldMap' 'id' 'id'
-- 'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty'
-- 'bifoldr' f g z t ≡ 'appEndo' ('bifoldMap' (Endo . f) (Endo . g) t) z
-- @
--
-- If the type is also a 'Data.Bifunctor.Bifunctor' instance, it should satisfy:
--
-- @
-- 'bifoldMap' f g ≡ 'bifold' . 'Data.Bifunctor.bimap' f g
-- @
--
-- which implies that
--
-- @
-- 'bifoldMap' f g . 'Data.Bifunctor.bimap' h i ≡ 'bifoldMap' (f . h) (g . i)
-- @
--
-- @since 4.10.0.0
class Bifoldable p where
{-# MINIMAL bifoldr | bifoldMap #-}
-- | Combines the elements of a structure using a monoid.
--
-- @'bifold' ≡ 'bifoldMap' 'id' 'id'@
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifold (Right [1, 2, 3])
-- [1,2,3]
--
-- >>> bifold (Left [5, 6])
-- [5,6]
--
-- >>> bifold ([1, 2, 3], [4, 5])
-- [1,2,3,4,5]
--
-- >>> bifold (Product 6, Product 7)
-- Product {getProduct = 42}
--
-- >>> bifold (Sum 6, Sum 7)
-- Sum {getSum = 13}
--
-- @since 4.10.0.0
bifold :: Monoid m => p m m -> m
bifold = bifoldMap id id
-- | Combines the elements of a structure, given ways of mapping them to a
-- common monoid.
--
-- @'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty'@
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifoldMap (take 3) (fmap digitToInt) ([1..], "89")
-- [1,2,3,8,9]
--
-- >>> bifoldMap (take 3) (fmap digitToInt) (Left [1..])
-- [1,2,3]
--
-- >>> bifoldMap (take 3) (fmap digitToInt) (Right "89")
-- [8,9]
--
-- @since 4.10.0.0
bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> p a b -> m
bifoldMap f g = bifoldr (mappend . f) (mappend . g) mempty
-- | Combines the elements of a structure in a right associative manner.
-- Given a hypothetical function @toEitherList :: p a b -> [Either a b]@
-- yielding a list of all elements of a structure in order, the following
-- would hold:
--
-- @'bifoldr' f g z ≡ 'foldr' ('either' f g) z . toEitherList@
--
-- ==== __Examples__
--
-- Basic usage:
--
-- @
-- > bifoldr (+) (*) 3 (5, 7)
-- 26 -- 5 + (7 * 3)
--
-- > bifoldr (+) (*) 3 (7, 5)
-- 22 -- 7 + (5 * 3)
--
-- > bifoldr (+) (*) 3 (Right 5)
-- 15 -- 5 * 3
--
-- > bifoldr (+) (*) 3 (Left 5)
-- 8 -- 5 + 3
-- @
--
-- @since 4.10.0.0
bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c
bifoldr f g z t = appEndo (bifoldMap (Endo #. f) (Endo #. g) t) z
-- | Combines the elements of a structure in a left associative manner. Given
-- a hypothetical function @toEitherList :: p a b -> [Either a b]@ yielding a
-- list of all elements of a structure in order, the following would hold:
--
-- @'bifoldl' f g z
-- ≡ 'foldl' (\acc -> 'either' (f acc) (g acc)) z . toEitherList@
--
-- Note that if you want an efficient left-fold, you probably want to use
-- 'bifoldl'' instead of 'bifoldl'. The reason is that the latter does not
-- force the "inner" results, resulting in a thunk chain which then must be
-- evaluated from the outside-in.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- @
-- > bifoldl (+) (*) 3 (5, 7)
-- 56 -- (5 + 3) * 7
--
-- > bifoldl (+) (*) 3 (7, 5)
-- 50 -- (7 + 3) * 5
--
-- > bifoldl (+) (*) 3 (Right 5)
-- 15 -- 5 * 3
--
-- > bifoldl (+) (*) 3 (Left 5)
-- 8 -- 5 + 3
-- @
--
-- @since 4.10.0.0
bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c
bifoldl f g z t = appEndo (getDual (bifoldMap (Dual . Endo . flip f)
(Dual . Endo . flip g) t)) z
-- | @since 4.10.0.0
instance Bifoldable (,) where
bifoldMap f g ~(a, b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable Const where
bifoldMap f _ (Const a) = f a
-- | @since 4.10.0.0
instance Bifoldable (K1 i) where
bifoldMap f _ (K1 c) = f c
-- | @since 4.10.0.0
instance Bifoldable ((,,) x) where
bifoldMap f g ~(_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable ((,,,) x y) where
bifoldMap f g ~(_,_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable ((,,,,) x y z) where
bifoldMap f g ~(_,_,_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable ((,,,,,) x y z w) where
bifoldMap f g ~(_,_,_,_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable ((,,,,,,) x y z w v) where
bifoldMap f g ~(_,_,_,_,_,a,b) = f a `mappend` g b
-- | @since 4.10.0.0
instance Bifoldable Either where
bifoldMap f _ (Left a) = f a
bifoldMap _ g (Right b) = g b
-- | As 'bifoldr', but strict in the result of the reduction functions at each
-- step.
--
-- @since 4.10.0.0
bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c
bifoldr' f g z0 xs = bifoldl f' g' id xs z0 where
f' k x z = k $! f x z
g' k x z = k $! g x z
-- | A variant of 'bifoldr' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifoldr1 (+) (5, 7)
-- 12
--
-- >>> bifoldr1 (+) (Right 7)
-- 7
--
-- >>> bifoldr1 (+) (Left 5)
-- 5
--
-- @
-- > bifoldr1 (+) (BiList [1, 2] [3, 4])
-- 10 -- 1 + (2 + (3 + 4))
-- @
--
-- >>> bifoldr1 (+) (BiList [1, 2] [])
-- 3
--
-- On empty structures, this function throws an exception:
--
-- >>> bifoldr1 (+) (BiList [] [])
-- *** Exception: bifoldr1: empty structure
--
-- @since 4.10.0.0
bifoldr1 :: Bifoldable t => (a -> a -> a) -> t a a -> a
bifoldr1 f xs = fromMaybe (error "bifoldr1: empty structure")
(bifoldr mbf mbf Nothing xs)
where
mbf x m = Just (case m of
Nothing -> x
Just y -> f x y)
-- | Right associative monadic bifold over a structure.
--
-- @since 4.10.0.0
bifoldrM :: (Bifoldable t, Monad m)
=> (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c
bifoldrM f g z0 xs = bifoldl f' g' return xs z0 where
f' k x z = f x z >>= k
g' k x z = g x z >>= k
-- | As 'bifoldl', but strict in the result of the reduction functions at each
-- step.
--
-- This ensures that each step of the bifold is forced to weak head normal form
-- before being applied, avoiding the collection of thunks that would otherwise
-- occur. This is often what you want to strictly reduce a finite structure to
-- a single, monolithic result (e.g., 'bilength').
--
-- @since 4.10.0.0
bifoldl':: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a
bifoldl' f g z0 xs = bifoldr f' g' id xs z0 where
f' x k z = k $! f z x
g' x k z = k $! g z x
-- | A variant of 'bifoldl' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifoldl1 (+) (5, 7)
-- 12
--
-- >>> bifoldl1 (+) (Right 7)
-- 7
--
-- >>> bifoldl1 (+) (Left 5)
-- 5
--
-- @
-- > bifoldl1 (+) (BiList [1, 2] [3, 4])
-- 10 -- ((1 + 2) + 3) + 4
-- @
--
-- >>> bifoldl1 (+) (BiList [1, 2] [])
-- 3
--
-- On empty structures, this function throws an exception:
--
-- >>> bifoldl1 (+) (BiList [] [])
-- *** Exception: bifoldl1: empty structure
--
-- @since 4.10.0.0
bifoldl1 :: Bifoldable t => (a -> a -> a) -> t a a -> a
bifoldl1 f xs = fromMaybe (error "bifoldl1: empty structure")
(bifoldl mbf mbf Nothing xs)
where
mbf m y = Just (case m of
Nothing -> y
Just x -> f x y)
-- | Left associative monadic bifold over a structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifoldlM (\a b -> print b >> pure a) (\a c -> print (show c) >> pure a) 42 ("Hello", True)
-- "Hello"
-- "True"
-- 42
--
-- >>> bifoldlM (\a b -> print b >> pure a) (\a c -> print (show c) >> pure a) 42 (Right True)
-- "True"
-- 42
--
-- >>> bifoldlM (\a b -> print b >> pure a) (\a c -> print (show c) >> pure a) 42 (Left "Hello")
-- "Hello"
-- 42
--
-- @since 4.10.0.0
bifoldlM :: (Bifoldable t, Monad m)
=> (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a
bifoldlM f g z0 xs = bifoldr f' g' return xs z0 where
f' x k z = f z x >>= k
g' x k z = g z x >>= k
-- | Map each element of a structure using one of two actions, evaluate these
-- actions from left to right, and ignore the results. For a version that
-- doesn't ignore the results, see 'Data.Bitraversable.bitraverse'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bitraverse_ print (print . show) ("Hello", True)
-- "Hello"
-- "True"
--
-- >>> bitraverse_ print (print . show) (Right True)
-- "True"
--
-- >>> bitraverse_ print (print . show) (Left "Hello")
-- "Hello"
--
-- @since 4.10.0.0
bitraverse_ :: (Bifoldable t, Applicative f)
=> (a -> f c) -> (b -> f d) -> t a b -> f ()
bitraverse_ f g = bifoldr ((*>) . f) ((*>) . g) (pure ())
-- | As 'bitraverse_', but with the structure as the primary argument. For a
-- version that doesn't ignore the results, see 'Data.Bitraversable.bifor'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifor_ ("Hello", True) print (print . show)
-- "Hello"
-- "True"
--
-- >>> bifor_ (Right True) print (print . show)
-- "True"
--
-- >>> bifor_ (Left "Hello") print (print . show)
-- "Hello"
--
-- @since 4.10.0.0
bifor_ :: (Bifoldable t, Applicative f)
=> t a b -> (a -> f c) -> (b -> f d) -> f ()
bifor_ t f g = bitraverse_ f g t
-- | Alias for 'bitraverse_'.
--
-- @since 4.10.0.0
bimapM_ :: (Bifoldable t, Applicative f)
=> (a -> f c) -> (b -> f d) -> t a b -> f ()
bimapM_ = bitraverse_
-- | Alias for 'bifor_'.
--
-- @since 4.10.0.0
biforM_ :: (Bifoldable t, Applicative f)
=> t a b -> (a -> f c) -> (b -> f d) -> f ()
biforM_ = bifor_
-- | Alias for 'bisequence_'.
--
-- @since 4.10.0.0
bisequenceA_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f ()
bisequenceA_ = bisequence_
-- | Evaluate each action in the structure from left to right, and ignore the
-- results. For a version that doesn't ignore the results, see
-- 'Data.Bitraversable.bisequence'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bisequence_ (print "Hello", print "World")
-- "Hello"
-- "World"
--
-- >>> bisequence_ (Left (print "Hello"))
-- "Hello"
--
-- >>> bisequence_ (Right (print "World"))
-- "World"
--
-- @since 4.10.0.0
bisequence_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f ()
bisequence_ = bifoldr (*>) (*>) (pure ())
-- | The sum of a collection of actions, generalizing 'biconcat'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biasum (Nothing, Nothing)
-- Nothing
--
-- >>> biasum (Nothing, Just 42)
-- Just 42
--
-- >>> biasum (Just 18, Nothing)
-- Just 18
--
-- >>> biasum (Just 18, Just 42)
-- Just 18
--
-- @since 4.10.0.0
biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a
biasum = bifoldr (<|>) (<|>) empty
-- | Alias for 'biasum'.
--
-- @since 4.10.0.0
bimsum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a
bimsum = biasum
-- | Collects the list of elements of a structure, from left to right.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biList (18, 42)
-- [18,42]
--
-- >>> biList (Left 18)
-- [18]
--
-- @since 4.10.0.0
biList :: Bifoldable t => t a a -> [a]
biList = bifoldr (:) (:) []
-- | Test whether the structure is empty.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> binull (18, 42)
-- False
--
-- >>> binull (Right 42)
-- False
--
-- >>> binull (BiList [] [])
-- True
--
-- @since 4.10.0.0
binull :: Bifoldable t => t a b -> Bool
binull = bifoldr (\_ _ -> False) (\_ _ -> False) True
-- | Returns the size/length of a finite structure as an 'Int'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bilength (True, 42)
-- 2
--
-- >>> bilength (Right 42)
-- 1
--
-- >>> bilength (BiList [1,2,3] [4,5])
-- 5
--
-- >>> bilength (BiList [] [])
-- 0
--
-- On infinite structures, this function hangs:
--
-- @
-- > bilength (BiList [1..] [])
-- * Hangs forever *
-- @
--
-- @since 4.10.0.0
bilength :: Bifoldable t => t a b -> Int
bilength = bifoldl' (\c _ -> c+1) (\c _ -> c+1) 0
-- | Does the element occur in the structure?
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bielem 42 (17, 42)
-- True
--
-- >>> bielem 42 (17, 43)
-- False
--
-- >>> bielem 42 (Left 42)
-- True
--
-- >>> bielem 42 (Right 13)
-- False
--
-- >>> bielem 42 (BiList [1..5] [1..100])
-- True
--
-- >>> bielem 42 (BiList [1..5] [1..41])
-- False
--
-- @since 4.10.0.0
bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool
bielem x = biany (== x) (== x)
-- | Reduces a structure of lists to the concatenation of those lists.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biconcat ([1, 2, 3], [4, 5])
-- [1,2,3,4,5]
--
-- >>> biconcat (Left [1, 2, 3])
-- [1,2,3]
--
-- >>> biconcat (BiList [[1, 2, 3, 4, 5], [6, 7, 8]] [[9]])
-- [1,2,3,4,5,6,7,8,9]
--
-- @since 4.10.0.0
biconcat :: Bifoldable t => t [a] [a] -> [a]
biconcat = bifold
-- | The largest element of a non-empty structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bimaximum (42, 17)
-- 42
--
-- >>> bimaximum (Right 42)
-- 42
--
-- >>> bimaximum (BiList [13, 29, 4] [18, 1, 7])
-- 29
--
-- >>> bimaximum (BiList [13, 29, 4] [])
-- 29
--
-- On empty structures, this function throws an exception:
--
-- >>> bimaximum (BiList [] [])
-- *** Exception: bimaximum: empty structure
--
-- @since 4.10.0.0
bimaximum :: forall t a. (Bifoldable t, Ord a) => t a a -> a
bimaximum = fromMaybe (error "bimaximum: empty structure") .
getMax . bifoldMap mj mj
where mj = Max #. (Just :: a -> Maybe a)
-- | The least element of a non-empty structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biminimum (42, 17)
-- 17
--
-- >>> biminimum (Right 42)
-- 42
--
-- >>> biminimum (BiList [13, 29, 4] [18, 1, 7])
-- 1
--
-- >>> biminimum (BiList [13, 29, 4] [])
-- 4
--
-- On empty structures, this function throws an exception:
--
-- >>> biminimum (BiList [] [])
-- *** Exception: biminimum: empty structure
--
-- @since 4.10.0.0
biminimum :: forall t a. (Bifoldable t, Ord a) => t a a -> a
biminimum = fromMaybe (error "biminimum: empty structure") .
getMin . bifoldMap mj mj
where mj = Min #. (Just :: a -> Maybe a)
-- | The 'bisum' function computes the sum of the numbers of a structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bisum (42, 17)
-- 59
--
-- >>> bisum (Right 42)
-- 42
--
-- >>> bisum (BiList [13, 29, 4] [18, 1, 7])
-- 72
--
-- >>> bisum (BiList [13, 29, 4] [])
-- 46
--
-- >>> bisum (BiList [] [])
-- 0
--
-- @since 4.10.0.0
bisum :: (Bifoldable t, Num a) => t a a -> a
bisum = getSum #. bifoldMap Sum Sum
-- | The 'biproduct' function computes the product of the numbers of a
-- structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biproduct (42, 17)
-- 714
--
-- >>> biproduct (Right 42)
-- 42
--
-- >>> biproduct (BiList [13, 29, 4] [18, 1, 7])
-- 190008
--
-- >>> biproduct (BiList [13, 29, 4] [])
-- 1508
--
-- >>> biproduct (BiList [] [])
-- 1
--
-- @since 4.10.0.0
biproduct :: (Bifoldable t, Num a) => t a a -> a
biproduct = getProduct #. bifoldMap Product Product
-- | Given a means of mapping the elements of a structure to lists, computes the
-- concatenation of all such lists in order.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biconcatMap (take 3) (fmap digitToInt) ([1..], "89")
-- [1,2,3,8,9]
--
-- >>> biconcatMap (take 3) (fmap digitToInt) (Left [1..])
-- [1,2,3]
--
-- >>> biconcatMap (take 3) (fmap digitToInt) (Right "89")
-- [8,9]
--
-- @since 4.10.0.0
biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c]
biconcatMap = bifoldMap
-- | 'biand' returns the conjunction of a container of Bools. For the
-- result to be 'True', the container must be finite; 'False', however,
-- results from a 'False' value finitely far from the left end.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biand (True, False)
-- False
--
-- >>> biand (True, True)
-- True
--
-- >>> biand (Left True)
-- True
--
-- Empty structures yield 'True':
--
-- >>> biand (BiList [] [])
-- True
--
-- A 'False' value finitely far from the left end yields 'False' (short circuit):
--
-- >>> biand (BiList [True, True, False, True] (repeat True))
-- False
--
-- A 'False' value infinitely far from the left end hangs:
--
-- @
-- > biand (BiList (repeat True) [False])
-- * Hangs forever *
-- @
--
-- An infinitely 'True' value hangs:
--
-- @
-- > biand (BiList (repeat True) [])
-- * Hangs forever *
-- @
--
-- @since 4.10.0.0
biand :: Bifoldable t => t Bool Bool -> Bool
biand = getAll #. bifoldMap All All
-- | 'bior' returns the disjunction of a container of Bools. For the
-- result to be 'False', the container must be finite; 'True', however,
-- results from a 'True' value finitely far from the left end.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bior (True, False)
-- True
--
-- >>> bior (False, False)
-- False
--
-- >>> bior (Left True)
-- True
--
-- Empty structures yield 'False':
--
-- >>> bior (BiList [] [])
-- False
--
-- A 'True' value finitely far from the left end yields 'True' (short circuit):
--
-- >>> bior (BiList [False, False, True, False] (repeat False))
-- True
--
-- A 'True' value infinitely far from the left end hangs:
--
-- @
-- > bior (BiList (repeat False) [True])
-- * Hangs forever *
-- @
--
-- An infinitely 'False' value hangs:
--
-- @
-- > bior (BiList (repeat False) [])
-- * Hangs forever *
-- @
--
-- @since 4.10.0.0
bior :: Bifoldable t => t Bool Bool -> Bool
bior = getAny #. bifoldMap Any Any
-- | Determines whether any element of the structure satisfies its appropriate
-- predicate argument. Empty structures yield 'False'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biany even isDigit (27, 't')
-- False
--
-- >>> biany even isDigit (27, '8')
-- True
--
-- >>> biany even isDigit (26, 't')
-- True
--
-- >>> biany even isDigit (Left 27)
-- False
--
-- >>> biany even isDigit (Left 26)
-- True
--
-- >>> biany even isDigit (BiList [27, 53] ['t', '8'])
-- True
--
-- Empty structures yield 'False':
--
-- >>> biany even isDigit (BiList [] [])
-- False
--
-- @since 4.10.0.0
biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool
biany p q = getAny #. bifoldMap (Any . p) (Any . q)
-- | Determines whether all elements of the structure satisfy their appropriate
-- predicate argument. Empty structures yield 'True'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biall even isDigit (27, 't')
-- False
--
-- >>> biall even isDigit (26, '8')
-- True
--
-- >>> biall even isDigit (Left 27)
-- False
--
-- >>> biall even isDigit (Left 26)
-- True
--
-- >>> biall even isDigit (BiList [26, 52] ['3', '8'])
-- True
--
-- Empty structures yield 'True':
--
-- >>> biall even isDigit (BiList [] [])
-- True
--
-- @since 4.10.0.0
biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool
biall p q = getAll #. bifoldMap (All . p) (All . q)
-- | The largest element of a non-empty structure with respect to the
-- given comparison function.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bimaximumBy compare (42, 17)
-- 42
--
-- >>> bimaximumBy compare (Left 17)
-- 17
--
-- >>> bimaximumBy compare (BiList [42, 17, 23] [-5, 18])
-- 42
--
-- On empty structures, this function throws an exception:
--
-- >>> bimaximumBy compare (BiList [] [])
-- *** Exception: bifoldr1: empty structure
--
-- @since 4.10.0.0
bimaximumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a
bimaximumBy cmp = bifoldr1 max'
where max' x y = case cmp x y of
GT -> x
_ -> y
-- | The least element of a non-empty structure with respect to the
-- given comparison function.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> biminimumBy compare (42, 17)
-- 17
--
-- >>> biminimumBy compare (Left 17)
-- 17
--
-- >>> biminimumBy compare (BiList [42, 17, 23] [-5, 18])
-- -5
--
-- On empty structures, this function throws an exception:
--
-- >>> biminimumBy compare (BiList [] [])
-- *** Exception: bifoldr1: empty structure
--
-- @since 4.10.0.0
biminimumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a
biminimumBy cmp = bifoldr1 min'
where min' x y = case cmp x y of
GT -> y
_ -> x
-- | 'binotElem' is the negation of 'bielem'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> binotElem 42 (17, 42)
-- False
--
-- >>> binotElem 42 (17, 43)
-- True
--
-- >>> binotElem 42 (Left 42)
-- False
--
-- >>> binotElem 42 (Right 13)
-- True
--
-- >>> binotElem 42 (BiList [1..5] [1..100])
-- False
--
-- >>> binotElem 42 (BiList [1..5] [1..41])
-- True
--
-- @since 4.10.0.0
binotElem :: (Bifoldable t, Eq a) => a -> t a a-> Bool
binotElem x = not . bielem x
-- | The 'bifind' function takes a predicate and a structure and returns
-- the leftmost element of the structure matching the predicate, or
-- 'Nothing' if there is no such element.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifind even (27, 53)
-- Nothing
--
-- >>> bifind even (27, 52)
-- Just 52
--
-- >>> bifind even (26, 52)
-- Just 26
--
-- Empty structures always yield 'Nothing':
--
-- >>> bifind even (BiList [] [])
-- Nothing
--
-- @since 4.10.0.0
bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a
bifind p = getFirst . bifoldMap finder finder
where finder x = First (if p x then Just x else Nothing)
|