1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE ScopedTypeVariables #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Bitraversable
-- Copyright : (C) 2011-2016 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- @since 4.10.0.0
----------------------------------------------------------------------------
module Data.Bitraversable
( Bitraversable(..)
, bisequenceA
, bisequence
, bimapM
, bifor
, biforM
, bimapAccumL
, bimapAccumR
, bimapDefault
, bifoldMapDefault
) where
import Control.Applicative
import Data.Bifunctor
import Data.Bifoldable
import Data.Coerce
import Data.Functor.Identity (Identity(..))
import Data.Functor.Utils (StateL(..), StateR(..))
import GHC.Generics (K1(..))
-- | 'Bitraversable' identifies bifunctorial data structures whose elements can
-- be traversed in order, performing 'Applicative' or 'Monad' actions at each
-- element, and collecting a result structure with the same shape.
--
-- As opposed to 'Traversable' data structures, which have one variety of
-- element on which an action can be performed, 'Bitraversable' data structures
-- have two such varieties of elements.
--
-- A definition of 'bitraverse' must satisfy the following laws:
--
-- [Naturality]
-- @'bitraverse' (t . f) (t . g) ≡ t . 'bitraverse' f g@
-- for every applicative transformation @t@
--
-- [Identity]
-- @'bitraverse' 'Identity' 'Identity' ≡ 'Identity'@
--
-- [Composition]
-- @'Data.Functor.Compose.Compose' .
-- 'fmap' ('bitraverse' g1 g2) .
-- 'bitraverse' f1 f2
-- ≡ 'bitraverse' ('Data.Functor.Compose.Compose' . 'fmap' g1 . f1)
-- ('Data.Functor.Compose.Compose' . 'fmap' g2 . f2)@
--
-- where an /applicative transformation/ is a function
--
-- @t :: ('Applicative' f, 'Applicative' g) => f a -> g a@
--
-- preserving the 'Applicative' operations:
--
-- @
-- t ('pure' x) = 'pure' x
-- t (f '<*>' x) = t f '<*>' t x
-- @
--
-- and the identity functor 'Identity' and composition functors
-- 'Data.Functor.Compose.Compose' are from "Data.Functor.Identity" and
-- "Data.Functor.Compose".
--
-- Some simple examples are 'Either' and @(,)@:
--
-- > instance Bitraversable Either where
-- > bitraverse f _ (Left x) = Left <$> f x
-- > bitraverse _ g (Right y) = Right <$> g y
-- >
-- > instance Bitraversable (,) where
-- > bitraverse f g (x, y) = (,) <$> f x <*> g y
--
-- 'Bitraversable' relates to its superclasses in the following ways:
--
-- @
-- 'bimap' f g ≡ 'runIdentity' . 'bitraverse' ('Identity' . f) ('Identity' . g)
-- 'bifoldMap' f g = 'getConst' . 'bitraverse' ('Const' . f) ('Const' . g)
-- @
--
-- These are available as 'bimapDefault' and 'bifoldMapDefault' respectively.
--
-- @since 4.10.0.0
class (Bifunctor t, Bifoldable t) => Bitraversable t where
-- | Evaluates the relevant functions at each element in the structure,
-- running the action, and builds a new structure with the same shape, using
-- the results produced from sequencing the actions.
--
-- @'bitraverse' f g ≡ 'bisequenceA' . 'bimap' f g@
--
-- For a version that ignores the results, see 'bitraverse_'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bitraverse listToMaybe (find odd) (Left [])
-- Nothing
--
-- >>> bitraverse listToMaybe (find odd) (Left [1, 2, 3])
-- Just (Left 1)
--
-- >>> bitraverse listToMaybe (find odd) (Right [4, 5])
-- Just (Right 5)
--
-- >>> bitraverse listToMaybe (find odd) ([1, 2, 3], [4, 5])
-- Just (1,5)
--
-- >>> bitraverse listToMaybe (find odd) ([], [4, 5])
-- Nothing
--
-- @since 4.10.0.0
bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> t a b -> f (t c d)
bitraverse f g = bisequenceA . bimap f g
-- | Alias for 'bisequence'.
--
-- @since 4.10.0.0
bisequenceA :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b)
bisequenceA = bisequence
-- | Alias for 'bitraverse'.
--
-- @since 4.10.0.0
bimapM :: (Bitraversable t, Applicative f)
=> (a -> f c) -> (b -> f d) -> t a b -> f (t c d)
bimapM = bitraverse
-- | Sequences all the actions in a structure, building a new structure with
-- the same shape using the results of the actions. For a version that ignores
-- the results, see 'bisequence_'.
--
-- @'bisequence' ≡ 'bitraverse' 'id' 'id'@
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bisequence (Just 4, Nothing)
-- Nothing
--
-- >>> bisequence (Just 4, Just 5)
-- Just (4,5)
--
-- >>> bisequence ([1, 2, 3], [4, 5])
-- [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
--
-- @since 4.10.0.0
bisequence :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b)
bisequence = bitraverse id id
-- | @since 4.10.0.0
instance Bitraversable (,) where
bitraverse f g ~(a, b) = liftA2 (,) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,) x) where
bitraverse f g ~(x, a, b) = liftA2 ((,,) x) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,,) x y) where
bitraverse f g ~(x, y, a, b) = liftA2 ((,,,) x y) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,,,) x y z) where
bitraverse f g ~(x, y, z, a, b) = liftA2 ((,,,,) x y z) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,,,,) x y z w) where
bitraverse f g ~(x, y, z, w, a, b) = liftA2 ((,,,,,) x y z w) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable ((,,,,,,) x y z w v) where
bitraverse f g ~(x, y, z, w, v, a, b) =
liftA2 ((,,,,,,) x y z w v) (f a) (g b)
-- | @since 4.10.0.0
instance Bitraversable Either where
bitraverse f _ (Left a) = Left <$> f a
bitraverse _ g (Right b) = Right <$> g b
-- | @since 4.10.0.0
instance Bitraversable Const where
bitraverse f _ (Const a) = Const <$> f a
-- | @since 4.10.0.0
instance Bitraversable (K1 i) where
bitraverse f _ (K1 c) = K1 <$> f c
-- | 'bifor' is 'bitraverse' with the structure as the first argument. For a
-- version that ignores the results, see 'bifor_'.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bifor (Left []) listToMaybe (find even)
-- Nothing
--
-- >>> bifor (Left [1, 2, 3]) listToMaybe (find even)
-- Just (Left 1)
--
-- >>> bifor (Right [4, 5]) listToMaybe (find even)
-- Just (Right 4)
--
-- >>> bifor ([1, 2, 3], [4, 5]) listToMaybe (find even)
-- Just (1,4)
--
-- >>> bifor ([], [4, 5]) listToMaybe (find even)
-- Nothing
--
-- @since 4.10.0.0
bifor :: (Bitraversable t, Applicative f)
=> t a b -> (a -> f c) -> (b -> f d) -> f (t c d)
bifor t f g = bitraverse f g t
-- | Alias for 'bifor'.
--
-- @since 4.10.0.0
biforM :: (Bitraversable t, Applicative f)
=> t a b -> (a -> f c) -> (b -> f d) -> f (t c d)
biforM = bifor
-- | The 'bimapAccumL' function behaves like a combination of 'bimap' and
-- 'bifoldl'; it traverses a structure from left to right, threading a state
-- of type @a@ and using the given actions to compute new elements for the
-- structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bimapAccumL (\acc bool -> (acc + 1, show bool)) (\acc string -> (acc * 2, reverse string)) 3 (True, "foo")
-- (8,("True","oof"))
--
-- @since 4.10.0.0
bimapAccumL :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e))
-> a -> t b d -> (a, t c e)
bimapAccumL f g s t
= runStateL (bitraverse (StateL . flip f) (StateL . flip g) t) s
-- | The 'bimapAccumR' function behaves like a combination of 'bimap' and
-- 'bifoldr'; it traverses a structure from right to left, threading a state
-- of type @a@ and using the given actions to compute new elements for the
-- structure.
--
-- ==== __Examples__
--
-- Basic usage:
--
-- >>> bimapAccumR (\acc bool -> (acc + 1, show bool)) (\acc string -> (acc * 2, reverse string)) 3 (True, "foo")
-- (7,("True","oof"))
--
-- @since 4.10.0.0
bimapAccumR :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e))
-> a -> t b d -> (a, t c e)
bimapAccumR f g s t
= runStateR (bitraverse (StateR . flip f) (StateR . flip g) t) s
-- | A default definition of 'bimap' in terms of the 'Bitraversable'
-- operations.
--
-- @'bimapDefault' f g ≡
-- 'runIdentity' . 'bitraverse' ('Identity' . f) ('Identity' . g)@
--
-- @since 4.10.0.0
bimapDefault :: forall t a b c d . Bitraversable t
=> (a -> b) -> (c -> d) -> t a c -> t b d
-- See Note [Function coercion] in Data.Functor.Utils.
bimapDefault = coerce
(bitraverse :: (a -> Identity b)
-> (c -> Identity d) -> t a c -> Identity (t b d))
{-# INLINE bimapDefault #-}
-- | A default definition of 'bifoldMap' in terms of the 'Bitraversable'
-- operations.
--
-- @'bifoldMapDefault' f g ≡
-- 'getConst' . 'bitraverse' ('Const' . f) ('Const' . g)@
--
-- @since 4.10.0.0
bifoldMapDefault :: forall t m a b . (Bitraversable t, Monoid m)
=> (a -> m) -> (b -> m) -> t a b -> m
-- See Note [Function coercion] in Data.Functor.Utils.
bifoldMapDefault = coerce
(bitraverse :: (a -> Const m ())
-> (b -> Const m ()) -> t a b -> Const m (t () ()))
{-# INLINE bifoldMapDefault #-}
|