1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, BangPatterns, MagicHash #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Bits
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- This module defines bitwise operations for signed and unsigned
-- integers. Instances of the class 'Bits' for the 'Int' and
-- 'Integer' types are available from this module, and instances for
-- explicitly sized integral types are available from the
-- "Data.Int" and "Data.Word" modules.
--
-----------------------------------------------------------------------------
module Data.Bits (
Bits(
(.&.), (.|.), xor,
complement,
shift,
rotate,
zeroBits,
bit,
setBit,
clearBit,
complementBit,
testBit,
bitSizeMaybe,
bitSize,
isSigned,
shiftL, shiftR,
unsafeShiftL, unsafeShiftR,
rotateL, rotateR,
popCount
),
FiniteBits(
finiteBitSize,
countLeadingZeros,
countTrailingZeros
),
bitDefault,
testBitDefault,
popCountDefault,
toIntegralSized
) where
-- Defines the @Bits@ class containing bit-based operations.
-- See library document for details on the semantics of the
-- individual operations.
#include "MachDeps.h"
import Data.Maybe
import GHC.Num
import GHC.Base
import GHC.Real
infixl 8 `shift`, `rotate`, `shiftL`, `shiftR`, `rotateL`, `rotateR`
infixl 7 .&.
infixl 6 `xor`
infixl 5 .|.
{-# DEPRECATED bitSize "Use 'bitSizeMaybe' or 'finiteBitSize' instead" #-} -- deprecated in 7.8
-- | The 'Bits' class defines bitwise operations over integral types.
--
-- * Bits are numbered from 0 with bit 0 being the least
-- significant bit.
class Eq a => Bits a where
{-# MINIMAL (.&.), (.|.), xor, complement,
(shift | (shiftL, shiftR)),
(rotate | (rotateL, rotateR)),
bitSize, bitSizeMaybe, isSigned, testBit, bit, popCount #-}
-- | Bitwise \"and\"
(.&.) :: a -> a -> a
-- | Bitwise \"or\"
(.|.) :: a -> a -> a
-- | Bitwise \"xor\"
xor :: a -> a -> a
{-| Reverse all the bits in the argument -}
complement :: a -> a
{-| @'shift' x i@ shifts @x@ left by @i@ bits if @i@ is positive,
or right by @-i@ bits otherwise.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the @x@ is negative
and with 0 otherwise.
An instance can define either this unified 'shift' or 'shiftL' and
'shiftR', depending on which is more convenient for the type in
question. -}
shift :: a -> Int -> a
x `shift` i | i<0 = x `shiftR` (-i)
| i>0 = x `shiftL` i
| otherwise = x
{-| @'rotate' x i@ rotates @x@ left by @i@ bits if @i@ is positive,
or right by @-i@ bits otherwise.
For unbounded types like 'Integer', 'rotate' is equivalent to 'shift'.
An instance can define either this unified 'rotate' or 'rotateL' and
'rotateR', depending on which is more convenient for the type in
question. -}
rotate :: a -> Int -> a
x `rotate` i | i<0 = x `rotateR` (-i)
| i>0 = x `rotateL` i
| otherwise = x
{-
-- Rotation can be implemented in terms of two shifts, but care is
-- needed for negative values. This suggested implementation assumes
-- 2's-complement arithmetic. It is commented out because it would
-- require an extra context (Ord a) on the signature of 'rotate'.
x `rotate` i | i<0 && isSigned x && x<0
= let left = i+bitSize x in
((x `shift` i) .&. complement ((-1) `shift` left))
.|. (x `shift` left)
| i<0 = (x `shift` i) .|. (x `shift` (i+bitSize x))
| i==0 = x
| i>0 = (x `shift` i) .|. (x `shift` (i-bitSize x))
-}
-- | 'zeroBits' is the value with all bits unset.
--
-- The following laws ought to hold (for all valid bit indices @/n/@):
--
-- * @'clearBit' 'zeroBits' /n/ == 'zeroBits'@
-- * @'setBit' 'zeroBits' /n/ == 'bit' /n/@
-- * @'testBit' 'zeroBits' /n/ == False@
-- * @'popCount' 'zeroBits' == 0@
--
-- This method uses @'clearBit' ('bit' 0) 0@ as its default
-- implementation (which ought to be equivalent to 'zeroBits' for
-- types which possess a 0th bit).
--
-- @since 4.7.0.0
zeroBits :: a
zeroBits = clearBit (bit 0) 0
-- | @bit /i/@ is a value with the @/i/@th bit set and all other bits clear.
--
-- Can be implemented using `bitDefault' if @a@ is also an
-- instance of 'Num'.
--
-- See also 'zeroBits'.
bit :: Int -> a
-- | @x \`setBit\` i@ is the same as @x .|. bit i@
setBit :: a -> Int -> a
-- | @x \`clearBit\` i@ is the same as @x .&. complement (bit i)@
clearBit :: a -> Int -> a
-- | @x \`complementBit\` i@ is the same as @x \`xor\` bit i@
complementBit :: a -> Int -> a
{-| @x \`testBit\` i@ is the same as @x .&. bit n /= 0@
In other words it returns True if the bit at offset @n
is set.
Can be implemented using `testBitDefault' if @a@ is also an
instance of 'Num'.
-}
testBit :: a -> Int -> Bool
{-| Return the number of bits in the type of the argument. The actual
value of the argument is ignored. Returns Nothing
for types that do not have a fixed bitsize, like 'Integer'.
@since 4.7.0.0
-}
bitSizeMaybe :: a -> Maybe Int
{-| Return the number of bits in the type of the argument. The actual
value of the argument is ignored. The function 'bitSize' is
undefined for types that do not have a fixed bitsize, like 'Integer'.
Default implementation based upon 'bitSizeMaybe' provided since
4.12.0.0.
-}
bitSize :: a -> Int
bitSize b = fromMaybe (error "bitSize is undefined") (bitSizeMaybe b)
{-| Return 'True' if the argument is a signed type. The actual
value of the argument is ignored -}
isSigned :: a -> Bool
{-# INLINE setBit #-}
{-# INLINE clearBit #-}
{-# INLINE complementBit #-}
x `setBit` i = x .|. bit i
x `clearBit` i = x .&. complement (bit i)
x `complementBit` i = x `xor` bit i
{-| Shift the argument left by the specified number of bits
(which must be non-negative). Some instances may throw an
'Control.Exception.Overflow' exception if given a negative input.
An instance can define either this and 'shiftR' or the unified
'shift', depending on which is more convenient for the type in
question. -}
shiftL :: a -> Int -> a
{-# INLINE shiftL #-}
x `shiftL` i = x `shift` i
{-| Shift the argument left by the specified number of bits. The
result is undefined for negative shift amounts and shift amounts
greater or equal to the 'bitSize'.
Defaults to 'shiftL' unless defined explicitly by an instance.
@since 4.5.0.0 -}
unsafeShiftL :: a -> Int -> a
{-# INLINE unsafeShiftL #-}
x `unsafeShiftL` i = x `shiftL` i
{-| Shift the first argument right by the specified number of bits. The
result is undefined for negative shift amounts and shift amounts
greater or equal to the 'bitSize'. Some instances may throw an
'Control.Exception.Overflow' exception if given a negative input.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the @x@ is negative
and with 0 otherwise.
An instance can define either this and 'shiftL' or the unified
'shift', depending on which is more convenient for the type in
question. -}
shiftR :: a -> Int -> a
{-# INLINE shiftR #-}
x `shiftR` i = x `shift` (-i)
{-| Shift the first argument right by the specified number of bits, which
must be non-negative and smaller than the number of bits in the type.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the @x@ is negative
and with 0 otherwise.
Defaults to 'shiftR' unless defined explicitly by an instance.
@since 4.5.0.0 -}
unsafeShiftR :: a -> Int -> a
{-# INLINE unsafeShiftR #-}
x `unsafeShiftR` i = x `shiftR` i
{-| Rotate the argument left by the specified number of bits
(which must be non-negative).
An instance can define either this and 'rotateR' or the unified
'rotate', depending on which is more convenient for the type in
question. -}
rotateL :: a -> Int -> a
{-# INLINE rotateL #-}
x `rotateL` i = x `rotate` i
{-| Rotate the argument right by the specified number of bits
(which must be non-negative).
An instance can define either this and 'rotateL' or the unified
'rotate', depending on which is more convenient for the type in
question. -}
rotateR :: a -> Int -> a
{-# INLINE rotateR #-}
x `rotateR` i = x `rotate` (-i)
{-| Return the number of set bits in the argument. This number is
known as the population count or the Hamming weight.
Can be implemented using `popCountDefault' if @a@ is also an
instance of 'Num'.
@since 4.5.0.0 -}
popCount :: a -> Int
-- |The 'FiniteBits' class denotes types with a finite, fixed number of bits.
--
-- @since 4.7.0.0
class Bits b => FiniteBits b where
-- | Return the number of bits in the type of the argument.
-- The actual value of the argument is ignored. Moreover, 'finiteBitSize'
-- is total, in contrast to the deprecated 'bitSize' function it replaces.
--
-- @
-- 'finiteBitSize' = 'bitSize'
-- 'bitSizeMaybe' = 'Just' . 'finiteBitSize'
-- @
--
-- @since 4.7.0.0
finiteBitSize :: b -> Int
-- | Count number of zero bits preceding the most significant set bit.
--
-- @
-- 'countLeadingZeros' ('zeroBits' :: a) = finiteBitSize ('zeroBits' :: a)
-- @
--
-- 'countLeadingZeros' can be used to compute log base 2 via
--
-- @
-- logBase2 x = 'finiteBitSize' x - 1 - 'countLeadingZeros' x
-- @
--
-- Note: The default implementation for this method is intentionally
-- naive. However, the instances provided for the primitive
-- integral types are implemented using CPU specific machine
-- instructions.
--
-- @since 4.8.0.0
countLeadingZeros :: b -> Int
countLeadingZeros x = (w-1) - go (w-1)
where
go i | i < 0 = i -- no bit set
| testBit x i = i
| otherwise = go (i-1)
w = finiteBitSize x
-- | Count number of zero bits following the least significant set bit.
--
-- @
-- 'countTrailingZeros' ('zeroBits' :: a) = finiteBitSize ('zeroBits' :: a)
-- 'countTrailingZeros' . 'negate' = 'countTrailingZeros'
-- @
--
-- The related
-- <http://en.wikipedia.org/wiki/Find_first_set find-first-set operation>
-- can be expressed in terms of 'countTrailingZeros' as follows
--
-- @
-- findFirstSet x = 1 + 'countTrailingZeros' x
-- @
--
-- Note: The default implementation for this method is intentionally
-- naive. However, the instances provided for the primitive
-- integral types are implemented using CPU specific machine
-- instructions.
--
-- @since 4.8.0.0
countTrailingZeros :: b -> Int
countTrailingZeros x = go 0
where
go i | i >= w = i
| testBit x i = i
| otherwise = go (i+1)
w = finiteBitSize x
-- The defaults below are written with lambdas so that e.g.
-- bit = bitDefault
-- is fully applied, so inlining will happen
-- | Default implementation for 'bit'.
--
-- Note that: @bitDefault i = 1 `shiftL` i@
--
-- @since 4.6.0.0
bitDefault :: (Bits a, Num a) => Int -> a
bitDefault = \i -> 1 `shiftL` i
{-# INLINE bitDefault #-}
-- | Default implementation for 'testBit'.
--
-- Note that: @testBitDefault x i = (x .&. bit i) /= 0@
--
-- @since 4.6.0.0
testBitDefault :: (Bits a, Num a) => a -> Int -> Bool
testBitDefault = \x i -> (x .&. bit i) /= 0
{-# INLINE testBitDefault #-}
-- | Default implementation for 'popCount'.
--
-- This implementation is intentionally naive. Instances are expected to provide
-- an optimized implementation for their size.
--
-- @since 4.6.0.0
popCountDefault :: (Bits a, Num a) => a -> Int
popCountDefault = go 0
where
go !c 0 = c
go c w = go (c+1) (w .&. (w - 1)) -- clear the least significant
{-# INLINABLE popCountDefault #-}
-- | Interpret 'Bool' as 1-bit bit-field
--
-- @since 4.7.0.0
instance Bits Bool where
(.&.) = (&&)
(.|.) = (||)
xor = (/=)
complement = not
shift x 0 = x
shift _ _ = False
rotate x _ = x
bit 0 = True
bit _ = False
testBit x 0 = x
testBit _ _ = False
bitSizeMaybe _ = Just 1
bitSize _ = 1
isSigned _ = False
popCount False = 0
popCount True = 1
-- | @since 4.7.0.0
instance FiniteBits Bool where
finiteBitSize _ = 1
countTrailingZeros x = if x then 0 else 1
countLeadingZeros x = if x then 0 else 1
-- | @since 2.01
instance Bits Int where
{-# INLINE shift #-}
{-# INLINE bit #-}
{-# INLINE testBit #-}
-- We want popCnt# to be inlined in user code so that `ghc -msse4.2`
-- can compile it down to a popcnt instruction without an extra function call
{-# INLINE popCount #-}
zeroBits = 0
bit = bitDefault
testBit = testBitDefault
(I# x#) .&. (I# y#) = I# (x# `andI#` y#)
(I# x#) .|. (I# y#) = I# (x# `orI#` y#)
(I# x#) `xor` (I# y#) = I# (x# `xorI#` y#)
complement (I# x#) = I# (notI# x#)
(I# x#) `shift` (I# i#)
| isTrue# (i# >=# 0#) = I# (x# `iShiftL#` i#)
| otherwise = I# (x# `iShiftRA#` negateInt# i#)
(I# x#) `shiftL` (I# i#)
| isTrue# (i# >=# 0#) = I# (x# `iShiftL#` i#)
| otherwise = overflowError
(I# x#) `unsafeShiftL` (I# i#) = I# (x# `uncheckedIShiftL#` i#)
(I# x#) `shiftR` (I# i#)
| isTrue# (i# >=# 0#) = I# (x# `iShiftRA#` i#)
| otherwise = overflowError
(I# x#) `unsafeShiftR` (I# i#) = I# (x# `uncheckedIShiftRA#` i#)
{-# INLINE rotate #-} -- See Note [Constant folding for rotate]
(I# x#) `rotate` (I# i#) =
I# ((x# `uncheckedIShiftL#` i'#) `orI#` (x# `uncheckedIShiftRL#` (wsib -# i'#)))
where
!i'# = i# `andI#` (wsib -# 1#)
!wsib = WORD_SIZE_IN_BITS# {- work around preprocessor problem (??) -}
bitSizeMaybe i = Just (finiteBitSize i)
bitSize i = finiteBitSize i
popCount (I# x#) = I# (word2Int# (popCnt# (int2Word# x#)))
isSigned _ = True
-- | @since 4.6.0.0
instance FiniteBits Int where
finiteBitSize _ = WORD_SIZE_IN_BITS
countLeadingZeros (I# x#) = I# (word2Int# (clz# (int2Word# x#)))
{-# INLINE countLeadingZeros #-}
countTrailingZeros (I# x#) = I# (word2Int# (ctz# (int2Word# x#)))
{-# INLINE countTrailingZeros #-}
-- | @since 2.01
instance Bits Word where
{-# INLINE shift #-}
{-# INLINE bit #-}
{-# INLINE testBit #-}
{-# INLINE popCount #-}
(W# x#) .&. (W# y#) = W# (x# `and#` y#)
(W# x#) .|. (W# y#) = W# (x# `or#` y#)
(W# x#) `xor` (W# y#) = W# (x# `xor#` y#)
complement (W# x#) = W# (not# x#)
(W# x#) `shift` (I# i#)
| isTrue# (i# >=# 0#) = W# (x# `shiftL#` i#)
| otherwise = W# (x# `shiftRL#` negateInt# i#)
(W# x#) `shiftL` (I# i#)
| isTrue# (i# >=# 0#) = W# (x# `shiftL#` i#)
| otherwise = overflowError
(W# x#) `unsafeShiftL` (I# i#) = W# (x# `uncheckedShiftL#` i#)
(W# x#) `shiftR` (I# i#)
| isTrue# (i# >=# 0#) = W# (x# `shiftRL#` i#)
| otherwise = overflowError
(W# x#) `unsafeShiftR` (I# i#) = W# (x# `uncheckedShiftRL#` i#)
(W# x#) `rotate` (I# i#)
| isTrue# (i'# ==# 0#) = W# x#
| otherwise = W# ((x# `uncheckedShiftL#` i'#) `or#` (x# `uncheckedShiftRL#` (wsib -# i'#)))
where
!i'# = i# `andI#` (wsib -# 1#)
!wsib = WORD_SIZE_IN_BITS# {- work around preprocessor problem (??) -}
bitSizeMaybe i = Just (finiteBitSize i)
bitSize i = finiteBitSize i
isSigned _ = False
popCount (W# x#) = I# (word2Int# (popCnt# x#))
bit = bitDefault
testBit = testBitDefault
-- | @since 4.6.0.0
instance FiniteBits Word where
finiteBitSize _ = WORD_SIZE_IN_BITS
countLeadingZeros (W# x#) = I# (word2Int# (clz# x#))
{-# INLINE countLeadingZeros #-}
countTrailingZeros (W# x#) = I# (word2Int# (ctz# x#))
{-# INLINE countTrailingZeros #-}
-- | @since 2.01
instance Bits Integer where
(.&.) = integerAnd
(.|.) = integerOr
xor = integerXor
complement = integerComplement
unsafeShiftR x i = integerShiftR x (fromIntegral i)
unsafeShiftL x i = integerShiftL x (fromIntegral i)
shiftR x i@(I# i#)
| isTrue# (i# >=# 0#) = unsafeShiftR x i
| otherwise = overflowError
shiftL x i@(I# i#)
| isTrue# (i# >=# 0#) = unsafeShiftL x i
| otherwise = overflowError
shift x i | i >= 0 = integerShiftL x (fromIntegral i)
| otherwise = integerShiftR x (fromIntegral (negate i))
testBit x i = integerTestBit x (fromIntegral i)
zeroBits = integerZero
bit (I# i) = integerBit# (int2Word# i)
popCount x = I# (integerPopCount# x)
rotate x i = shift x i -- since an Integer never wraps around
bitSizeMaybe _ = Nothing
bitSize _ = errorWithoutStackTrace "Data.Bits.bitSize(Integer)"
isSigned _ = True
-- | @since 4.8.0
instance Bits Natural where
(.&.) = naturalAnd
(.|.) = naturalOr
xor = naturalXor
complement _ = errorWithoutStackTrace
"Bits.complement: Natural complement undefined"
unsafeShiftR x i = naturalShiftR x (fromIntegral i)
unsafeShiftL x i = naturalShiftL x (fromIntegral i)
shiftR x i@(I# i#)
| isTrue# (i# >=# 0#) = unsafeShiftR x i
| otherwise = overflowError
shiftL x i@(I# i#)
| isTrue# (i# >=# 0#) = unsafeShiftL x i
| otherwise = overflowError
shift x i
| i >= 0 = naturalShiftL x (fromIntegral i)
| otherwise = naturalShiftR x (fromIntegral (negate i))
testBit x i = naturalTestBit x (fromIntegral i)
zeroBits = naturalZero
clearBit x i = x `xor` (bit i .&. x)
bit (I# i) = naturalBit# (int2Word# i)
popCount x = I# (word2Int# (naturalPopCount# x))
rotate x i = shift x i -- since an Natural never wraps around
bitSizeMaybe _ = Nothing
bitSize _ = errorWithoutStackTrace "Data.Bits.bitSize(Natural)"
isSigned _ = False
-----------------------------------------------------------------------------
-- | Attempt to convert an 'Integral' type @a@ to an 'Integral' type @b@ using
-- the size of the types as measured by 'Bits' methods.
--
-- A simpler version of this function is:
--
-- > toIntegral :: (Integral a, Integral b) => a -> Maybe b
-- > toIntegral x
-- > | toInteger x == y = Just (fromInteger y)
-- > | otherwise = Nothing
-- > where
-- > y = toInteger x
--
-- This version requires going through 'Integer', which can be inefficient.
-- However, @toIntegralSized@ is optimized to allow GHC to statically determine
-- the relative type sizes (as measured by 'bitSizeMaybe' and 'isSigned') and
-- avoid going through 'Integer' for many types. (The implementation uses
-- 'fromIntegral', which is itself optimized with rules for @base@ types but may
-- go through 'Integer' for some type pairs.)
--
-- @since 4.8.0.0
toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b
toIntegralSized x -- See Note [toIntegralSized optimization]
| maybe True (<= x) yMinBound
, maybe True (x <=) yMaxBound = Just y
| otherwise = Nothing
where
y = fromIntegral x
xWidth = bitSizeMaybe x
yWidth = bitSizeMaybe y
yMinBound
| isBitSubType x y = Nothing
| isSigned x, not (isSigned y) = Just 0
| isSigned x, isSigned y
, Just yW <- yWidth = Just (negate $ bit (yW-1)) -- Assumes sub-type
| otherwise = Nothing
yMaxBound
| isBitSubType x y = Nothing
| isSigned x, not (isSigned y)
, Just xW <- xWidth, Just yW <- yWidth
, xW <= yW+1 = Nothing -- Max bound beyond a's domain
| Just yW <- yWidth = if isSigned y
then Just (bit (yW-1)-1)
else Just (bit yW-1)
| otherwise = Nothing
{-# INLINABLE toIntegralSized #-}
-- | 'True' if the size of @a@ is @<=@ the size of @b@, where size is measured
-- by 'bitSizeMaybe' and 'isSigned'.
isBitSubType :: (Bits a, Bits b) => a -> b -> Bool
isBitSubType x y
-- Reflexive
| xWidth == yWidth, xSigned == ySigned = True
-- Every integer is a subset of 'Integer'
| ySigned, Nothing == yWidth = True
| not xSigned, not ySigned, Nothing == yWidth = True
-- Sub-type relations between fixed-with types
| xSigned == ySigned, Just xW <- xWidth, Just yW <- yWidth = xW <= yW
| not xSigned, ySigned, Just xW <- xWidth, Just yW <- yWidth = xW < yW
| otherwise = False
where
xWidth = bitSizeMaybe x
xSigned = isSigned x
yWidth = bitSizeMaybe y
ySigned = isSigned y
{-# INLINE isBitSubType #-}
{- Note [Constant folding for rotate]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The INLINE on the Int instance of rotate enables it to be constant
folded. For example:
sumU . mapU (`rotate` 3) . replicateU 10000000 $ (7 :: Int)
goes to:
Main.$wfold =
\ (ww_sO7 :: Int#) (ww1_sOb :: Int#) ->
case ww1_sOb of wild_XM {
__DEFAULT -> Main.$wfold (+# ww_sO7 56) (+# wild_XM 1);
10000000 -> ww_sO7
whereas before it was left as a call to $wrotate.
All other Bits instances seem to inline well enough on their
own to enable constant folding; for example 'shift':
sumU . mapU (`shift` 3) . replicateU 10000000 $ (7 :: Int)
goes to:
Main.$wfold =
\ (ww_sOb :: Int#) (ww1_sOf :: Int#) ->
case ww1_sOf of wild_XM {
__DEFAULT -> Main.$wfold (+# ww_sOb 56) (+# wild_XM 1);
10000000 -> ww_sOb
}
-}
-- Note [toIntegralSized optimization]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The code in 'toIntegralSized' relies on GHC optimizing away statically
-- decidable branches.
--
-- If both integral types are statically known, GHC will be able optimize the
-- code significantly (for @-O1@ and better).
--
-- For instance (as of GHC 7.8.1) the following definitions:
--
-- > w16_to_i32 = toIntegralSized :: Word16 -> Maybe Int32
-- >
-- > i16_to_w16 = toIntegralSized :: Int16 -> Maybe Word16
--
-- are translated into the following (simplified) /GHC Core/ language:
--
-- > w16_to_i32 = \x -> Just (case x of _ { W16# x# -> I32# (word2Int# x#) })
-- >
-- > i16_to_w16 = \x -> case eta of _
-- > { I16# b1 -> case tagToEnum# (<=# 0 b1) of _
-- > { False -> Nothing
-- > ; True -> Just (W16# (narrow16Word# (int2Word# b1)))
-- > }
-- > }
|