1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveTraversable #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Complex
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- Complex numbers.
--
-----------------------------------------------------------------------------
module Data.Complex
(
-- * Rectangular form
Complex((:+))
, realPart
, imagPart
-- * Polar form
, mkPolar
, cis
, polar
, magnitude
, phase
-- * Conjugate
, conjugate
) where
import GHC.Base (Applicative (..))
import GHC.Generics (Generic, Generic1)
import GHC.Float (Floating(..))
import Data.Data (Data)
import Foreign (Storable, castPtr, peek, poke, pokeElemOff, peekElemOff, sizeOf,
alignment)
import Control.Monad.Fix (MonadFix(..))
import Control.Monad.Zip (MonadZip(..))
infix 6 :+
-- -----------------------------------------------------------------------------
-- The Complex type
-- | Complex numbers are an algebraic type.
--
-- For a complex number @z@, @'abs' z@ is a number with the magnitude of @z@,
-- but oriented in the positive real direction, whereas @'signum' z@
-- has the phase of @z@, but unit magnitude.
--
-- The 'Foldable' and 'Traversable' instances traverse the real part first.
--
-- Note that `Complex`'s instances inherit the deficiencies from the type
-- parameter's. For example, @Complex Float@'s 'Ord' instance has similar
-- problems to `Float`'s.
data Complex a
= !a :+ !a -- ^ forms a complex number from its real and imaginary
-- rectangular components.
deriving ( Eq -- ^ @since 2.01
, Show -- ^ @since 2.01
, Read -- ^ @since 2.01
, Data -- ^ @since 2.01
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
, Functor -- ^ @since 4.9.0.0
, Foldable -- ^ @since 4.9.0.0
, Traversable -- ^ @since 4.9.0.0
)
-- -----------------------------------------------------------------------------
-- Functions over Complex
-- | Extracts the real part of a complex number.
realPart :: Complex a -> a
realPart (x :+ _) = x
-- | Extracts the imaginary part of a complex number.
imagPart :: Complex a -> a
imagPart (_ :+ y) = y
-- | The conjugate of a complex number.
{-# SPECIALISE conjugate :: Complex Double -> Complex Double #-}
conjugate :: Num a => Complex a -> Complex a
conjugate (x:+y) = x :+ (-y)
-- | Form a complex number from polar components of magnitude and phase.
{-# SPECIALISE mkPolar :: Double -> Double -> Complex Double #-}
mkPolar :: Floating a => a -> a -> Complex a
mkPolar r theta = r * cos theta :+ r * sin theta
-- | @'cis' t@ is a complex value with magnitude @1@
-- and phase @t@ (modulo @2*'pi'@).
{-# SPECIALISE cis :: Double -> Complex Double #-}
cis :: Floating a => a -> Complex a
cis theta = cos theta :+ sin theta
-- | The function 'polar' takes a complex number and
-- returns a (magnitude, phase) pair in canonical form:
-- the magnitude is nonnegative, and the phase in the range @(-'pi', 'pi']@;
-- if the magnitude is zero, then so is the phase.
{-# SPECIALISE polar :: Complex Double -> (Double,Double) #-}
polar :: (RealFloat a) => Complex a -> (a,a)
polar z = (magnitude z, phase z)
-- | The nonnegative magnitude of a complex number.
{-# SPECIALISE magnitude :: Complex Double -> Double #-}
magnitude :: (RealFloat a) => Complex a -> a
magnitude (x:+y) = scaleFloat k
(sqrt (sqr (scaleFloat mk x) + sqr (scaleFloat mk y)))
where k = max (exponent x) (exponent y)
mk = - k
sqr z = z * z
-- | The phase of a complex number, in the range @(-'pi', 'pi']@.
-- If the magnitude is zero, then so is the phase.
{-# SPECIALISE phase :: Complex Double -> Double #-}
phase :: (RealFloat a) => Complex a -> a
phase (0 :+ 0) = 0 -- SLPJ July 97 from John Peterson
phase (x:+y) = atan2 y x
-- -----------------------------------------------------------------------------
-- Instances of Complex
-- | @since 2.01
instance (RealFloat a) => Num (Complex a) where
{-# SPECIALISE instance Num (Complex Float) #-}
{-# SPECIALISE instance Num (Complex Double) #-}
(x:+y) + (x':+y') = (x+x') :+ (y+y')
(x:+y) - (x':+y') = (x-x') :+ (y-y')
(x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x')
negate (x:+y) = negate x :+ negate y
abs z = magnitude z :+ 0
signum (0:+0) = 0
signum z@(x:+y) = x/r :+ y/r where r = magnitude z
fromInteger n = fromInteger n :+ 0
-- | @since 2.01
instance (RealFloat a) => Fractional (Complex a) where
{-# SPECIALISE instance Fractional (Complex Float) #-}
{-# SPECIALISE instance Fractional (Complex Double) #-}
(x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d
where x'' = scaleFloat k x'
y'' = scaleFloat k y'
k = - max (exponent x') (exponent y')
d = x'*x'' + y'*y''
fromRational a = fromRational a :+ 0
-- | @since 2.01
instance (RealFloat a) => Floating (Complex a) where
{-# SPECIALISE instance Floating (Complex Float) #-}
{-# SPECIALISE instance Floating (Complex Double) #-}
pi = pi :+ 0
exp (x:+y) = expx * cos y :+ expx * sin y
where expx = exp x
log z = log (magnitude z) :+ phase z
x ** y = case (x,y) of
(_ , (0:+0)) -> 1 :+ 0
((0:+0), (exp_re:+_)) -> case compare exp_re 0 of
GT -> 0 :+ 0
LT -> inf :+ 0
EQ -> nan :+ nan
((re:+im), (exp_re:+_))
| (isInfinite re || isInfinite im) -> case compare exp_re 0 of
GT -> inf :+ 0
LT -> 0 :+ 0
EQ -> nan :+ nan
| otherwise -> exp (log x * y)
where
inf = 1/0
nan = 0/0
sqrt (0:+0) = 0
sqrt z@(x:+y) = u :+ (if y < 0 then -v else v)
where (u,v) = if x < 0 then (v',u') else (u',v')
v' = abs y / (u'*2)
u' = sqrt ((magnitude z + abs x) / 2)
sin (x:+y) = sin x * cosh y :+ cos x * sinh y
cos (x:+y) = cos x * cosh y :+ (- sin x * sinh y)
tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
where sinx = sin x
cosx = cos x
sinhy = sinh y
coshy = cosh y
sinh (x:+y) = cos y * sinh x :+ sin y * cosh x
cosh (x:+y) = cos y * cosh x :+ sin y * sinh x
tanh (x:+y) = (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
where siny = sin y
cosy = cos y
sinhx = sinh x
coshx = cosh x
asin z@(x:+y) = y':+(-x')
where (x':+y') = log (((-y):+x) + sqrt (1 - z*z))
acos z = y'':+(-x'')
where (x'':+y'') = log (z + ((-y'):+x'))
(x':+y') = sqrt (1 - z*z)
atan z@(x:+y) = y':+(-x')
where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))
asinh z = log (z + sqrt (1+z*z))
-- Take care to allow (-1)::Complex, fixing #8532
acosh z = log (z + (sqrt $ z+1) * (sqrt $ z-1))
atanh z = 0.5 * log ((1.0+z) / (1.0-z))
log1p x@(a :+ b)
| abs a < 0.5 && abs b < 0.5
, u <- 2*a + a*a + b*b = log1p (u/(1 + sqrt(u+1))) :+ atan2 (1 + a) b
| otherwise = log (1 + x)
{-# INLINE log1p #-}
expm1 x@(a :+ b)
| a*a + b*b < 1
, u <- expm1 a
, v <- sin (b/2)
, w <- -2*v*v = (u*w + u + w) :+ (u+1)*sin b
| otherwise = exp x - 1
{-# INLINE expm1 #-}
-- | @since 4.8.0.0
instance Storable a => Storable (Complex a) where
sizeOf a = 2 * sizeOf (realPart a)
alignment a = alignment (realPart a)
peek p = do
q <- return $ castPtr p
r <- peek q
i <- peekElemOff q 1
return (r :+ i)
poke p (r :+ i) = do
q <-return $ (castPtr p)
poke q r
pokeElemOff q 1 i
-- | @since 4.9.0.0
instance Applicative Complex where
pure a = a :+ a
f :+ g <*> a :+ b = f a :+ g b
liftA2 f (x :+ y) (a :+ b) = f x a :+ f y b
-- | @since 4.9.0.0
instance Monad Complex where
a :+ b >>= f = realPart (f a) :+ imagPart (f b)
-- | @since 4.15.0.0
instance MonadZip Complex where
mzipWith = liftA2
-- | @since 4.15.0.0
instance MonadFix Complex where
mfix f = (let a :+ _ = f a in a) :+ (let _ :+ a = f a in a)
-- -----------------------------------------------------------------------------
-- Rules on Complex
{-# RULES
"realToFrac/a->Complex Double"
realToFrac = \x -> realToFrac x :+ (0 :: Double)
"realToFrac/a->Complex Float"
realToFrac = \x -> realToFrac x :+ (0 :: Float)
#-}
|