1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Data
-- Copyright : (c) The University of Glasgow, CWI 2001--2004
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : non-portable (local universal quantification)
--
-- \"Scrap your boilerplate\" --- Generic programming in Haskell. See
-- <http://www.haskell.org/haskellwiki/Research_papers/Generics#Scrap_your_boilerplate.21>.
-- This module provides the 'Data' class with its primitives for
-- generic programming, along with instances for many datatypes. It
-- corresponds to a merge between the previous "Data.Generics.Basics"
-- and almost all of "Data.Generics.Instances". The instances that are
-- not present in this module were moved to the
-- @Data.Generics.Instances@ module in the @syb@ package.
--
-- For more information, please visit the new
-- SYB wiki: <http://www.cs.uu.nl/wiki/bin/view/GenericProgramming/SYB>.
--
-----------------------------------------------------------------------------
module Data.Data (
-- * Module Data.Typeable re-exported for convenience
module Data.Typeable,
-- * The Data class for processing constructor applications
Data(
gfoldl,
gunfold,
toConstr,
dataTypeOf,
dataCast1, -- mediate types and unary type constructors
dataCast2, -- mediate types and binary type constructors
-- Generic maps defined in terms of gfoldl
gmapT,
gmapQ,
gmapQl,
gmapQr,
gmapQi,
gmapM,
gmapMp,
gmapMo
),
-- * Datatype representations
DataType, -- abstract
-- ** Constructors
mkDataType,
mkIntType,
mkFloatType,
mkCharType,
mkNoRepType,
-- ** Observers
dataTypeName,
DataRep(..),
dataTypeRep,
-- ** Convenience functions
repConstr,
isAlgType,
dataTypeConstrs,
indexConstr,
maxConstrIndex,
isNorepType,
-- * Data constructor representations
Constr, -- abstract
ConIndex, -- alias for Int, start at 1
Fixity(..),
-- ** Constructors
mkConstr,
mkIntegralConstr,
mkRealConstr,
mkCharConstr,
-- ** Observers
constrType,
ConstrRep(..),
constrRep,
constrFields,
constrFixity,
-- ** Convenience function: algebraic data types
constrIndex,
-- ** From strings to constructors and vice versa: all data types
showConstr,
readConstr,
-- * Convenience functions: take type constructors apart
tyconUQname,
tyconModule,
-- * Generic operations defined in terms of 'gunfold'
fromConstr,
fromConstrB,
fromConstrM
) where
------------------------------------------------------------------------------
import Data.Functor.Const
import Data.Either
import Data.Eq
import Data.Maybe
import Data.Monoid
import Data.Ord
import Data.Typeable
import Data.Version( Version(..) )
import GHC.Base hiding (Any, IntRep, FloatRep)
import GHC.List
import GHC.Num
import GHC.Read
import GHC.Show
import GHC.Tuple (Solo (..))
import Text.Read( reads )
-- Imports for the instances
import Control.Applicative (WrappedArrow(..), WrappedMonad(..), ZipList(..))
-- So we can give them Data instances
import Data.Functor.Identity -- So we can give Data instance for Identity
import Data.Int -- So we can give Data instance for Int8, ...
import Data.Type.Coercion
import Data.Word -- So we can give Data instance for Word8, ...
import GHC.Real -- So we can give Data instance for Ratio
--import GHC.IOBase -- So we can give Data instance for IO, Handle
import GHC.Ptr -- So we can give Data instance for Ptr
import GHC.ForeignPtr -- So we can give Data instance for ForeignPtr
import Foreign.Ptr (IntPtr(..), WordPtr(..))
-- So we can give Data instance for IntPtr and WordPtr
--import GHC.Stable -- So we can give Data instance for StablePtr
--import GHC.ST -- So we can give Data instance for ST
--import GHC.Conc -- So we can give Data instance for MVar & Co.
import GHC.Arr -- So we can give Data instance for Array
import qualified GHC.Generics as Generics (Fixity(..))
import GHC.Generics hiding (Fixity(..))
-- So we can give Data instance for U1, V1, ...
------------------------------------------------------------------------------
--
-- The Data class
--
------------------------------------------------------------------------------
{- |
The 'Data' class comprehends a fundamental primitive 'gfoldl' for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the @gmap@ combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive @gmap@ combinators. The 'gfoldl'
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators 'gmapT', 'gmapQ', 'gmapM', etc are all provided with
default definitions in terms of 'gfoldl', leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the @gmap@ combinators as members of class 'Data'
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. /Note/: 'gfoldl' is more higher-order
than the @gmap@ combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the @gmap@ combinators will be
moved out of the class 'Data'.)
Conceptually, the definition of the @gmap@ combinators in terms of the
primitive 'gfoldl' requires the identification of the 'gfoldl' function
arguments. Technically, we also need to identify the type constructor
@c@ for the construction of the result type from the folded term type.
In the definition of @gmapQ@/x/ combinators, we use phantom type
constructors for the @c@ in the type of 'gfoldl' because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of 'gmapQl' we simply use the plain constant type
constructor because 'gfoldl' is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., @(:)@). When the query is meant to compute a value
of type @r@, then the result type within generic folding is @r -> r@.
So the result of folding is a function to which we finally pass the
right unit.
With the @-XDeriveDataTypeable@ option, GHC can generate instances of the
'Data' class automatically. For example, given the declaration
> data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
> instance (Data a, Data b) => Data (T a b) where
> gfoldl k z (C1 a b) = z C1 `k` a `k` b
> gfoldl k z C2 = z C2
>
> gunfold k z c = case constrIndex c of
> 1 -> k (k (z C1))
> 2 -> z C2
>
> toConstr (C1 _ _) = con_C1
> toConstr C2 = con_C2
>
> dataTypeOf _ = ty_T
>
> con_C1 = mkConstr ty_T "C1" [] Prefix
> con_C2 = mkConstr ty_T "C2" [] Prefix
> ty_T = mkDataType "Module.T" [con_C1, con_C2]
This is suitable for datatypes that are exported transparently.
-}
class Typeable a => Data a where
-- | Left-associative fold operation for constructor applications.
--
-- The type of 'gfoldl' is a headache, but operationally it is a simple
-- generalisation of a list fold.
--
-- The default definition for 'gfoldl' is @'const' 'id'@, which is
-- suitable for abstract datatypes with no substructures.
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-- ^ defines how nonempty constructor applications are
-- folded. It takes the folded tail of the constructor
-- application and its head, i.e., an immediate subterm,
-- and combines them in some way.
-> (forall g. g -> c g)
-- ^ defines how the empty constructor application is
-- folded, like the neutral \/ start element for list
-- folding.
-> a
-- ^ structure to be folded.
-> c a
-- ^ result, with a type defined in terms of @a@, but
-- variability is achieved by means of type constructor
-- @c@ for the construction of the actual result type.
-- See the 'Data' instances in this file for an illustration of 'gfoldl'.
gfoldl _ z = z
-- | Unfolding constructor applications
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r)
-> Constr
-> c a
-- | Obtaining the constructor from a given datum.
-- For proper terms, this is meant to be the top-level constructor.
-- Primitive datatypes are here viewed as potentially infinite sets of
-- values (i.e., constructors).
toConstr :: a -> Constr
-- | The outer type constructor of the type
dataTypeOf :: a -> DataType
------------------------------------------------------------------------------
--
-- Mediate types and type constructors
--
------------------------------------------------------------------------------
-- | Mediate types and unary type constructors.
--
-- In 'Data' instances of the form
--
-- @
-- instance (Data a, ...) => Data (T a)
-- @
--
-- 'dataCast1' should be defined as 'gcast1'.
--
-- The default definition is @'const' 'Nothing'@, which is appropriate
-- for instances of other forms.
dataCast1 :: Typeable t
=> (forall d. Data d => c (t d))
-> Maybe (c a)
dataCast1 _ = Nothing
-- | Mediate types and binary type constructors.
--
-- In 'Data' instances of the form
--
-- @
-- instance (Data a, Data b, ...) => Data (T a b)
-- @
--
-- 'dataCast2' should be defined as 'gcast2'.
--
-- The default definition is @'const' 'Nothing'@, which is appropriate
-- for instances of other forms.
dataCast2 :: Typeable t
=> (forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c a)
dataCast2 _ = Nothing
------------------------------------------------------------------------------
--
-- Typical generic maps defined in terms of gfoldl
--
------------------------------------------------------------------------------
-- | A generic transformation that maps over the immediate subterms
--
-- The default definition instantiates the type constructor @c@ in the
-- type of 'gfoldl' to an identity datatype constructor, using the
-- isomorphism pair as injection and projection.
gmapT :: (forall b. Data b => b -> b) -> a -> a
-- Use the Identity datatype constructor
-- to instantiate the type constructor c in the type of gfoldl,
-- and perform injections Identity and projections runIdentity accordingly.
--
gmapT f x0 = runIdentity (gfoldl k Identity x0)
where
k :: Data d => Identity (d->b) -> d -> Identity b
k (Identity c) x = Identity (c (f x))
-- | A generic query with a left-associative binary operator
gmapQl :: forall r r'. (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
gmapQl o r f = getConst . gfoldl k z
where
k :: Data d => Const r (d->b) -> d -> Const r b
k c x = Const $ (getConst c) `o` f x
z :: g -> Const r g
z _ = Const r
-- | A generic query with a right-associative binary operator
gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
gmapQr o r0 f x0 = unQr (gfoldl k (const (Qr id)) x0) r0
where
k :: Data d => Qr r (d->b) -> d -> Qr r b
k (Qr c) x = Qr (\r -> c (f x `o` r))
-- | A generic query that processes the immediate subterms and returns a list
-- of results. The list is given in the same order as originally specified
-- in the declaration of the data constructors.
gmapQ :: (forall d. Data d => d -> u) -> a -> [u]
gmapQ f = gmapQr (:) [] f
-- | A generic query that processes one child by index (zero-based)
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> a -> u
gmapQi i f x = case gfoldl k z x of { Qi _ q -> fromJust q }
where
k :: Data d => Qi u (d -> b) -> d -> Qi u b
k (Qi i' q) a = Qi (i'+1) (if i==i' then Just (f a) else q)
z :: g -> Qi q g
z _ = Qi 0 Nothing
-- | A generic monadic transformation that maps over the immediate subterms
--
-- The default definition instantiates the type constructor @c@ in
-- the type of 'gfoldl' to the monad datatype constructor, defining
-- injection and projection using 'return' and '>>='.
gmapM :: forall m. Monad m => (forall d. Data d => d -> m d) -> a -> m a
-- Use immediately the monad datatype constructor
-- to instantiate the type constructor c in the type of gfoldl,
-- so injection and projection is done by return and >>=.
--
gmapM f = gfoldl k return
where
k :: Data d => m (d -> b) -> d -> m b
k c x = do c' <- c
x' <- f x
return (c' x')
-- | Transformation of at least one immediate subterm does not fail
gmapMp :: forall m. MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
{-
The type constructor that we use here simply keeps track of the fact
if we already succeeded for an immediate subterm; see Mp below. To
this end, we couple the monadic computation with a Boolean.
-}
gmapMp f x = unMp (gfoldl k z x) >>= \(x',b) ->
if b then return x' else mzero
where
z :: g -> Mp m g
z g = Mp (return (g,False))
k :: Data d => Mp m (d -> b) -> d -> Mp m b
k (Mp c) y
= Mp ( c >>= \(h, b) ->
(f y >>= \y' -> return (h y', True))
`mplus` return (h y, b)
)
-- | Transformation of one immediate subterm with success
gmapMo :: forall m. MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
{-
We use the same pairing trick as for gmapMp,
i.e., we use an extra Bool component to keep track of the
fact whether an immediate subterm was processed successfully.
However, we cut of mapping over subterms once a first subterm
was transformed successfully.
-}
gmapMo f x = unMp (gfoldl k z x) >>= \(x',b) ->
if b then return x' else mzero
where
z :: g -> Mp m g
z g = Mp (return (g,False))
k :: Data d => Mp m (d -> b) -> d -> Mp m b
k (Mp c) y
= Mp ( c >>= \(h,b) -> if b
then return (h y, b)
else (f y >>= \y' -> return (h y',True))
`mplus` return (h y, b)
)
-- | Type constructor for adding counters to queries
data Qi q a = Qi Int (Maybe q)
-- | The type constructor used in definition of gmapQr
newtype Qr r a = Qr { unQr :: r -> r }
-- | The type constructor used in definition of gmapMp
newtype Mp m x = Mp { unMp :: m (x, Bool) }
------------------------------------------------------------------------------
--
-- Generic unfolding
--
------------------------------------------------------------------------------
-- | Build a term skeleton
fromConstr :: Data a => Constr -> a
fromConstr = fromConstrB (errorWithoutStackTrace "Data.Data.fromConstr")
-- | Build a term and use a generic function for subterms
fromConstrB :: Data a
=> (forall d. Data d => d)
-> Constr
-> a
fromConstrB f = runIdentity . gunfold k z
where
k :: forall b r. Data b => Identity (b -> r) -> Identity r
k c = Identity (runIdentity c f)
z :: forall r. r -> Identity r
z = Identity
-- | Monadic variation on 'fromConstrB'
fromConstrM :: forall m a. (Monad m, Data a)
=> (forall d. Data d => m d)
-> Constr
-> m a
fromConstrM f = gunfold k z
where
k :: forall b r. Data b => m (b -> r) -> m r
k c = do { c' <- c; b <- f; return (c' b) }
z :: forall r. r -> m r
z = return
------------------------------------------------------------------------------
--
-- Datatype and constructor representations
--
------------------------------------------------------------------------------
--
-- | Representation of datatypes.
-- A package of constructor representations with names of type and module.
--
data DataType = DataType
{ tycon :: String
, datarep :: DataRep
}
deriving Show -- ^ @since 4.0.0.0
-- | Representation of constructors. Note that equality on constructors
-- with different types may not work -- i.e. the constructors for 'False' and
-- 'Nothing' may compare equal.
data Constr = Constr
{ conrep :: ConstrRep
, constring :: String
, confields :: [String] -- for AlgRep only
, confixity :: Fixity -- for AlgRep only
, datatype :: DataType
}
-- | @since 4.0.0.0
instance Show Constr where
show = constring
-- | Equality of constructors
--
-- @since 4.0.0.0
instance Eq Constr where
c == c' = constrRep c == constrRep c'
-- | Public representation of datatypes
data DataRep = AlgRep [Constr]
| IntRep
| FloatRep
| CharRep
| NoRep
deriving ( Eq -- ^ @since 4.0.0.0
, Show -- ^ @since 4.0.0.0
)
-- The list of constructors could be an array, a balanced tree, or others.
-- | Public representation of constructors
data ConstrRep = AlgConstr ConIndex
| IntConstr Integer
| FloatConstr Rational
| CharConstr Char
deriving ( Eq -- ^ @since 4.0.0.0
, Show -- ^ @since 4.0.0.0
)
-- | Unique index for datatype constructors,
-- counting from 1 in the order they are given in the program text.
type ConIndex = Int
-- | Fixity of constructors
data Fixity = Prefix
| Infix -- Later: add associativity and precedence
deriving ( Eq -- ^ @since 4.0.0.0
, Show -- ^ @since 4.0.0.0
)
------------------------------------------------------------------------------
--
-- Observers for datatype representations
--
------------------------------------------------------------------------------
-- | Gets the type constructor including the module
dataTypeName :: DataType -> String
dataTypeName = tycon
-- | Gets the public presentation of a datatype
dataTypeRep :: DataType -> DataRep
dataTypeRep = datarep
-- | Gets the datatype of a constructor
constrType :: Constr -> DataType
constrType = datatype
-- | Gets the public presentation of constructors
constrRep :: Constr -> ConstrRep
constrRep = conrep
-- | Look up a constructor by its representation
repConstr :: DataType -> ConstrRep -> Constr
repConstr dt cr =
case (dataTypeRep dt, cr) of
(AlgRep cs, AlgConstr i) -> cs !! (i-1)
(IntRep, IntConstr i) -> mkIntegralConstr dt i
(FloatRep, FloatConstr f) -> mkRealConstr dt f
(CharRep, CharConstr c) -> mkCharConstr dt c
_ -> errorWithoutStackTrace "Data.Data.repConstr: The given ConstrRep does not fit to the given DataType."
------------------------------------------------------------------------------
--
-- Representations of algebraic data types
--
------------------------------------------------------------------------------
-- | Constructs an algebraic datatype
mkDataType :: String -> [Constr] -> DataType
mkDataType str cs = DataType
{ tycon = str
, datarep = AlgRep cs
}
-- | Constructs a constructor
mkConstr :: DataType -> String -> [String] -> Fixity -> Constr
mkConstr dt str fields fix =
Constr
{ conrep = AlgConstr idx
, constring = str
, confields = fields
, confixity = fix
, datatype = dt
}
where
idx = head [ i | (c,i) <- dataTypeConstrs dt `zip` [1..],
showConstr c == str ]
-- | Gets the constructors of an algebraic datatype
dataTypeConstrs :: DataType -> [Constr]
dataTypeConstrs dt = case datarep dt of
(AlgRep cons) -> cons
_ -> errorWithoutStackTrace $ "Data.Data.dataTypeConstrs is not supported for "
++ dataTypeName dt ++
", as it is not an algebraic data type."
-- | Gets the field labels of a constructor. The list of labels
-- is returned in the same order as they were given in the original
-- constructor declaration.
constrFields :: Constr -> [String]
constrFields = confields
-- | Gets the fixity of a constructor
constrFixity :: Constr -> Fixity
constrFixity = confixity
------------------------------------------------------------------------------
--
-- From strings to constr's and vice versa: all data types
--
------------------------------------------------------------------------------
-- | Gets the string for a constructor
showConstr :: Constr -> String
showConstr = constring
-- | Lookup a constructor via a string
readConstr :: DataType -> String -> Maybe Constr
readConstr dt str =
case dataTypeRep dt of
AlgRep cons -> idx cons
IntRep -> mkReadCon (\i -> (mkPrimCon dt str (IntConstr i)))
FloatRep -> mkReadCon ffloat
CharRep -> mkReadCon (\c -> (mkPrimCon dt str (CharConstr c)))
NoRep -> Nothing
where
-- Read a value and build a constructor
mkReadCon :: Read t => (t -> Constr) -> Maybe Constr
mkReadCon f = case (reads str) of
[(t,"")] -> Just (f t)
_ -> Nothing
-- Traverse list of algebraic datatype constructors
idx :: [Constr] -> Maybe Constr
idx cons = let fit = filter ((==) str . showConstr) cons
in if fit == []
then Nothing
else Just (head fit)
ffloat :: Double -> Constr
ffloat = mkPrimCon dt str . FloatConstr . toRational
------------------------------------------------------------------------------
--
-- Convenience functions: algebraic data types
--
------------------------------------------------------------------------------
-- | Test for an algebraic type
isAlgType :: DataType -> Bool
isAlgType dt = case datarep dt of
(AlgRep _) -> True
_ -> False
-- | Gets the constructor for an index (algebraic datatypes only)
indexConstr :: DataType -> ConIndex -> Constr
indexConstr dt idx = case datarep dt of
(AlgRep cs) -> cs !! (idx-1)
_ -> errorWithoutStackTrace $ "Data.Data.indexConstr is not supported for "
++ dataTypeName dt ++
", as it is not an algebraic data type."
-- | Gets the index of a constructor (algebraic datatypes only)
constrIndex :: Constr -> ConIndex
constrIndex con = case constrRep con of
(AlgConstr idx) -> idx
_ -> errorWithoutStackTrace $ "Data.Data.constrIndex is not supported for "
++ dataTypeName (constrType con) ++
", as it is not an algebraic data type."
-- | Gets the maximum constructor index of an algebraic datatype
maxConstrIndex :: DataType -> ConIndex
maxConstrIndex dt = case dataTypeRep dt of
AlgRep cs -> length cs
_ -> errorWithoutStackTrace $ "Data.Data.maxConstrIndex is not supported for "
++ dataTypeName dt ++
", as it is not an algebraic data type."
------------------------------------------------------------------------------
--
-- Representation of primitive types
--
------------------------------------------------------------------------------
-- | Constructs the 'Int' type
mkIntType :: String -> DataType
mkIntType = mkPrimType IntRep
-- | Constructs the 'Float' type
mkFloatType :: String -> DataType
mkFloatType = mkPrimType FloatRep
-- | Constructs the 'Char' type
mkCharType :: String -> DataType
mkCharType = mkPrimType CharRep
-- | Helper for 'mkIntType', 'mkFloatType'
mkPrimType :: DataRep -> String -> DataType
mkPrimType dr str = DataType
{ tycon = str
, datarep = dr
}
-- Makes a constructor for primitive types
mkPrimCon :: DataType -> String -> ConstrRep -> Constr
mkPrimCon dt str cr = Constr
{ datatype = dt
, conrep = cr
, constring = str
, confields = errorWithoutStackTrace "Data.Data.confields"
, confixity = errorWithoutStackTrace "Data.Data.confixity"
}
mkIntegralConstr :: (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr dt i = case datarep dt of
IntRep -> mkPrimCon dt (show i) (IntConstr (toInteger i))
_ -> errorWithoutStackTrace $ "Data.Data.mkIntegralConstr is not supported for "
++ dataTypeName dt ++
", as it is not an Integral data type."
mkRealConstr :: (Real a, Show a) => DataType -> a -> Constr
mkRealConstr dt f = case datarep dt of
FloatRep -> mkPrimCon dt (show f) (FloatConstr (toRational f))
_ -> errorWithoutStackTrace $ "Data.Data.mkRealConstr is not supported for "
++ dataTypeName dt ++
", as it is not a Real data type."
-- | Makes a constructor for 'Char'.
mkCharConstr :: DataType -> Char -> Constr
mkCharConstr dt c = case datarep dt of
CharRep -> mkPrimCon dt (show c) (CharConstr c)
_ -> errorWithoutStackTrace $ "Data.Data.mkCharConstr is not supported for "
++ dataTypeName dt ++
", as it is not an Char data type."
------------------------------------------------------------------------------
--
-- Non-representations for non-representable types
--
------------------------------------------------------------------------------
-- | Constructs a non-representation for a non-representable type
mkNoRepType :: String -> DataType
mkNoRepType str = DataType
{ tycon = str
, datarep = NoRep
}
-- | Test for a non-representable type
isNorepType :: DataType -> Bool
isNorepType dt = case datarep dt of
NoRep -> True
_ -> False
------------------------------------------------------------------------------
--
-- Convenience for qualified type constructors
--
------------------------------------------------------------------------------
-- | Gets the unqualified type constructor:
-- drop *.*.*... before name
--
tyconUQname :: String -> String
tyconUQname x = let x' = dropWhile (not . (==) '.') x
in if x' == [] then x else tyconUQname (tail x')
-- | Gets the module of a type constructor:
-- take *.*.*... before name
tyconModule :: String -> String
tyconModule x = let (a,b) = break ((==) '.') x
in if b == ""
then b
else a ++ tyconModule' (tail b)
where
tyconModule' y = let y' = tyconModule y
in if y' == "" then "" else ('.':y')
------------------------------------------------------------------------------
------------------------------------------------------------------------------
--
-- Instances of the Data class for Prelude-like types.
-- We define top-level definitions for representations.
--
------------------------------------------------------------------------------
-- | @since 4.0.0.0
deriving instance Data Bool
------------------------------------------------------------------------------
charType :: DataType
charType = mkCharType "Prelude.Char"
-- | @since 4.0.0.0
instance Data Char where
toConstr x = mkCharConstr charType x
gunfold _ z c = case constrRep c of
(CharConstr x) -> z x
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Char."
dataTypeOf _ = charType
------------------------------------------------------------------------------
floatType :: DataType
floatType = mkFloatType "Prelude.Float"
-- | @since 4.0.0.0
instance Data Float where
toConstr = mkRealConstr floatType
gunfold _ z c = case constrRep c of
(FloatConstr x) -> z (realToFrac x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Float."
dataTypeOf _ = floatType
------------------------------------------------------------------------------
doubleType :: DataType
doubleType = mkFloatType "Prelude.Double"
-- | @since 4.0.0.0
instance Data Double where
toConstr = mkRealConstr doubleType
gunfold _ z c = case constrRep c of
(FloatConstr x) -> z (realToFrac x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Double."
dataTypeOf _ = doubleType
------------------------------------------------------------------------------
intType :: DataType
intType = mkIntType "Prelude.Int"
-- | @since 4.0.0.0
instance Data Int where
toConstr x = mkIntegralConstr intType x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int."
dataTypeOf _ = intType
------------------------------------------------------------------------------
integerType :: DataType
integerType = mkIntType "Prelude.Integer"
-- | @since 4.0.0.0
instance Data Integer where
toConstr = mkIntegralConstr integerType
gunfold _ z c = case constrRep c of
(IntConstr x) -> z x
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Integer."
dataTypeOf _ = integerType
------------------------------------------------------------------------------
-- This follows the same style as the other integral 'Data' instances
-- defined in "Data.Data"
naturalType :: DataType
naturalType = mkIntType "Numeric.Natural.Natural"
-- | @since 4.8.0.0
instance Data Natural where
toConstr x = mkIntegralConstr naturalType x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Natural"
dataTypeOf _ = naturalType
------------------------------------------------------------------------------
int8Type :: DataType
int8Type = mkIntType "Data.Int.Int8"
-- | @since 4.0.0.0
instance Data Int8 where
toConstr x = mkIntegralConstr int8Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int8."
dataTypeOf _ = int8Type
------------------------------------------------------------------------------
int16Type :: DataType
int16Type = mkIntType "Data.Int.Int16"
-- | @since 4.0.0.0
instance Data Int16 where
toConstr x = mkIntegralConstr int16Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int16."
dataTypeOf _ = int16Type
------------------------------------------------------------------------------
int32Type :: DataType
int32Type = mkIntType "Data.Int.Int32"
-- | @since 4.0.0.0
instance Data Int32 where
toConstr x = mkIntegralConstr int32Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int32."
dataTypeOf _ = int32Type
------------------------------------------------------------------------------
int64Type :: DataType
int64Type = mkIntType "Data.Int.Int64"
-- | @since 4.0.0.0
instance Data Int64 where
toConstr x = mkIntegralConstr int64Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Int64."
dataTypeOf _ = int64Type
------------------------------------------------------------------------------
wordType :: DataType
wordType = mkIntType "Data.Word.Word"
-- | @since 4.0.0.0
instance Data Word where
toConstr x = mkIntegralConstr wordType x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word"
dataTypeOf _ = wordType
------------------------------------------------------------------------------
word8Type :: DataType
word8Type = mkIntType "Data.Word.Word8"
-- | @since 4.0.0.0
instance Data Word8 where
toConstr x = mkIntegralConstr word8Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word8."
dataTypeOf _ = word8Type
------------------------------------------------------------------------------
word16Type :: DataType
word16Type = mkIntType "Data.Word.Word16"
-- | @since 4.0.0.0
instance Data Word16 where
toConstr x = mkIntegralConstr word16Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word16."
dataTypeOf _ = word16Type
------------------------------------------------------------------------------
word32Type :: DataType
word32Type = mkIntType "Data.Word.Word32"
-- | @since 4.0.0.0
instance Data Word32 where
toConstr x = mkIntegralConstr word32Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word32."
dataTypeOf _ = word32Type
------------------------------------------------------------------------------
word64Type :: DataType
word64Type = mkIntType "Data.Word.Word64"
-- | @since 4.0.0.0
instance Data Word64 where
toConstr x = mkIntegralConstr word64Type x
gunfold _ z c = case constrRep c of
(IntConstr x) -> z (fromIntegral x)
_ -> errorWithoutStackTrace $ "Data.Data.gunfold: Constructor " ++ show c
++ " is not of type Word64."
dataTypeOf _ = word64Type
------------------------------------------------------------------------------
ratioConstr :: Constr
ratioConstr = mkConstr ratioDataType ":%" [] Infix
ratioDataType :: DataType
ratioDataType = mkDataType "GHC.Real.Ratio" [ratioConstr]
-- NB: This Data instance intentionally uses the (%) smart constructor instead
-- of the internal (:%) constructor to preserve the invariant that a Ratio
-- value is reduced to normal form. See #10011.
-- | @since 4.0.0.0
instance (Data a, Integral a) => Data (Ratio a) where
gfoldl k z (a :% b) = z (%) `k` a `k` b
toConstr _ = ratioConstr
gunfold k z c | constrIndex c == 1 = k (k (z (%)))
gunfold _ _ _ = errorWithoutStackTrace "Data.Data.gunfold(Ratio)"
dataTypeOf _ = ratioDataType
------------------------------------------------------------------------------
nilConstr :: Constr
nilConstr = mkConstr listDataType "[]" [] Prefix
consConstr :: Constr
consConstr = mkConstr listDataType "(:)" [] Infix
listDataType :: DataType
listDataType = mkDataType "Prelude.[]" [nilConstr,consConstr]
-- | @since 4.0.0.0
instance Data a => Data [a] where
gfoldl _ z [] = z []
gfoldl f z (x:xs) = z (:) `f` x `f` xs
toConstr [] = nilConstr
toConstr (_:_) = consConstr
gunfold k z c = case constrIndex c of
1 -> z []
2 -> k (k (z (:)))
_ -> errorWithoutStackTrace "Data.Data.gunfold(List)"
dataTypeOf _ = listDataType
dataCast1 f = gcast1 f
--
-- The gmaps are given as an illustration.
-- This shows that the gmaps for lists are different from list maps.
--
gmapT _ [] = []
gmapT f (x:xs) = (f x:f xs)
gmapQ _ [] = []
gmapQ f (x:xs) = [f x,f xs]
gmapM _ [] = return []
gmapM f (x:xs) = f x >>= \x' -> f xs >>= \xs' -> return (x':xs')
------------------------------------------------------------------------------
-- | @since 4.14.0.0
deriving instance (Typeable (a :: Type -> Type -> Type), Typeable b, Typeable c,
Data (a b c))
=> Data (WrappedArrow a b c)
-- | @since 4.14.0.0
deriving instance (Typeable (m :: Type -> Type), Typeable a, Data (m a))
=> Data (WrappedMonad m a)
-- | @since 4.14.0.0
deriving instance Data a => Data (ZipList a)
-- | @since 4.9.0.0
deriving instance Data a => Data (NonEmpty a)
-- | @since 4.0.0.0
deriving instance Data a => Data (Maybe a)
-- | @since 4.0.0.0
deriving instance Data Ordering
-- | @since 4.0.0.0
deriving instance (Data a, Data b) => Data (Either a b)
-- | @since 4.0.0.0
deriving instance Data ()
-- | @since 4.15
deriving instance Data a => Data (Solo a)
-- | @since 4.0.0.0
deriving instance (Data a, Data b) => Data (a,b)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c) => Data (a,b,c)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c, Data d)
=> Data (a,b,c,d)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c, Data d, Data e)
=> Data (a,b,c,d,e)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c, Data d, Data e, Data f)
=> Data (a,b,c,d,e,f)
-- | @since 4.0.0.0
deriving instance (Data a, Data b, Data c, Data d, Data e, Data f, Data g)
=> Data (a,b,c,d,e,f,g)
------------------------------------------------------------------------------
-- | @since 4.8.0.0
instance Data a => Data (Ptr a) where
toConstr _ = errorWithoutStackTrace "Data.Data.toConstr(Ptr)"
gunfold _ _ = errorWithoutStackTrace "Data.Data.gunfold(Ptr)"
dataTypeOf _ = mkNoRepType "GHC.Ptr.Ptr"
dataCast1 x = gcast1 x
------------------------------------------------------------------------------
-- | @since 4.8.0.0
instance Data a => Data (ForeignPtr a) where
toConstr _ = errorWithoutStackTrace "Data.Data.toConstr(ForeignPtr)"
gunfold _ _ = errorWithoutStackTrace "Data.Data.gunfold(ForeignPtr)"
dataTypeOf _ = mkNoRepType "GHC.ForeignPtr.ForeignPtr"
dataCast1 x = gcast1 x
-- | @since 4.11.0.0
deriving instance Data IntPtr
-- | @since 4.11.0.0
deriving instance Data WordPtr
------------------------------------------------------------------------------
-- The Data instance for Array preserves data abstraction at the cost of
-- inefficiency. We omit reflection services for the sake of data abstraction.
-- | @since 4.8.0.0
instance (Data a, Data b, Ix a) => Data (Array a b)
where
gfoldl f z a = z (listArray (bounds a)) `f` (elems a)
toConstr _ = errorWithoutStackTrace "Data.Data.toConstr(Array)"
gunfold _ _ = errorWithoutStackTrace "Data.Data.gunfold(Array)"
dataTypeOf _ = mkNoRepType "Data.Array.Array"
dataCast2 x = gcast2 x
----------------------------------------------------------------------------
-- Data instance for Proxy
-- | @since 4.7.0.0
deriving instance (Data t) => Data (Proxy t)
-- | @since 4.7.0.0
deriving instance (a ~ b, Data a) => Data (a :~: b)
-- | @since 4.10.0.0
deriving instance (Typeable i, Typeable j, Typeable a, Typeable b,
(a :: i) ~~ (b :: j))
=> Data (a :~~: b)
-- | @since 4.7.0.0
deriving instance (Coercible a b, Data a, Data b) => Data (Coercion a b)
-- | @since 4.9.0.0
deriving instance Data a => Data (Identity a)
-- | @since 4.10.0.0
deriving instance (Typeable k, Data a, Typeable (b :: k)) => Data (Const a b)
-- | @since 4.7.0.0
deriving instance Data Version
----------------------------------------------------------------------------
-- Data instances for Data.Monoid wrappers
-- | @since 4.8.0.0
deriving instance Data a => Data (Dual a)
-- | @since 4.8.0.0
deriving instance Data All
-- | @since 4.8.0.0
deriving instance Data Any
-- | @since 4.8.0.0
deriving instance Data a => Data (Sum a)
-- | @since 4.8.0.0
deriving instance Data a => Data (Product a)
-- | @since 4.8.0.0
deriving instance Data a => Data (First a)
-- | @since 4.8.0.0
deriving instance Data a => Data (Last a)
-- | @since 4.8.0.0
deriving instance (Data (f a), Data a, Typeable f) => Data (Alt f a)
-- | @since 4.12.0.0
deriving instance (Data (f a), Data a, Typeable f) => Data (Ap f a)
----------------------------------------------------------------------------
-- Data instances for GHC.Generics representations
-- | @since 4.9.0.0
deriving instance Data p => Data (U1 p)
-- | @since 4.9.0.0
deriving instance Data p => Data (Par1 p)
-- | @since 4.9.0.0
deriving instance (Data (f p), Typeable f, Data p) => Data (Rec1 f p)
-- | @since 4.9.0.0
deriving instance (Typeable i, Data p, Data c) => Data (K1 i c p)
-- | @since 4.9.0.0
deriving instance (Data p, Data (f p), Typeable c, Typeable i, Typeable f)
=> Data (M1 i c f p)
-- | @since 4.9.0.0
deriving instance (Typeable f, Typeable g, Data p, Data (f p), Data (g p))
=> Data ((f :+: g) p)
-- | @since 4.9.0.0
deriving instance (Typeable (f :: Type -> Type), Typeable (g :: Type -> Type),
Data p, Data (f (g p)))
=> Data ((f :.: g) p)
-- | @since 4.9.0.0
deriving instance Data p => Data (V1 p)
-- | @since 4.9.0.0
deriving instance (Typeable f, Typeable g, Data p, Data (f p), Data (g p))
=> Data ((f :*: g) p)
-- | @since 4.9.0.0
deriving instance Data Generics.Fixity
-- | @since 4.9.0.0
deriving instance Data Associativity
-- | @since 4.9.0.0
deriving instance Data SourceUnpackedness
-- | @since 4.9.0.0
deriving instance Data SourceStrictness
-- | @since 4.9.0.0
deriving instance Data DecidedStrictness
----------------------------------------------------------------------------
-- Data instances for Data.Ord
-- | @since 4.12.0.0
deriving instance Data a => Data (Down a)
|