1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE FlexibleInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Fixed
-- Copyright : (c) Ashley Yakeley 2005, 2006, 2009
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : Ashley Yakeley <ashley@semantic.org>
-- Stability : experimental
-- Portability : portable
--
-- This module defines a \"Fixed\" type for fixed-precision arithmetic.
-- The parameter to 'Fixed' is any type that's an instance of 'HasResolution'.
-- 'HasResolution' has a single method that gives the resolution of the 'Fixed'
-- type.
--
-- This module also contains generalisations of 'div', 'mod', and 'divMod' to
-- work with any 'Real' instance.
--
-----------------------------------------------------------------------------
module Data.Fixed
(
div',mod',divMod',
Fixed(..), HasResolution(..),
showFixed,
E0,Uni,
E1,Deci,
E2,Centi,
E3,Milli,
E6,Micro,
E9,Nano,
E12,Pico
) where
import Data.Data
import GHC.TypeLits (KnownNat, natVal)
import GHC.Read
import Text.ParserCombinators.ReadPrec
import Text.Read.Lex
default () -- avoid any defaulting shenanigans
-- | Generalisation of 'div' to any instance of 'Real'
div' :: (Real a,Integral b) => a -> a -> b
div' n d = floor ((toRational n) / (toRational d))
-- | Generalisation of 'divMod' to any instance of 'Real'
divMod' :: (Real a,Integral b) => a -> a -> (b,a)
divMod' n d = (f,n - (fromIntegral f) * d) where
f = div' n d
-- | Generalisation of 'mod' to any instance of 'Real'
mod' :: (Real a) => a -> a -> a
mod' n d = n - (fromInteger f) * d where
f = div' n d
-- | The type parameter should be an instance of 'HasResolution'.
newtype Fixed (a :: k) = MkFixed Integer
deriving ( Eq -- ^ @since 2.01
, Ord -- ^ @since 2.01
)
-- We do this because the automatically derived Data instance requires (Data a) context.
-- Our manual instance has the more general (Typeable a) context.
tyFixed :: DataType
tyFixed = mkDataType "Data.Fixed.Fixed" [conMkFixed]
conMkFixed :: Constr
conMkFixed = mkConstr tyFixed "MkFixed" [] Prefix
-- | @since 4.1.0.0
instance (Typeable k,Typeable a) => Data (Fixed (a :: k)) where
gfoldl k z (MkFixed a) = k (z MkFixed) a
gunfold k z _ = k (z MkFixed)
dataTypeOf _ = tyFixed
toConstr _ = conMkFixed
class HasResolution (a :: k) where
resolution :: p a -> Integer
-- | For example, @Fixed 1000@ will give you a 'Fixed' with a resolution of 1000.
instance KnownNat n => HasResolution n where
resolution _ = natVal (Proxy :: Proxy n)
withType :: (Proxy a -> f a) -> f a
withType foo = foo Proxy
withResolution :: (HasResolution a) => (Integer -> f a) -> f a
withResolution foo = withType (foo . resolution)
-- | @since 2.01
--
-- Recall that, for numeric types, 'succ' and 'pred' typically add and subtract
-- @1@, respectively. This is not true in the case of 'Fixed', whose successor
-- and predecessor functions intuitively return the "next" and "previous" values
-- in the enumeration. The results of these functions thus depend on the
-- resolution of the 'Fixed' value. For example, when enumerating values of
-- resolution @10^-3@ of @type Milli = Fixed E3@,
--
-- @
-- succ (0.000 :: Milli) == 1.001
-- @
--
--
-- and likewise
--
-- @
-- pred (0.000 :: Milli) == -0.001
-- @
--
--
-- In other words, 'succ' and 'pred' increment and decrement a fixed-precision
-- value by the least amount such that the value's resolution is unchanged.
-- For example, @10^-12@ is the smallest (positive) amount that can be added to
-- a value of @type Pico = Fixed E12@ without changing its resolution, and so
--
-- @
-- succ (0.000000000000 :: Pico) == 0.000000000001
-- @
--
--
-- and similarly
--
-- @
-- pred (0.000000000000 :: Pico) == -0.000000000001
-- @
--
--
-- This is worth bearing in mind when defining 'Fixed' arithmetic sequences. In
-- particular, you may be forgiven for thinking the sequence
--
-- @
-- [1..10] :: [Pico]
-- @
--
--
-- evaluates to @[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] :: [Pico]@.
--
-- However, this is not true. On the contrary, similarly to the above
-- implementations of 'succ' and 'pred', @enumFromTo :: Pico -> Pico -> [Pico]@
-- has a "step size" of @10^-12@. Hence, the list @[1..10] :: [Pico]@ has
-- the form
--
-- @
-- [1.000000000000, 1.00000000001, 1.00000000002, ..., 10.000000000000]
-- @
--
--
-- and contains @9 * 10^12 + 1@ values.
instance Enum (Fixed a) where
succ (MkFixed a) = MkFixed (succ a)
pred (MkFixed a) = MkFixed (pred a)
toEnum = MkFixed . toEnum
fromEnum (MkFixed a) = fromEnum a
enumFrom (MkFixed a) = fmap MkFixed (enumFrom a)
enumFromThen (MkFixed a) (MkFixed b) = fmap MkFixed (enumFromThen a b)
enumFromTo (MkFixed a) (MkFixed b) = fmap MkFixed (enumFromTo a b)
enumFromThenTo (MkFixed a) (MkFixed b) (MkFixed c) = fmap MkFixed (enumFromThenTo a b c)
-- | @since 2.01
instance (HasResolution a) => Num (Fixed a) where
(MkFixed a) + (MkFixed b) = MkFixed (a + b)
(MkFixed a) - (MkFixed b) = MkFixed (a - b)
fa@(MkFixed a) * (MkFixed b) = MkFixed (div (a * b) (resolution fa))
negate (MkFixed a) = MkFixed (negate a)
abs (MkFixed a) = MkFixed (abs a)
signum (MkFixed a) = fromInteger (signum a)
fromInteger i = withResolution (\res -> MkFixed (i * res))
-- | @since 2.01
instance (HasResolution a) => Real (Fixed a) where
toRational fa@(MkFixed a) = (toRational a) / (toRational (resolution fa))
-- | @since 2.01
instance (HasResolution a) => Fractional (Fixed a) where
fa@(MkFixed a) / (MkFixed b) = MkFixed (div (a * (resolution fa)) b)
recip fa@(MkFixed a) = MkFixed (div (res * res) a) where
res = resolution fa
fromRational r = withResolution (\res -> MkFixed (floor (r * (toRational res))))
-- | @since 2.01
instance (HasResolution a) => RealFrac (Fixed a) where
properFraction a = (i,a - (fromIntegral i)) where
i = truncate a
truncate f = truncate (toRational f)
round f = round (toRational f)
ceiling f = ceiling (toRational f)
floor f = floor (toRational f)
chopZeros :: Integer -> String
chopZeros 0 = ""
chopZeros a | mod a 10 == 0 = chopZeros (div a 10)
chopZeros a = show a
-- only works for positive a
showIntegerZeros :: Bool -> Int -> Integer -> String
showIntegerZeros True _ 0 = ""
showIntegerZeros chopTrailingZeros digits a = replicate (digits - length s) '0' ++ s' where
s = show a
s' = if chopTrailingZeros then chopZeros a else s
withDot :: String -> String
withDot "" = ""
withDot s = '.':s
-- | First arg is whether to chop off trailing zeros
showFixed :: (HasResolution a) => Bool -> Fixed a -> String
showFixed chopTrailingZeros fa@(MkFixed a) | a < 0 = "-" ++ (showFixed chopTrailingZeros (asTypeOf (MkFixed (negate a)) fa))
showFixed chopTrailingZeros fa@(MkFixed a) = (show i) ++ (withDot (showIntegerZeros chopTrailingZeros digits fracNum)) where
res = resolution fa
(i,d) = divMod a res
-- enough digits to be unambiguous
digits = ceiling (logBase 10 (fromInteger res) :: Double)
maxnum = 10 ^ digits
-- read floors, so show must ceil for `read . show = id` to hold. See #9240
fracNum = divCeil (d * maxnum) res
divCeil x y = (x + y - 1) `div` y
-- | @since 2.01
instance (HasResolution a) => Show (Fixed a) where
showsPrec p n = showParen (p > 6 && n < 0) $ showString $ showFixed False n
-- | @since 4.3.0.0
instance (HasResolution a) => Read (Fixed a) where
readPrec = readNumber convertFixed
readListPrec = readListPrecDefault
readList = readListDefault
convertFixed :: forall a . HasResolution a => Lexeme -> ReadPrec (Fixed a)
convertFixed (Number n)
| Just (i, f) <- numberToFixed e n =
return (fromInteger i + (fromInteger f / (10 ^ e)))
where r = resolution (Proxy :: Proxy a)
-- round 'e' up to help make the 'read . show == id' property
-- possible also for cases where 'resolution' is not a
-- power-of-10, such as e.g. when 'resolution = 128'
e = ceiling (logBase 10 (fromInteger r) :: Double)
convertFixed _ = pfail
data E0
-- | @since 4.1.0.0
instance HasResolution E0 where
resolution _ = 1
-- | resolution of 1, this works the same as Integer
type Uni = Fixed E0
data E1
-- | @since 4.1.0.0
instance HasResolution E1 where
resolution _ = 10
-- | resolution of 10^-1 = .1
type Deci = Fixed E1
data E2
-- | @since 4.1.0.0
instance HasResolution E2 where
resolution _ = 100
-- | resolution of 10^-2 = .01, useful for many monetary currencies
type Centi = Fixed E2
data E3
-- | @since 4.1.0.0
instance HasResolution E3 where
resolution _ = 1000
-- | resolution of 10^-3 = .001
type Milli = Fixed E3
data E6
-- | @since 2.01
instance HasResolution E6 where
resolution _ = 1000000
-- | resolution of 10^-6 = .000001
type Micro = Fixed E6
data E9
-- | @since 4.1.0.0
instance HasResolution E9 where
resolution _ = 1000000000
-- | resolution of 10^-9 = .000000001
type Nano = Fixed E9
data E12
-- | @since 2.01
instance HasResolution E12 where
resolution _ = 1000000000000
-- | resolution of 10^-12 = .000000000001
type Pico = Fixed E12
|