1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, ScopedTypeVariables,
MagicHash, BangPatterns #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.List
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : stable
-- Portability : portable
--
-- Operations on lists.
--
-----------------------------------------------------------------------------
module Data.OldList
(
-- * Basic functions
(++)
, head
, last
, tail
, init
, uncons
, singleton
, null
, length
-- * List transformations
, map
, reverse
, intersperse
, intercalate
, transpose
, subsequences
, permutations
-- * Reducing lists (folds)
, foldl
, foldl'
, foldl1
, foldl1'
, foldr
, foldr1
-- ** Special folds
, concat
, concatMap
, and
, or
, any
, all
, sum
, product
, maximum
, minimum
-- * Building lists
-- ** Scans
, scanl
, scanl'
, scanl1
, scanr
, scanr1
-- ** Accumulating maps
, mapAccumL
, mapAccumR
-- ** Infinite lists
, iterate
, iterate'
, repeat
, replicate
, cycle
-- ** Unfolding
, unfoldr
-- * Sublists
-- ** Extracting sublists
, take
, drop
, splitAt
, takeWhile
, dropWhile
, dropWhileEnd
, span
, break
, stripPrefix
, group
, inits
, tails
-- ** Predicates
, isPrefixOf
, isSuffixOf
, isInfixOf
-- * Searching lists
-- ** Searching by equality
, elem
, notElem
, lookup
-- ** Searching with a predicate
, find
, filter
, partition
-- * Indexing lists
-- | These functions treat a list @xs@ as a indexed collection,
-- with indices ranging from 0 to @'length' xs - 1@.
, (!!)
, elemIndex
, elemIndices
, findIndex
, findIndices
-- * Zipping and unzipping lists
, zip
, zip3
, zip4, zip5, zip6, zip7
, zipWith
, zipWith3
, zipWith4, zipWith5, zipWith6, zipWith7
, unzip
, unzip3
, unzip4, unzip5, unzip6, unzip7
-- * Special lists
-- ** Functions on strings
, lines
, words
, unlines
, unwords
-- ** \"Set\" operations
, nub
, delete
, (\\)
, union
, intersect
-- ** Ordered lists
, sort
, sortOn
, insert
-- * Generalized functions
-- ** The \"@By@\" operations
-- | By convention, overloaded functions have a non-overloaded
-- counterpart whose name is suffixed with \`@By@\'.
--
-- It is often convenient to use these functions together with
-- 'Data.Function.on', for instance @'sortBy' ('compare'
-- \`on\` 'fst')@.
-- *** User-supplied equality (replacing an @Eq@ context)
-- | The predicate is assumed to define an equivalence.
, nubBy
, deleteBy
, deleteFirstsBy
, unionBy
, intersectBy
, groupBy
-- *** User-supplied comparison (replacing an @Ord@ context)
-- | The function is assumed to define a total ordering.
, sortBy
, insertBy
, maximumBy
, minimumBy
-- ** The \"@generic@\" operations
-- | The prefix \`@generic@\' indicates an overloaded function that
-- is a generalized version of a "Prelude" function.
, genericLength
, genericTake
, genericDrop
, genericSplitAt
, genericIndex
, genericReplicate
) where
import Data.Maybe
import Data.Bits ( (.&.) )
import Data.Char ( isSpace )
import Data.Ord ( comparing )
import Data.Tuple ( fst, snd )
import GHC.Num
import GHC.Real
import GHC.List
import GHC.Base
infix 5 \\ -- comment to fool cpp: https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/phases.html#cpp-and-string-gaps
-- -----------------------------------------------------------------------------
-- List functions
-- | The 'dropWhileEnd' function drops the largest suffix of a list
-- in which the given predicate holds for all elements. For example:
--
-- >>> dropWhileEnd isSpace "foo\n"
-- "foo"
--
-- >>> dropWhileEnd isSpace "foo bar"
-- "foo bar"
--
-- > dropWhileEnd isSpace ("foo\n" ++ undefined) == "foo" ++ undefined
--
-- @since 4.5.0.0
dropWhileEnd :: (a -> Bool) -> [a] -> [a]
dropWhileEnd p = foldr (\x xs -> if p x && null xs then [] else x : xs) []
-- | \(\mathcal{O}(\min(m,n))\). The 'stripPrefix' function drops the given
-- prefix from a list. It returns 'Nothing' if the list did not start with the
-- prefix given, or 'Just' the list after the prefix, if it does.
--
-- >>> stripPrefix "foo" "foobar"
-- Just "bar"
--
-- >>> stripPrefix "foo" "foo"
-- Just ""
--
-- >>> stripPrefix "foo" "barfoo"
-- Nothing
--
-- >>> stripPrefix "foo" "barfoobaz"
-- Nothing
stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]
stripPrefix [] ys = Just ys
stripPrefix (x:xs) (y:ys)
| x == y = stripPrefix xs ys
stripPrefix _ _ = Nothing
-- | The 'elemIndex' function returns the index of the first element
-- in the given list which is equal (by '==') to the query element,
-- or 'Nothing' if there is no such element.
--
-- >>> elemIndex 4 [0..]
-- Just 4
elemIndex :: Eq a => a -> [a] -> Maybe Int
elemIndex x = findIndex (x==)
-- | The 'elemIndices' function extends 'elemIndex', by returning the
-- indices of all elements equal to the query element, in ascending order.
--
-- >>> elemIndices 'o' "Hello World"
-- [4,7]
elemIndices :: Eq a => a -> [a] -> [Int]
elemIndices x = findIndices (x==)
-- | The 'find' function takes a predicate and a list and returns the
-- first element in the list matching the predicate, or 'Nothing' if
-- there is no such element.
--
-- >>> find (> 4) [1..]
-- Just 5
--
-- >>> find (< 0) [1..10]
-- Nothing
find :: (a -> Bool) -> [a] -> Maybe a
find p = listToMaybe . filter p
-- | The 'findIndex' function takes a predicate and a list and returns
-- the index of the first element in the list satisfying the predicate,
-- or 'Nothing' if there is no such element.
--
-- >>> findIndex isSpace "Hello World!"
-- Just 5
findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndex p = listToMaybe . findIndices p
-- | The 'findIndices' function extends 'findIndex', by returning the
-- indices of all elements satisfying the predicate, in ascending order.
--
-- >>> findIndices (`elem` "aeiou") "Hello World!"
-- [1,4,7]
findIndices :: (a -> Bool) -> [a] -> [Int]
#if defined(USE_REPORT_PRELUDE)
findIndices p xs = [ i | (x,i) <- zip xs [0..], p x]
#else
-- Efficient definition, adapted from Data.Sequence
-- (Note that making this INLINABLE instead of INLINE allows
-- 'findIndex' to fuse, fixing #15426.)
{-# INLINABLE findIndices #-}
findIndices p ls = build $ \c n ->
let go x r k | p x = I# k `c` r (k +# 1#)
| otherwise = r (k +# 1#)
in foldr go (\_ -> n) ls 0#
#endif /* USE_REPORT_PRELUDE */
-- | \(\mathcal{O}(\min(m,n))\). The 'isPrefixOf' function takes two lists and
-- returns 'True' iff the first list is a prefix of the second.
--
-- >>> "Hello" `isPrefixOf` "Hello World!"
-- True
--
-- >>> "Hello" `isPrefixOf` "Wello Horld!"
-- False
isPrefixOf :: (Eq a) => [a] -> [a] -> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x:xs) (y:ys)= x == y && isPrefixOf xs ys
-- | The 'isSuffixOf' function takes two lists and returns 'True' iff
-- the first list is a suffix of the second. The second list must be
-- finite.
--
-- >>> "ld!" `isSuffixOf` "Hello World!"
-- True
--
-- >>> "World" `isSuffixOf` "Hello World!"
-- False
isSuffixOf :: (Eq a) => [a] -> [a] -> Bool
ns `isSuffixOf` hs = maybe False id $ do
delta <- dropLengthMaybe ns hs
return $ ns == dropLength delta hs
-- Since dropLengthMaybe ns hs succeeded, we know that (if hs is finite)
-- length ns + length delta = length hs
-- so dropping the length of delta from hs will yield a suffix exactly
-- the length of ns.
-- A version of drop that drops the length of the first argument from the
-- second argument. If xs is longer than ys, xs will not be traversed in its
-- entirety. dropLength is also generally faster than (drop . length)
-- Both this and dropLengthMaybe could be written as folds over their first
-- arguments, but this reduces clarity with no benefit to isSuffixOf.
--
-- >>> dropLength "Hello" "Holla world"
-- " world"
--
-- >>> dropLength [1..] [1,2,3]
-- []
dropLength :: [a] -> [b] -> [b]
dropLength [] y = y
dropLength _ [] = []
dropLength (_:x') (_:y') = dropLength x' y'
-- A version of dropLength that returns Nothing if the second list runs out of
-- elements before the first.
--
-- >>> dropLengthMaybe [1..] [1,2,3]
-- Nothing
dropLengthMaybe :: [a] -> [b] -> Maybe [b]
dropLengthMaybe [] y = Just y
dropLengthMaybe _ [] = Nothing
dropLengthMaybe (_:x') (_:y') = dropLengthMaybe x' y'
-- | The 'isInfixOf' function takes two lists and returns 'True'
-- iff the first list is contained, wholly and intact,
-- anywhere within the second.
--
-- >>> isInfixOf "Haskell" "I really like Haskell."
-- True
--
-- >>> isInfixOf "Ial" "I really like Haskell."
-- False
isInfixOf :: (Eq a) => [a] -> [a] -> Bool
isInfixOf needle haystack = any (isPrefixOf needle) (tails haystack)
-- | \(\mathcal{O}(n^2)\). The 'nub' function removes duplicate elements from a
-- list. In particular, it keeps only the first occurrence of each element. (The
-- name 'nub' means \`essence\'.) It is a special case of 'nubBy', which allows
-- the programmer to supply their own equality test.
--
-- >>> nub [1,2,3,4,3,2,1,2,4,3,5]
-- [1,2,3,4,5]
nub :: (Eq a) => [a] -> [a]
nub = nubBy (==)
-- | The 'nubBy' function behaves just like 'nub', except it uses a
-- user-supplied equality predicate instead of the overloaded '=='
-- function.
--
-- >>> nubBy (\x y -> mod x 3 == mod y 3) [1,2,4,5,6]
-- [1,2,6]
nubBy :: (a -> a -> Bool) -> [a] -> [a]
#if defined(USE_REPORT_PRELUDE)
nubBy eq [] = []
nubBy eq (x:xs) = x : nubBy eq (filter (\ y -> not (eq x y)) xs)
#else
-- stolen from HBC
nubBy eq l = nubBy' l []
where
nubBy' [] _ = []
nubBy' (y:ys) xs
| elem_by eq y xs = nubBy' ys xs
| otherwise = y : nubBy' ys (y:xs)
-- Not exported:
-- Note that we keep the call to `eq` with arguments in the
-- same order as in the reference (prelude) implementation,
-- and that this order is different from how `elem` calls (==).
-- See #2528, #3280 and #7913.
-- 'xs' is the list of things we've seen so far,
-- 'y' is the potential new element
elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool
elem_by _ _ [] = False
elem_by eq y (x:xs) = x `eq` y || elem_by eq y xs
#endif
-- | \(\mathcal{O}(n)\). 'delete' @x@ removes the first occurrence of @x@ from
-- its list argument. For example,
--
-- >>> delete 'a' "banana"
-- "bnana"
--
-- It is a special case of 'deleteBy', which allows the programmer to
-- supply their own equality test.
delete :: (Eq a) => a -> [a] -> [a]
delete = deleteBy (==)
-- | \(\mathcal{O}(n)\). The 'deleteBy' function behaves like 'delete', but
-- takes a user-supplied equality predicate.
--
-- >>> deleteBy (<=) 4 [1..10]
-- [1,2,3,5,6,7,8,9,10]
deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
deleteBy _ _ [] = []
deleteBy eq x (y:ys) = if x `eq` y then ys else y : deleteBy eq x ys
-- | The '\\' function is list difference (non-associative).
-- In the result of @xs@ '\\' @ys@, the first occurrence of each element of
-- @ys@ in turn (if any) has been removed from @xs@. Thus
--
-- > (xs ++ ys) \\ xs == ys.
--
-- >>> "Hello World!" \\ "ell W"
-- "Hoorld!"
--
-- It is a special case of 'deleteFirstsBy', which allows the programmer
-- to supply their own equality test.
(\\) :: (Eq a) => [a] -> [a] -> [a]
(\\) = foldl (flip delete)
-- | The 'union' function returns the list union of the two lists.
-- For example,
--
-- >>> "dog" `union` "cow"
-- "dogcw"
--
-- Duplicates, and elements of the first list, are removed from the
-- the second list, but if the first list contains duplicates, so will
-- the result.
-- It is a special case of 'unionBy', which allows the programmer to supply
-- their own equality test.
union :: (Eq a) => [a] -> [a] -> [a]
union = unionBy (==)
-- | The 'unionBy' function is the non-overloaded version of 'union'.
unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs
-- | The 'intersect' function takes the list intersection of two lists.
-- For example,
--
-- >>> [1,2,3,4] `intersect` [2,4,6,8]
-- [2,4]
--
-- If the first list contains duplicates, so will the result.
--
-- >>> [1,2,2,3,4] `intersect` [6,4,4,2]
-- [2,2,4]
--
-- It is a special case of 'intersectBy', which allows the programmer to
-- supply their own equality test. If the element is found in both the first
-- and the second list, the element from the first list will be used.
intersect :: (Eq a) => [a] -> [a] -> [a]
intersect = intersectBy (==)
-- | The 'intersectBy' function is the non-overloaded version of 'intersect'.
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
intersectBy _ [] _ = []
intersectBy _ _ [] = []
intersectBy eq xs ys = [x | x <- xs, any (eq x) ys]
-- | \(\mathcal{O}(n)\). The 'intersperse' function takes an element and a list
-- and \`intersperses\' that element between the elements of the list. For
-- example,
--
-- >>> intersperse ',' "abcde"
-- "a,b,c,d,e"
intersperse :: a -> [a] -> [a]
intersperse _ [] = []
intersperse sep (x:xs) = x : prependToAll sep xs
-- Not exported:
-- We want to make every element in the 'intersperse'd list available
-- as soon as possible to avoid space leaks. Experiments suggested that
-- a separate top-level helper is more efficient than a local worker.
prependToAll :: a -> [a] -> [a]
prependToAll _ [] = []
prependToAll sep (x:xs) = sep : x : prependToAll sep xs
-- | 'intercalate' @xs xss@ is equivalent to @('concat' ('intersperse' xs xss))@.
-- It inserts the list @xs@ in between the lists in @xss@ and concatenates the
-- result.
--
-- >>> intercalate ", " ["Lorem", "ipsum", "dolor"]
-- "Lorem, ipsum, dolor"
intercalate :: [a] -> [[a]] -> [a]
intercalate xs xss = concat (intersperse xs xss)
-- | The 'transpose' function transposes the rows and columns of its argument.
-- For example,
--
-- >>> transpose [[1,2,3],[4,5,6]]
-- [[1,4],[2,5],[3,6]]
--
-- If some of the rows are shorter than the following rows, their elements are skipped:
--
-- >>> transpose [[10,11],[20],[],[30,31,32]]
-- [[10,20,30],[11,31],[32]]
transpose :: [[a]] -> [[a]]
transpose [] = []
transpose ([] : xss) = transpose xss
transpose ((x:xs) : xss) = (x : [h | (h:_) <- xss]) : transpose (xs : [ t | (_:t) <- xss])
-- | The 'partition' function takes a predicate a list and returns
-- the pair of lists of elements which do and do not satisfy the
-- predicate, respectively; i.e.,
--
-- > partition p xs == (filter p xs, filter (not . p) xs)
--
-- >>> partition (`elem` "aeiou") "Hello World!"
-- ("eoo","Hll Wrld!")
partition :: (a -> Bool) -> [a] -> ([a],[a])
{-# INLINE partition #-}
partition p xs = foldr (select p) ([],[]) xs
select :: (a -> Bool) -> a -> ([a], [a]) -> ([a], [a])
select p x ~(ts,fs) | p x = (x:ts,fs)
| otherwise = (ts, x:fs)
-- | The 'mapAccumL' function behaves like a combination of 'map' and
-- 'foldl'; it applies a function to each element of a list, passing
-- an accumulating parameter from left to right, and returning a final
-- value of this accumulator together with the new list.
mapAccumL :: (acc -> x -> (acc, y)) -- Function of elt of input list
-- and accumulator, returning new
-- accumulator and elt of result list
-> acc -- Initial accumulator
-> [x] -- Input list
-> (acc, [y]) -- Final accumulator and result list
{-# NOINLINE [1] mapAccumL #-}
mapAccumL _ s [] = (s, [])
mapAccumL f s (x:xs) = (s'',y:ys)
where (s', y ) = f s x
(s'',ys) = mapAccumL f s' xs
{-# RULES
"mapAccumL" [~1] forall f s xs . mapAccumL f s xs = foldr (mapAccumLF f) pairWithNil xs s
"mapAccumLList" [1] forall f s xs . foldr (mapAccumLF f) pairWithNil xs s = mapAccumL f s xs
#-}
pairWithNil :: acc -> (acc, [y])
{-# INLINE [0] pairWithNil #-}
pairWithNil x = (x, [])
mapAccumLF :: (acc -> x -> (acc, y)) -> x -> (acc -> (acc, [y])) -> acc -> (acc, [y])
{-# INLINE [0] mapAccumLF #-}
mapAccumLF f = \x r -> oneShot (\s ->
let (s', y) = f s x
(s'', ys) = r s'
in (s'', y:ys))
-- See Note [Left folds via right fold]
-- | The 'mapAccumR' function behaves like a combination of 'map' and
-- 'foldr'; it applies a function to each element of a list, passing
-- an accumulating parameter from right to left, and returning a final
-- value of this accumulator together with the new list.
mapAccumR :: (acc -> x -> (acc, y)) -- Function of elt of input list
-- and accumulator, returning new
-- accumulator and elt of result list
-> acc -- Initial accumulator
-> [x] -- Input list
-> (acc, [y]) -- Final accumulator and result list
mapAccumR _ s [] = (s, [])
mapAccumR f s (x:xs) = (s'', y:ys)
where (s'',y ) = f s' x
(s', ys) = mapAccumR f s xs
-- | \(\mathcal{O}(n)\). The 'insert' function takes an element and a list and
-- inserts the element into the list at the first position where it is less than
-- or equal to the next element. In particular, if the list is sorted before the
-- call, the result will also be sorted. It is a special case of 'insertBy',
-- which allows the programmer to supply their own comparison function.
--
-- >>> insert 4 [1,2,3,5,6,7]
-- [1,2,3,4,5,6,7]
insert :: Ord a => a -> [a] -> [a]
insert e ls = insertBy (compare) e ls
-- | \(\mathcal{O}(n)\). The non-overloaded version of 'insert'.
insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
insertBy _ x [] = [x]
insertBy cmp x ys@(y:ys')
= case cmp x y of
GT -> y : insertBy cmp x ys'
_ -> x : ys
-- | The 'maximumBy' function takes a comparison function and a list
-- and returns the greatest element of the list by the comparison function.
-- The list must be finite and non-empty.
--
-- We can use this to find the longest entry of a list:
--
-- >>> maximumBy (\x y -> compare (length x) (length y)) ["Hello", "World", "!", "Longest", "bar"]
-- "Longest"
maximumBy :: (a -> a -> Ordering) -> [a] -> a
maximumBy _ [] = errorWithoutStackTrace "List.maximumBy: empty list"
maximumBy cmp xs = foldl1 maxBy xs
where
maxBy x y = case cmp x y of
GT -> x
_ -> y
-- | The 'minimumBy' function takes a comparison function and a list
-- and returns the least element of the list by the comparison function.
-- The list must be finite and non-empty.
--
-- We can use this to find the shortest entry of a list:
--
-- >>> minimumBy (\x y -> compare (length x) (length y)) ["Hello", "World", "!", "Longest", "bar"]
-- "!"
minimumBy :: (a -> a -> Ordering) -> [a] -> a
minimumBy _ [] = errorWithoutStackTrace "List.minimumBy: empty list"
minimumBy cmp xs = foldl1 minBy xs
where
minBy x y = case cmp x y of
GT -> y
_ -> x
-- | \(\mathcal{O}(n)\). The 'genericLength' function is an overloaded version
-- of 'length'. In particular, instead of returning an 'Int', it returns any
-- type which is an instance of 'Num'. It is, however, less efficient than
-- 'length'.
--
-- >>> genericLength [1, 2, 3] :: Int
-- 3
-- >>> genericLength [1, 2, 3] :: Float
-- 3.0
genericLength :: (Num i) => [a] -> i
{-# NOINLINE [1] genericLength #-}
genericLength [] = 0
genericLength (_:l) = 1 + genericLength l
{-# RULES
"genericLengthInt" genericLength = (strictGenericLength :: [a] -> Int);
"genericLengthInteger" genericLength = (strictGenericLength :: [a] -> Integer);
#-}
strictGenericLength :: (Num i) => [b] -> i
strictGenericLength l = gl l 0
where
gl [] a = a
gl (_:xs) a = let a' = a + 1 in a' `seq` gl xs a'
-- | The 'genericTake' function is an overloaded version of 'take', which
-- accepts any 'Integral' value as the number of elements to take.
genericTake :: (Integral i) => i -> [a] -> [a]
genericTake n _ | n <= 0 = []
genericTake _ [] = []
genericTake n (x:xs) = x : genericTake (n-1) xs
-- | The 'genericDrop' function is an overloaded version of 'drop', which
-- accepts any 'Integral' value as the number of elements to drop.
genericDrop :: (Integral i) => i -> [a] -> [a]
genericDrop n xs | n <= 0 = xs
genericDrop _ [] = []
genericDrop n (_:xs) = genericDrop (n-1) xs
-- | The 'genericSplitAt' function is an overloaded version of 'splitAt', which
-- accepts any 'Integral' value as the position at which to split.
genericSplitAt :: (Integral i) => i -> [a] -> ([a], [a])
genericSplitAt n xs | n <= 0 = ([],xs)
genericSplitAt _ [] = ([],[])
genericSplitAt n (x:xs) = (x:xs',xs'') where
(xs',xs'') = genericSplitAt (n-1) xs
-- | The 'genericIndex' function is an overloaded version of '!!', which
-- accepts any 'Integral' value as the index.
genericIndex :: (Integral i) => [a] -> i -> a
genericIndex (x:_) 0 = x
genericIndex (_:xs) n
| n > 0 = genericIndex xs (n-1)
| otherwise = errorWithoutStackTrace "List.genericIndex: negative argument."
genericIndex _ _ = errorWithoutStackTrace "List.genericIndex: index too large."
-- | The 'genericReplicate' function is an overloaded version of 'replicate',
-- which accepts any 'Integral' value as the number of repetitions to make.
genericReplicate :: (Integral i) => i -> a -> [a]
genericReplicate n x = genericTake n (repeat x)
-- | The 'zip4' function takes four lists and returns a list of
-- quadruples, analogous to 'zip'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# INLINE zip4 #-}
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4 = zipWith4 (,,,)
-- | The 'zip5' function takes five lists and returns a list of
-- five-tuples, analogous to 'zip'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# INLINE zip5 #-}
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (,,,,)
-- | The 'zip6' function takes six lists and returns a list of six-tuples,
-- analogous to 'zip'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# INLINE zip6 #-}
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[(a,b,c,d,e,f)]
zip6 = zipWith6 (,,,,,)
-- | The 'zip7' function takes seven lists and returns a list of
-- seven-tuples, analogous to 'zip'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# INLINE zip7 #-}
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[g] -> [(a,b,c,d,e,f,g)]
zip7 = zipWith7 (,,,,,,)
-- | The 'zipWith4' function takes a function which combines four
-- elements, as well as four lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# NOINLINE [1] zipWith4 #-}
zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
= z a b c d : zipWith4 z as bs cs ds
zipWith4 _ _ _ _ _ = []
-- | The 'zipWith5' function takes a function which combines five
-- elements, as well as five lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# NOINLINE [1] zipWith5 #-}
zipWith5 :: (a->b->c->d->e->f) ->
[a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
= z a b c d e : zipWith5 z as bs cs ds es
zipWith5 _ _ _ _ _ _ = []
-- | The 'zipWith6' function takes a function which combines six
-- elements, as well as six lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# NOINLINE [1] zipWith6 #-}
zipWith6 :: (a->b->c->d->e->f->g) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= z a b c d e f : zipWith6 z as bs cs ds es fs
zipWith6 _ _ _ _ _ _ _ = []
-- | The 'zipWith7' function takes a function which combines seven
-- elements, as well as seven lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
-- It is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.
{-# NOINLINE [1] zipWith7 #-}
zipWith7 :: (a->b->c->d->e->f->g->h) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= z a b c d e f g : zipWith7 z as bs cs ds es fs gs
zipWith7 _ _ _ _ _ _ _ _ = []
{-
Functions and rules for fusion of zipWith4, zipWith5, zipWith6 and zipWith7.
The principle is the same as for zip and zipWith in GHC.List:
Turn zipWithX into a version in which the first argument and the result
can be fused. Turn it back into the original function if no fusion happens.
-}
{-# INLINE [0] zipWith4FB #-} -- See Note [Inline FB functions]
zipWith4FB :: (e->xs->xs') -> (a->b->c->d->e) ->
a->b->c->d->xs->xs'
zipWith4FB cons func = \a b c d r -> (func a b c d) `cons` r
{-# INLINE [0] zipWith5FB #-} -- See Note [Inline FB functions]
zipWith5FB :: (f->xs->xs') -> (a->b->c->d->e->f) ->
a->b->c->d->e->xs->xs'
zipWith5FB cons func = \a b c d e r -> (func a b c d e) `cons` r
{-# INLINE [0] zipWith6FB #-} -- See Note [Inline FB functions]
zipWith6FB :: (g->xs->xs') -> (a->b->c->d->e->f->g) ->
a->b->c->d->e->f->xs->xs'
zipWith6FB cons func = \a b c d e f r -> (func a b c d e f) `cons` r
{-# INLINE [0] zipWith7FB #-} -- See Note [Inline FB functions]
zipWith7FB :: (h->xs->xs') -> (a->b->c->d->e->f->g->h) ->
a->b->c->d->e->f->g->xs->xs'
zipWith7FB cons func = \a b c d e f g r -> (func a b c d e f g) `cons` r
{-# INLINE [0] foldr4 #-}
foldr4 :: (a->b->c->d->e->e) ->
e->[a]->[b]->[c]->[d]->e
foldr4 k z = go
where
go (a:as) (b:bs) (c:cs) (d:ds) = k a b c d (go as bs cs ds)
go _ _ _ _ = z
{-# INLINE [0] foldr5 #-}
foldr5 :: (a->b->c->d->e->f->f) ->
f->[a]->[b]->[c]->[d]->[e]->f
foldr5 k z = go
where
go (a:as) (b:bs) (c:cs) (d:ds) (e:es) = k a b c d e (go as bs cs ds es)
go _ _ _ _ _ = z
{-# INLINE [0] foldr6 #-}
foldr6 :: (a->b->c->d->e->f->g->g) ->
g->[a]->[b]->[c]->[d]->[e]->[f]->g
foldr6 k z = go
where
go (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) = k a b c d e f (
go as bs cs ds es fs)
go _ _ _ _ _ _ = z
{-# INLINE [0] foldr7 #-}
foldr7 :: (a->b->c->d->e->f->g->h->h) ->
h->[a]->[b]->[c]->[d]->[e]->[f]->[g]->h
foldr7 k z = go
where
go (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs) = k a b c d e f g (
go as bs cs ds es fs gs)
go _ _ _ _ _ _ _ = z
foldr4_left :: (a->b->c->d->e->f)->
f->a->([b]->[c]->[d]->e)->
[b]->[c]->[d]->f
foldr4_left k _z a r (b:bs) (c:cs) (d:ds) = k a b c d (r bs cs ds)
foldr4_left _ z _ _ _ _ _ = z
foldr5_left :: (a->b->c->d->e->f->g)->
g->a->([b]->[c]->[d]->[e]->f)->
[b]->[c]->[d]->[e]->g
foldr5_left k _z a r (b:bs) (c:cs) (d:ds) (e:es) = k a b c d e (r bs cs ds es)
foldr5_left _ z _ _ _ _ _ _ = z
foldr6_left :: (a->b->c->d->e->f->g->h)->
h->a->([b]->[c]->[d]->[e]->[f]->g)->
[b]->[c]->[d]->[e]->[f]->h
foldr6_left k _z a r (b:bs) (c:cs) (d:ds) (e:es) (f:fs) =
k a b c d e f (r bs cs ds es fs)
foldr6_left _ z _ _ _ _ _ _ _ = z
foldr7_left :: (a->b->c->d->e->f->g->h->i)->
i->a->([b]->[c]->[d]->[e]->[f]->[g]->h)->
[b]->[c]->[d]->[e]->[f]->[g]->i
foldr7_left k _z a r (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs) =
k a b c d e f g (r bs cs ds es fs gs)
foldr7_left _ z _ _ _ _ _ _ _ _ = z
{-# RULES
"foldr4/left" forall k z (g::forall b.(a->b->b)->b->b).
foldr4 k z (build g) = g (foldr4_left k z) (\_ _ _ -> z)
"foldr5/left" forall k z (g::forall b.(a->b->b)->b->b).
foldr5 k z (build g) = g (foldr5_left k z) (\_ _ _ _ -> z)
"foldr6/left" forall k z (g::forall b.(a->b->b)->b->b).
foldr6 k z (build g) = g (foldr6_left k z) (\_ _ _ _ _ -> z)
"foldr7/left" forall k z (g::forall b.(a->b->b)->b->b).
foldr7 k z (build g) = g (foldr7_left k z) (\_ _ _ _ _ _ -> z)
"zipWith4" [~1] forall f as bs cs ds.
zipWith4 f as bs cs ds = build (\c n ->
foldr4 (zipWith4FB c f) n as bs cs ds)
"zipWith5" [~1] forall f as bs cs ds es.
zipWith5 f as bs cs ds es = build (\c n ->
foldr5 (zipWith5FB c f) n as bs cs ds es)
"zipWith6" [~1] forall f as bs cs ds es fs.
zipWith6 f as bs cs ds es fs = build (\c n ->
foldr6 (zipWith6FB c f) n as bs cs ds es fs)
"zipWith7" [~1] forall f as bs cs ds es fs gs.
zipWith7 f as bs cs ds es fs gs = build (\c n ->
foldr7 (zipWith7FB c f) n as bs cs ds es fs gs)
"zipWith4List" [1] forall f. foldr4 (zipWith4FB (:) f) [] = zipWith4 f
"zipWith5List" [1] forall f. foldr5 (zipWith5FB (:) f) [] = zipWith5 f
"zipWith6List" [1] forall f. foldr6 (zipWith6FB (:) f) [] = zipWith6 f
"zipWith7List" [1] forall f. foldr7 (zipWith7FB (:) f) [] = zipWith7 f
#-}
{-
Note [Inline @unzipN@ functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The inline principle for @unzip{4,5,6,7}@ is the same as 'unzip'/'unzip3' in
"GHC.List".
The 'unzip'/'unzip3' functions are inlined so that the `foldr` with which they
are defined has an opportunity to fuse.
As such, since there are not any differences between 2/3-ary 'unzip' and its
n-ary counterparts below aside from the number of arguments, the `INLINE`
pragma should be replicated in the @unzipN@ functions below as well.
-}
-- | The 'unzip4' function takes a list of quadruples and returns four
-- lists, analogous to 'unzip'.
{-# INLINE unzip4 #-}
-- Inline so that fusion with `foldr` has an opportunity to fire.
-- See Note [Inline @unzipN@ functions] above.
unzip4 :: [(a,b,c,d)] -> ([a],[b],[c],[d])
unzip4 = foldr (\(a,b,c,d) ~(as,bs,cs,ds) ->
(a:as,b:bs,c:cs,d:ds))
([],[],[],[])
-- | The 'unzip5' function takes a list of five-tuples and returns five
-- lists, analogous to 'unzip'.
{-# INLINE unzip5 #-}
-- Inline so that fusion with `foldr` has an opportunity to fire.
-- See Note [Inline @unzipN@ functions] above.
unzip5 :: [(a,b,c,d,e)] -> ([a],[b],[c],[d],[e])
unzip5 = foldr (\(a,b,c,d,e) ~(as,bs,cs,ds,es) ->
(a:as,b:bs,c:cs,d:ds,e:es))
([],[],[],[],[])
-- | The 'unzip6' function takes a list of six-tuples and returns six
-- lists, analogous to 'unzip'.
{-# INLINE unzip6 #-}
-- Inline so that fusion with `foldr` has an opportunity to fire.
-- See Note [Inline @unzipN@ functions] above.
unzip6 :: [(a,b,c,d,e,f)] -> ([a],[b],[c],[d],[e],[f])
unzip6 = foldr (\(a,b,c,d,e,f) ~(as,bs,cs,ds,es,fs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs))
([],[],[],[],[],[])
-- | The 'unzip7' function takes a list of seven-tuples and returns
-- seven lists, analogous to 'unzip'.
{-# INLINE unzip7 #-}
-- Inline so that fusion with `foldr` has an opportunity to fire.
-- See Note [Inline @unzipN@ functions] above.
unzip7 :: [(a,b,c,d,e,f,g)] -> ([a],[b],[c],[d],[e],[f],[g])
unzip7 = foldr (\(a,b,c,d,e,f,g) ~(as,bs,cs,ds,es,fs,gs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))
([],[],[],[],[],[],[])
-- | The 'deleteFirstsBy' function takes a predicate and two lists and
-- returns the first list with the first occurrence of each element of
-- the second list removed.
deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
deleteFirstsBy eq = foldl (flip (deleteBy eq))
-- | The 'group' function takes a list and returns a list of lists such
-- that the concatenation of the result is equal to the argument. Moreover,
-- each sublist in the result contains only equal elements. For example,
--
-- >>> group "Mississippi"
-- ["M","i","ss","i","ss","i","pp","i"]
--
-- It is a special case of 'groupBy', which allows the programmer to supply
-- their own equality test.
group :: Eq a => [a] -> [[a]]
group = groupBy (==)
-- | The 'groupBy' function is the non-overloaded version of 'group'.
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
groupBy _ [] = []
groupBy eq (x:xs) = (x:ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs
-- | The 'inits' function returns all initial segments of the argument,
-- shortest first. For example,
--
-- >>> inits "abc"
-- ["","a","ab","abc"]
--
-- Note that 'inits' has the following strictness property:
-- @inits (xs ++ _|_) = inits xs ++ _|_@
--
-- In particular,
-- @inits _|_ = [] : _|_@
inits :: [a] -> [[a]]
inits = map toListSB . scanl' snocSB emptySB
{-# NOINLINE inits #-}
-- We do not allow inits to inline, because it plays havoc with Call Arity
-- if it fuses with a consumer, and it would generally lead to serious
-- loss of sharing if allowed to fuse with a producer.
-- | \(\mathcal{O}(n)\). The 'tails' function returns all final segments of the
-- argument, longest first. For example,
--
-- >>> tails "abc"
-- ["abc","bc","c",""]
--
-- Note that 'tails' has the following strictness property:
-- @tails _|_ = _|_ : _|_@
tails :: [a] -> [[a]]
{-# INLINABLE tails #-}
tails lst = build (\c n ->
let tailsGo xs = xs `c` case xs of
[] -> n
_ : xs' -> tailsGo xs'
in tailsGo lst)
-- | The 'subsequences' function returns the list of all subsequences of the argument.
--
-- >>> subsequences "abc"
-- ["","a","b","ab","c","ac","bc","abc"]
subsequences :: [a] -> [[a]]
subsequences xs = [] : nonEmptySubsequences xs
-- | The 'nonEmptySubsequences' function returns the list of all subsequences of the argument,
-- except for the empty list.
--
-- >>> nonEmptySubsequences "abc"
-- ["a","b","ab","c","ac","bc","abc"]
nonEmptySubsequences :: [a] -> [[a]]
nonEmptySubsequences [] = []
nonEmptySubsequences (x:xs) = [x] : foldr f [] (nonEmptySubsequences xs)
where f ys r = ys : (x : ys) : r
-- | The 'permutations' function returns the list of all permutations of the argument.
--
-- >>> permutations "abc"
-- ["abc","bac","cba","bca","cab","acb"]
permutations :: [a] -> [[a]]
permutations xs0 = xs0 : perms xs0 []
where
perms [] _ = []
perms (t:ts) is = foldr interleave (perms ts (t:is)) (permutations is)
where interleave xs r = let (_,zs) = interleave' id xs r in zs
interleave' _ [] r = (ts, r)
interleave' f (y:ys) r = let (us,zs) = interleave' (f . (y:)) ys r
in (y:us, f (t:y:us) : zs)
------------------------------------------------------------------------------
-- Quick Sort algorithm taken from HBC's QSort library.
-- | The 'sort' function implements a stable sorting algorithm.
-- It is a special case of 'sortBy', which allows the programmer to supply
-- their own comparison function.
--
-- Elements are arranged from lowest to highest, keeping duplicates in
-- the order they appeared in the input.
--
-- >>> sort [1,6,4,3,2,5]
-- [1,2,3,4,5,6]
sort :: (Ord a) => [a] -> [a]
-- | The 'sortBy' function is the non-overloaded version of 'sort'.
--
-- >>> sortBy (\(a,_) (b,_) -> compare a b) [(2, "world"), (4, "!"), (1, "Hello")]
-- [(1,"Hello"),(2,"world"),(4,"!")]
sortBy :: (a -> a -> Ordering) -> [a] -> [a]
#if defined(USE_REPORT_PRELUDE)
sort = sortBy compare
sortBy cmp = foldr (insertBy cmp) []
#else
{-
GHC's mergesort replaced by a better implementation, 24/12/2009.
This code originally contributed to the nhc12 compiler by Thomas Nordin
in 2002. Rumoured to have been based on code by Lennart Augustsson, e.g.
http://www.mail-archive.com/haskell@haskell.org/msg01822.html
and possibly to bear similarities to a 1982 paper by Richard O'Keefe:
"A smooth applicative merge sort".
Benchmarks show it to be often 2x the speed of the previous implementation.
Fixes ticket https://gitlab.haskell.org/ghc/ghc/issues/2143
-}
sort = sortBy compare
sortBy cmp = mergeAll . sequences
where
sequences (a:b:xs)
| a `cmp` b == GT = descending b [a] xs
| otherwise = ascending b (a:) xs
sequences xs = [xs]
descending a as (b:bs)
| a `cmp` b == GT = descending b (a:as) bs
descending a as bs = (a:as): sequences bs
ascending a as (b:bs)
| a `cmp` b /= GT = ascending b (\ys -> as (a:ys)) bs
ascending a as bs = let !x = as [a]
in x : sequences bs
mergeAll [x] = x
mergeAll xs = mergeAll (mergePairs xs)
mergePairs (a:b:xs) = let !x = merge a b
in x : mergePairs xs
mergePairs xs = xs
merge as@(a:as') bs@(b:bs')
| a `cmp` b == GT = b:merge as bs'
| otherwise = a:merge as' bs
merge [] bs = bs
merge as [] = as
{-
sortBy cmp l = mergesort cmp l
sort l = mergesort compare l
Quicksort replaced by mergesort, 14/5/2002.
From: Ian Lynagh <igloo@earth.li>
I am curious as to why the List.sort implementation in GHC is a
quicksort algorithm rather than an algorithm that guarantees n log n
time in the worst case? I have attached a mergesort implementation along
with a few scripts to time it's performance, the results of which are
shown below (* means it didn't finish successfully - in all cases this
was due to a stack overflow).
If I heap profile the random_list case with only 10000 then I see
random_list peaks at using about 2.5M of memory, whereas in the same
program using List.sort it uses only 100k.
Input style Input length Sort data Sort alg User time
stdin 10000 random_list sort 2.82
stdin 10000 random_list mergesort 2.96
stdin 10000 sorted sort 31.37
stdin 10000 sorted mergesort 1.90
stdin 10000 revsorted sort 31.21
stdin 10000 revsorted mergesort 1.88
stdin 100000 random_list sort *
stdin 100000 random_list mergesort *
stdin 100000 sorted sort *
stdin 100000 sorted mergesort *
stdin 100000 revsorted sort *
stdin 100000 revsorted mergesort *
func 10000 random_list sort 0.31
func 10000 random_list mergesort 0.91
func 10000 sorted sort 19.09
func 10000 sorted mergesort 0.15
func 10000 revsorted sort 19.17
func 10000 revsorted mergesort 0.16
func 100000 random_list sort 3.85
func 100000 random_list mergesort *
func 100000 sorted sort 5831.47
func 100000 sorted mergesort 2.23
func 100000 revsorted sort 5872.34
func 100000 revsorted mergesort 2.24
mergesort :: (a -> a -> Ordering) -> [a] -> [a]
mergesort cmp = mergesort' cmp . map wrap
mergesort' :: (a -> a -> Ordering) -> [[a]] -> [a]
mergesort' _ [] = []
mergesort' _ [xs] = xs
mergesort' cmp xss = mergesort' cmp (merge_pairs cmp xss)
merge_pairs :: (a -> a -> Ordering) -> [[a]] -> [[a]]
merge_pairs _ [] = []
merge_pairs _ [xs] = [xs]
merge_pairs cmp (xs:ys:xss) = merge cmp xs ys : merge_pairs cmp xss
merge :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
merge _ [] ys = ys
merge _ xs [] = xs
merge cmp (x:xs) (y:ys)
= case x `cmp` y of
GT -> y : merge cmp (x:xs) ys
_ -> x : merge cmp xs (y:ys)
wrap :: a -> [a]
wrap x = [x]
OLDER: qsort version
-- qsort is stable and does not concatenate.
qsort :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
qsort _ [] r = r
qsort _ [x] r = x:r
qsort cmp (x:xs) r = qpart cmp x xs [] [] r
-- qpart partitions and sorts the sublists
qpart :: (a -> a -> Ordering) -> a -> [a] -> [a] -> [a] -> [a] -> [a]
qpart cmp x [] rlt rge r =
-- rlt and rge are in reverse order and must be sorted with an
-- anti-stable sorting
rqsort cmp rlt (x:rqsort cmp rge r)
qpart cmp x (y:ys) rlt rge r =
case cmp x y of
GT -> qpart cmp x ys (y:rlt) rge r
_ -> qpart cmp x ys rlt (y:rge) r
-- rqsort is as qsort but anti-stable, i.e. reverses equal elements
rqsort :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
rqsort _ [] r = r
rqsort _ [x] r = x:r
rqsort cmp (x:xs) r = rqpart cmp x xs [] [] r
rqpart :: (a -> a -> Ordering) -> a -> [a] -> [a] -> [a] -> [a] -> [a]
rqpart cmp x [] rle rgt r =
qsort cmp rle (x:qsort cmp rgt r)
rqpart cmp x (y:ys) rle rgt r =
case cmp y x of
GT -> rqpart cmp x ys rle (y:rgt) r
_ -> rqpart cmp x ys (y:rle) rgt r
-}
#endif /* USE_REPORT_PRELUDE */
-- | Sort a list by comparing the results of a key function applied to each
-- element. @sortOn f@ is equivalent to @sortBy (comparing f)@, but has the
-- performance advantage of only evaluating @f@ once for each element in the
-- input list. This is called the decorate-sort-undecorate paradigm, or
-- Schwartzian transform.
--
-- Elements are arranged from lowest to highest, keeping duplicates in
-- the order they appeared in the input.
--
-- >>> sortOn fst [(2, "world"), (4, "!"), (1, "Hello")]
-- [(1,"Hello"),(2,"world"),(4,"!")]
--
-- @since 4.8.0.0
sortOn :: Ord b => (a -> b) -> [a] -> [a]
sortOn f =
map snd . sortBy (comparing fst) . map (\x -> let y = f x in y `seq` (y, x))
-- | Produce singleton list.
--
-- >>> singleton True
-- [True]
--
-- @since 4.15.0.0
--
singleton :: a -> [a]
singleton x = [x]
-- | The 'unfoldr' function is a \`dual\' to 'foldr': while 'foldr'
-- reduces a list to a summary value, 'unfoldr' builds a list from
-- a seed value. The function takes the element and returns 'Nothing'
-- if it is done producing the list or returns 'Just' @(a,b)@, in which
-- case, @a@ is a prepended to the list and @b@ is used as the next
-- element in a recursive call. For example,
--
-- > iterate f == unfoldr (\x -> Just (x, f x))
--
-- In some cases, 'unfoldr' can undo a 'foldr' operation:
--
-- > unfoldr f' (foldr f z xs) == xs
--
-- if the following holds:
--
-- > f' (f x y) = Just (x,y)
-- > f' z = Nothing
--
-- A simple use of unfoldr:
--
-- >>> unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
-- [10,9,8,7,6,5,4,3,2,1]
--
-- Note [INLINE unfoldr]
-- We treat unfoldr a little differently from some other forms for list fusion
-- for two reasons:
--
-- 1. We don't want to use a rule to rewrite a basic form to a fusible
-- form because this would inline before constant floating. As Simon Peyton-
-- Jones and others have pointed out, this could reduce sharing in some cases
-- where sharing is beneficial. Thus we simply INLINE it, which is, for
-- example, how enumFromTo::Int becomes eftInt. Unfortunately, we don't seem
-- to get enough of an inlining discount to get a version of eftInt based on
-- unfoldr to inline as readily as the usual one. We know that all the Maybe
-- nonsense will go away, but the compiler does not.
--
-- 2. The benefit of inlining unfoldr is likely to be huge in many common cases,
-- even apart from list fusion. In particular, inlining unfoldr often
-- allows GHC to erase all the Maybes. This appears to be critical if unfoldr
-- is to be used in high-performance code. A small increase in code size
-- in the relatively rare cases when this does not happen looks like a very
-- small price to pay.
--
-- Doing a back-and-forth dance doesn't seem to accomplish anything if the
-- final form has to be inlined in any case.
unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
{-# INLINE unfoldr #-} -- See Note [INLINE unfoldr]
unfoldr f b0 = build (\c n ->
let go b = case f b of
Just (a, new_b) -> a `c` go new_b
Nothing -> n
in go b0)
-- -----------------------------------------------------------------------------
-- Functions on strings
-- | 'lines' breaks a string up into a list of strings at newline
-- characters. The resulting strings do not contain newlines.
--
-- Note that after splitting the string at newline characters, the
-- last part of the string is considered a line even if it doesn't end
-- with a newline. For example,
--
-- >>> lines ""
-- []
--
-- >>> lines "\n"
-- [""]
--
-- >>> lines "one"
-- ["one"]
--
-- >>> lines "one\n"
-- ["one"]
--
-- >>> lines "one\n\n"
-- ["one",""]
--
-- >>> lines "one\ntwo"
-- ["one","two"]
--
-- >>> lines "one\ntwo\n"
-- ["one","two"]
--
-- Thus @'lines' s@ contains at least as many elements as newlines in @s@.
lines :: String -> [String]
lines "" = []
-- Somehow GHC doesn't detect the selector thunks in the below code,
-- so s' keeps a reference to the first line via the pair and we have
-- a space leak (cf. #4334).
-- So we need to make GHC see the selector thunks with a trick.
lines s = cons (case break (== '\n') s of
(l, s') -> (l, case s' of
[] -> []
_:s'' -> lines s''))
where
cons ~(h, t) = h : t
-- | 'unlines' is an inverse operation to 'lines'.
-- It joins lines, after appending a terminating newline to each.
--
-- >>> unlines ["Hello", "World", "!"]
-- "Hello\nWorld\n!\n"
unlines :: [String] -> String
#if defined(USE_REPORT_PRELUDE)
unlines = concatMap (++ "\n")
#else
-- HBC version (stolen)
-- here's a more efficient version
unlines [] = []
unlines (l:ls) = l ++ '\n' : unlines ls
#endif
-- | 'words' breaks a string up into a list of words, which were delimited
-- by white space.
--
-- >>> words "Lorem ipsum\ndolor"
-- ["Lorem","ipsum","dolor"]
words :: String -> [String]
{-# NOINLINE [1] words #-}
words s = case dropWhile {-partain:Char.-}isSpace s of
"" -> []
s' -> w : words s''
where (w, s'') =
break {-partain:Char.-}isSpace s'
{-# RULES
"words" [~1] forall s . words s = build (\c n -> wordsFB c n s)
"wordsList" [1] wordsFB (:) [] = words
#-}
wordsFB :: ([Char] -> b -> b) -> b -> String -> b
{-# INLINE [0] wordsFB #-} -- See Note [Inline FB functions] in GHC.List
wordsFB c n = go
where
go s = case dropWhile isSpace s of
"" -> n
s' -> w `c` go s''
where (w, s'') = break isSpace s'
-- | 'unwords' is an inverse operation to 'words'.
-- It joins words with separating spaces.
--
-- >>> unwords ["Lorem", "ipsum", "dolor"]
-- "Lorem ipsum dolor"
unwords :: [String] -> String
#if defined(USE_REPORT_PRELUDE)
unwords [] = ""
unwords ws = foldr1 (\w s -> w ++ ' ':s) ws
#else
-- Here's a lazier version that can get the last element of a
-- _|_-terminated list.
{-# NOINLINE [1] unwords #-}
unwords [] = ""
unwords (w:ws) = w ++ go ws
where
go [] = ""
go (v:vs) = ' ' : (v ++ go vs)
-- In general, the foldr-based version is probably slightly worse
-- than the HBC version, because it adds an extra space and then takes
-- it back off again. But when it fuses, it reduces allocation. How much
-- depends entirely on the average word length--it's most effective when
-- the words are on the short side.
{-# RULES
"unwords" [~1] forall ws .
unwords ws = tailUnwords (foldr unwordsFB "" ws)
"unwordsList" [1] forall ws .
tailUnwords (foldr unwordsFB "" ws) = unwords ws
#-}
{-# INLINE [0] tailUnwords #-}
tailUnwords :: String -> String
tailUnwords [] = []
tailUnwords (_:xs) = xs
{-# INLINE [0] unwordsFB #-}
unwordsFB :: String -> String -> String
unwordsFB w r = ' ' : w ++ r
#endif
{- A "SnocBuilder" is a version of Chris Okasaki's banker's queue that supports
toListSB instead of uncons. In single-threaded use, its performance
characteristics are similar to John Hughes's functional difference lists, but
likely somewhat worse. In heavily persistent settings, however, it does much
better, because it takes advantage of sharing. The banker's queue guarantees
(amortized) O(1) snoc and O(1) uncons, meaning that we can think of toListSB as
an O(1) conversion to a list-like structure a constant factor slower than
normal lists--we pay the O(n) cost incrementally as we consume the list. Using
functional difference lists, on the other hand, we would have to pay the whole
cost up front for each output list. -}
{- We store a front list, a rear list, and the length of the queue. Because we
only snoc onto the queue and never uncons, we know it's time to rotate when the
length of the queue plus 1 is a power of 2. Note that we rely on the value of
the length field only for performance. In the unlikely event of overflow, the
performance will suffer but the semantics will remain correct. -}
data SnocBuilder a = SnocBuilder {-# UNPACK #-} !Word [a] [a]
{- Smart constructor that rotates the builder when lp is one minus a power of
2. Does not rotate very small builders because doing so is not worth the
trouble. The lp < 255 test goes first because the power-of-2 test gives awful
branch prediction for very small n (there are 5 powers of 2 between 1 and
16). Putting the well-predicted lp < 255 test first avoids branching on the
power-of-2 test until powers of 2 have become sufficiently rare to be predicted
well. -}
{-# INLINE sb #-}
sb :: Word -> [a] -> [a] -> SnocBuilder a
sb lp f r
| lp < 255 || (lp .&. (lp + 1)) /= 0 = SnocBuilder lp f r
| otherwise = SnocBuilder lp (f ++ reverse r) []
-- The empty builder
emptySB :: SnocBuilder a
emptySB = SnocBuilder 0 [] []
-- Add an element to the end of a queue.
snocSB :: SnocBuilder a -> a -> SnocBuilder a
snocSB (SnocBuilder lp f r) x = sb (lp + 1) f (x:r)
-- Convert a builder to a list
toListSB :: SnocBuilder a -> [a]
toListSB (SnocBuilder _ f r) = f ++ reverse r
|