1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Semigroup
-- Copyright : (C) 2011-2015 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- A type @a@ is a 'Semigroup' if it provides an associative function ('<>')
-- that lets you combine any two values of type @a@ into one. Where being
-- associative means that the following must always hold:
--
-- >>> (a <> b) <> c == a <> (b <> c)
--
-- ==== __Examples__
--
-- The 'Min' 'Semigroup' instance for 'Int' is defined to always pick the smaller
-- number:
-- >>> Min 1 <> Min 2 <> Min 3 <> Min 4 :: Min Int
-- Min {getMin = 1}
--
-- If we need to combine multiple values we can use the 'sconcat' function
-- to do so. We need to ensure however that we have at least one value to
-- operate on, since otherwise our result would be undefined. It is for this
-- reason that 'sconcat' uses "Data.List.NonEmpty.NonEmpty" - a list that
-- can never be empty:
--
-- >>> (1 :| [])
-- 1 :| [] -- equivalent to [1] but guaranteed to be non-empty
-- >>> (1 :| [2, 3, 4])
-- 1 :| [2,3,4] -- equivalent to [1,2,3,4] but guaranteed to be non-empty
--
-- Equipped with this guaranteed to be non-empty data structure, we can combine
-- values using 'sconcat' and a 'Semigroup' of our choosing. We can try the 'Min'
-- and 'Max' instances of 'Int' which pick the smallest, or largest number
-- respectively:
--
-- >>> sconcat (1 :| [2, 3, 4]) :: Min Int
-- Min {getMin = 1}
-- >>> sconcat (1 :| [2, 3, 4]) :: Max Int
-- Max {getMax = 4}
--
-- String concatenation is another example of a 'Semigroup' instance:
--
-- >>> "foo" <> "bar"
-- "foobar"
--
-- A 'Semigroup' is a generalization of a 'Monoid'. Yet unlike the 'Semigroup', the 'Monoid'
-- requires the presence of a neutral element ('mempty') in addition to the associative
-- operator. The requirement for a neutral element prevents many types from being a full Monoid,
-- like "Data.List.NonEmpty.NonEmpty".
--
-- Note that the use of @(\<\>)@ in this module conflicts with an operator with the same
-- name that is being exported by "Data.Monoid". However, this package
-- re-exports (most of) the contents of Data.Monoid, so to use semigroups
-- and monoids in the same package just
--
-- > import Data.Semigroup
--
-- @since 4.9.0.0
----------------------------------------------------------------------------
module Data.Semigroup (
Semigroup(..)
, stimesMonoid
, stimesIdempotent
, stimesIdempotentMonoid
, mtimesDefault
-- * Semigroups
, Min(..)
, Max(..)
, First(..)
, Last(..)
, WrappedMonoid(..)
-- * Re-exported monoids from Data.Monoid
, Dual(..)
, Endo(..)
, All(..)
, Any(..)
, Sum(..)
, Product(..)
-- * A better monoid for Maybe
, Option(..)
, option
-- * Difference lists of a semigroup
, diff
, cycle1
-- * ArgMin, ArgMax
, Arg(..)
, ArgMin
, ArgMax
) where
import Prelude hiding (foldr1)
import GHC.Base (Semigroup(..))
import Data.Semigroup.Internal
import Control.Applicative
import Control.Monad
import Control.Monad.Fix
import Data.Bifoldable
import Data.Bifunctor
import Data.Bitraversable
import Data.Coerce
import Data.Data
import GHC.Generics
-- | A generalization of 'Data.List.cycle' to an arbitrary 'Semigroup'.
-- May fail to terminate for some values in some semigroups.
cycle1 :: Semigroup m => m -> m
cycle1 xs = xs' where xs' = xs <> xs'
-- | This lets you use a difference list of a 'Semigroup' as a 'Monoid'.
--
-- === __Example:__
-- >>> let hello = diff "Hello, "
-- >>> appEndo hello "World!"
-- "Hello, World!"
-- >>> appEndo (hello <> mempty) "World!"
-- "Hello, World!"
-- >>> appEndo (mempty <> hello) "World!"
-- "Hello, World!"
-- >>> let world = diff "World"
-- >>> let excl = diff "!"
-- >>> appEndo (hello <> (world <> excl)) mempty
-- "Hello, World!"
-- >>> appEndo ((hello <> world) <> excl) mempty
-- "Hello, World!"
diff :: Semigroup m => m -> Endo m
diff = Endo . (<>)
newtype Min a = Min { getMin :: a }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Enum a => Enum (Min a) where
succ (Min a) = Min (succ a)
pred (Min a) = Min (pred a)
toEnum = Min . toEnum
fromEnum = fromEnum . getMin
enumFrom (Min a) = Min <$> enumFrom a
enumFromThen (Min a) (Min b) = Min <$> enumFromThen a b
enumFromTo (Min a) (Min b) = Min <$> enumFromTo a b
enumFromThenTo (Min a) (Min b) (Min c) = Min <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Ord a => Semigroup (Min a) where
(<>) = coerce (min :: a -> a -> a)
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance (Ord a, Bounded a) => Monoid (Min a) where
mempty = maxBound
-- | @since 4.9.0.0
instance Functor Min where
fmap f (Min x) = Min (f x)
-- | @since 4.9.0.0
instance Foldable Min where
foldMap f (Min a) = f a
-- | @since 4.9.0.0
instance Traversable Min where
traverse f (Min a) = Min <$> f a
-- | @since 4.9.0.0
instance Applicative Min where
pure = Min
a <* _ = a
_ *> a = a
(<*>) = coerce
liftA2 = coerce
-- | @since 4.9.0.0
instance Monad Min where
(>>) = (*>)
Min a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix Min where
mfix f = fix (f . getMin)
-- | @since 4.9.0.0
instance Num a => Num (Min a) where
(Min a) + (Min b) = Min (a + b)
(Min a) * (Min b) = Min (a * b)
(Min a) - (Min b) = Min (a - b)
negate (Min a) = Min (negate a)
abs (Min a) = Min (abs a)
signum (Min a) = Min (signum a)
fromInteger = Min . fromInteger
newtype Max a = Max { getMax :: a }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Enum a => Enum (Max a) where
succ (Max a) = Max (succ a)
pred (Max a) = Max (pred a)
toEnum = Max . toEnum
fromEnum = fromEnum . getMax
enumFrom (Max a) = Max <$> enumFrom a
enumFromThen (Max a) (Max b) = Max <$> enumFromThen a b
enumFromTo (Max a) (Max b) = Max <$> enumFromTo a b
enumFromThenTo (Max a) (Max b) (Max c) = Max <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Ord a => Semigroup (Max a) where
(<>) = coerce (max :: a -> a -> a)
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance (Ord a, Bounded a) => Monoid (Max a) where
mempty = minBound
-- | @since 4.9.0.0
instance Functor Max where
fmap f (Max x) = Max (f x)
-- | @since 4.9.0.0
instance Foldable Max where
foldMap f (Max a) = f a
-- | @since 4.9.0.0
instance Traversable Max where
traverse f (Max a) = Max <$> f a
-- | @since 4.9.0.0
instance Applicative Max where
pure = Max
a <* _ = a
_ *> a = a
(<*>) = coerce
liftA2 = coerce
-- | @since 4.9.0.0
instance Monad Max where
(>>) = (*>)
Max a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix Max where
mfix f = fix (f . getMax)
-- | @since 4.9.0.0
instance Num a => Num (Max a) where
(Max a) + (Max b) = Max (a + b)
(Max a) * (Max b) = Max (a * b)
(Max a) - (Max b) = Max (a - b)
negate (Max a) = Max (negate a)
abs (Max a) = Max (abs a)
signum (Max a) = Max (signum a)
fromInteger = Max . fromInteger
-- | 'Arg' isn't itself a 'Semigroup' in its own right, but it can be
-- placed inside 'Min' and 'Max' to compute an arg min or arg max.
--
-- >>> minimum [ Arg (x * x) x | x <- [-10 .. 10] ]
-- Arg 0 0
data Arg a b = Arg
a
-- ^ The argument used for comparisons in 'Eq' and 'Ord'.
b
-- ^ The "value" exposed via the 'Functor', 'Foldable' etc. instances.
deriving
( Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- |
-- >>> Min (Arg 0 ()) <> Min (Arg 1 ())
-- Min {getMin = Arg 0 ()}
type ArgMin a b = Min (Arg a b)
-- |
-- >>> Max (Arg 0 ()) <> Max (Arg 1 ())
-- Max {getMax = Arg 1 ()}
type ArgMax a b = Max (Arg a b)
-- | @since 4.9.0.0
instance Functor (Arg a) where
fmap f (Arg x a) = Arg x (f a)
-- | @since 4.9.0.0
instance Foldable (Arg a) where
foldMap f (Arg _ a) = f a
-- | @since 4.9.0.0
instance Traversable (Arg a) where
traverse f (Arg x a) = Arg x <$> f a
-- | @since 4.9.0.0
instance Eq a => Eq (Arg a b) where
Arg a _ == Arg b _ = a == b
-- | @since 4.9.0.0
instance Ord a => Ord (Arg a b) where
Arg a _ `compare` Arg b _ = compare a b
min x@(Arg a _) y@(Arg b _)
| a <= b = x
| otherwise = y
max x@(Arg a _) y@(Arg b _)
| a >= b = x
| otherwise = y
-- | @since 4.9.0.0
instance Bifunctor Arg where
bimap f g (Arg a b) = Arg (f a) (g b)
-- | @since 4.10.0.0
instance Bifoldable Arg where
bifoldMap f g (Arg a b) = f a <> g b
-- | @since 4.10.0.0
instance Bitraversable Arg where
bitraverse f g (Arg a b) = Arg <$> f a <*> g b
newtype First a = First { getFirst :: a }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Enum a => Enum (First a) where
succ (First a) = First (succ a)
pred (First a) = First (pred a)
toEnum = First . toEnum
fromEnum = fromEnum . getFirst
enumFrom (First a) = First <$> enumFrom a
enumFromThen (First a) (First b) = First <$> enumFromThen a b
enumFromTo (First a) (First b) = First <$> enumFromTo a b
enumFromThenTo (First a) (First b) (First c) = First <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Semigroup (First a) where
a <> _ = a
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance Functor First where
fmap f (First x) = First (f x)
-- | @since 4.9.0.0
instance Foldable First where
foldMap f (First a) = f a
-- | @since 4.9.0.0
instance Traversable First where
traverse f (First a) = First <$> f a
-- | @since 4.9.0.0
instance Applicative First where
pure x = First x
a <* _ = a
_ *> a = a
(<*>) = coerce
liftA2 = coerce
-- | @since 4.9.0.0
instance Monad First where
(>>) = (*>)
First a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix First where
mfix f = fix (f . getFirst)
newtype Last a = Last { getLast :: a }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Enum a => Enum (Last a) where
succ (Last a) = Last (succ a)
pred (Last a) = Last (pred a)
toEnum = Last . toEnum
fromEnum = fromEnum . getLast
enumFrom (Last a) = Last <$> enumFrom a
enumFromThen (Last a) (Last b) = Last <$> enumFromThen a b
enumFromTo (Last a) (Last b) = Last <$> enumFromTo a b
enumFromThenTo (Last a) (Last b) (Last c) = Last <$> enumFromThenTo a b c
-- | @since 4.9.0.0
instance Semigroup (Last a) where
_ <> b = b
stimes = stimesIdempotent
-- | @since 4.9.0.0
instance Functor Last where
fmap f (Last x) = Last (f x)
a <$ _ = Last a
-- | @since 4.9.0.0
instance Foldable Last where
foldMap f (Last a) = f a
-- | @since 4.9.0.0
instance Traversable Last where
traverse f (Last a) = Last <$> f a
-- | @since 4.9.0.0
instance Applicative Last where
pure = Last
a <* _ = a
_ *> a = a
(<*>) = coerce
liftA2 = coerce
-- | @since 4.9.0.0
instance Monad Last where
(>>) = (*>)
Last a >>= f = f a
-- | @since 4.9.0.0
instance MonadFix Last where
mfix f = fix (f . getLast)
-- | Provide a Semigroup for an arbitrary Monoid.
--
-- __NOTE__: This is not needed anymore since 'Semigroup' became a superclass of
-- 'Monoid' in /base-4.11/ and this newtype be deprecated at some point in the future.
newtype WrappedMonoid m = WrapMonoid { unwrapMonoid :: m }
deriving ( Bounded -- ^ @since 4.9.0.0
, Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Monoid m => Semigroup (WrappedMonoid m) where
(<>) = coerce (mappend :: m -> m -> m)
-- | @since 4.9.0.0
instance Monoid m => Monoid (WrappedMonoid m) where
mempty = WrapMonoid mempty
-- | @since 4.9.0.0
instance Enum a => Enum (WrappedMonoid a) where
succ (WrapMonoid a) = WrapMonoid (succ a)
pred (WrapMonoid a) = WrapMonoid (pred a)
toEnum = WrapMonoid . toEnum
fromEnum = fromEnum . unwrapMonoid
enumFrom (WrapMonoid a) = WrapMonoid <$> enumFrom a
enumFromThen (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromThen a b
enumFromTo (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromTo a b
enumFromThenTo (WrapMonoid a) (WrapMonoid b) (WrapMonoid c) =
WrapMonoid <$> enumFromThenTo a b c
-- | Repeat a value @n@ times.
--
-- > mtimesDefault n a = a <> a <> ... <> a -- using <> (n-1) times
--
-- Implemented using 'stimes' and 'mempty'.
--
-- This is a suitable definition for an 'mtimes' member of 'Monoid'.
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
mtimesDefault n x
| n == 0 = mempty
| otherwise = unwrapMonoid (stimes n (WrapMonoid x))
{-# DEPRECATED Option, option "will be removed in GHC 9.2; use 'Maybe' instead." #-}
-- | 'Option' is effectively 'Maybe' with a better instance of
-- 'Monoid', built off of an underlying 'Semigroup' instead of an
-- underlying 'Monoid'.
--
-- Ideally, this type would not exist at all and we would just fix the
-- 'Monoid' instance of 'Maybe'.
--
-- In GHC 8.4 and higher, the 'Monoid' instance for 'Maybe' has been
-- corrected to lift a 'Semigroup' instance instead of a 'Monoid'
-- instance. Consequently, this type is no longer useful.
newtype Option a = Option { getOption :: Maybe a }
deriving ( Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Data -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Functor Option where
fmap f (Option a) = Option (fmap f a)
-- | @since 4.9.0.0
instance Applicative Option where
pure a = Option (Just a)
Option a <*> Option b = Option (a <*> b)
liftA2 f (Option x) (Option y) = Option (liftA2 f x y)
Option Nothing *> _ = Option Nothing
_ *> b = b
-- | @since 4.9.0.0
instance Monad Option where
Option (Just a) >>= k = k a
_ >>= _ = Option Nothing
(>>) = (*>)
-- | @since 4.9.0.0
instance Alternative Option where
empty = Option Nothing
Option Nothing <|> b = b
a <|> _ = a
-- | @since 4.9.0.0
instance MonadPlus Option
-- | @since 4.9.0.0
instance MonadFix Option where
mfix f = Option (mfix (getOption . f))
-- | @since 4.9.0.0
instance Foldable Option where
foldMap f (Option (Just m)) = f m
foldMap _ (Option Nothing) = mempty
-- | @since 4.9.0.0
instance Traversable Option where
traverse f (Option (Just a)) = Option . Just <$> f a
traverse _ (Option Nothing) = pure (Option Nothing)
-- | Fold an 'Option' case-wise, just like 'maybe'.
option :: b -> (a -> b) -> Option a -> b
option n j (Option m) = maybe n j m
-- | @since 4.9.0.0
instance Semigroup a => Semigroup (Option a) where
(<>) = coerce ((<>) :: Maybe a -> Maybe a -> Maybe a)
#if !defined(__HADDOCK_VERSION__)
-- workaround https://github.com/haskell/haddock/issues/680
stimes _ (Option Nothing) = Option Nothing
stimes n (Option (Just a)) = case compare n 0 of
LT -> errorWithoutStackTrace "stimes: Option, negative multiplier"
EQ -> Option Nothing
GT -> Option (Just (stimes n a))
#endif
-- | @since 4.9.0.0
instance Semigroup a => Monoid (Option a) where
mempty = Option Nothing
|