1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Text.Read.Lex
-- Copyright : (c) The University of Glasgow 2002
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : non-portable (uses Text.ParserCombinators.ReadP)
--
-- The cut-down Haskell lexer, used by Text.Read
--
-----------------------------------------------------------------------------
module Text.Read.Lex
-- lexing types
( Lexeme(..), Number
, numberToInteger, numberToFixed, numberToRational, numberToRangedRational
-- lexer
, lex, expect
, hsLex
, lexChar
, readIntP
, readOctP
, readDecP
, readHexP
, isSymbolChar
)
where
import Text.ParserCombinators.ReadP
import GHC.Base
import GHC.Char
import GHC.Num( Num(..), Integer )
import GHC.Show( Show(..) )
import GHC.Unicode
( GeneralCategory(..), generalCategory, isSpace, isAlpha, isAlphaNum )
import GHC.Real( Rational, (%), fromIntegral, Integral,
toInteger, (^), quot, even )
import GHC.List
import GHC.Enum( minBound, maxBound )
import Data.Maybe
-- local copy to break import-cycle
-- | @'guard' b@ is @'return' ()@ if @b@ is 'True',
-- and 'mzero' if @b@ is 'False'.
guard :: (MonadPlus m) => Bool -> m ()
guard True = return ()
guard False = mzero
-- -----------------------------------------------------------------------------
-- Lexing types
-- ^ Haskell lexemes.
data Lexeme
= Char Char -- ^ Character literal
| String String -- ^ String literal, with escapes interpreted
| Punc String -- ^ Punctuation or reserved symbol, e.g. @(@, @::@
| Ident String -- ^ Haskell identifier, e.g. @foo@, @Baz@
| Symbol String -- ^ Haskell symbol, e.g. @>>@, @:%@
| Number Number -- ^ @since 4.6.0.0
| EOF
deriving ( Eq -- ^ @since 2.01
, Show -- ^ @since 2.01
)
-- | @since 4.6.0.0
data Number = MkNumber Int -- Base
Digits -- Integral part
| MkDecimal Digits -- Integral part
(Maybe Digits) -- Fractional part
(Maybe Integer) -- Exponent
deriving ( Eq -- ^ @since 4.6.0.0
, Show -- ^ @since 4.6.0.0
)
-- | @since 4.5.1.0
numberToInteger :: Number -> Maybe Integer
numberToInteger (MkNumber base iPart) = Just (val (fromIntegral base) iPart)
numberToInteger (MkDecimal iPart Nothing Nothing) = Just (val 10 iPart)
numberToInteger _ = Nothing
-- | @since 4.7.0.0
numberToFixed :: Integer -> Number -> Maybe (Integer, Integer)
numberToFixed _ (MkNumber base iPart) = Just (val (fromIntegral base) iPart, 0)
numberToFixed _ (MkDecimal iPart Nothing Nothing) = Just (val 10 iPart, 0)
numberToFixed p (MkDecimal iPart (Just fPart) Nothing)
= let i = val 10 iPart
f = val 10 (integerTake p (fPart ++ repeat 0))
-- Sigh, we really want genericTake, but that's above us in
-- the hierarchy, so we define our own version here (actually
-- specialised to Integer)
integerTake :: Integer -> [a] -> [a]
integerTake n _ | n <= 0 = []
integerTake _ [] = []
integerTake n (x:xs) = x : integerTake (n-1) xs
in Just (i, f)
numberToFixed _ _ = Nothing
-- This takes a floatRange, and if the Rational would be outside of
-- the floatRange then it may return Nothing. Not that it will not
-- /necessarily/ return Nothing, but it is good enough to fix the
-- space problems in #5688
-- Ways this is conservative:
-- * the floatRange is in base 2, but we pretend it is in base 10
-- * we pad the floateRange a bit, just in case it is very small
-- and we would otherwise hit an edge case
-- * We only worry about numbers that have an exponent. If they don't
-- have an exponent then the Rational won't be much larger than the
-- Number, so there is no problem
-- | @since 4.5.1.0
numberToRangedRational :: (Int, Int) -> Number
-> Maybe Rational -- Nothing = Inf
numberToRangedRational (neg, pos) n@(MkDecimal iPart mFPart (Just exp))
-- if exp is out of integer bounds,
-- then the number is definitely out of range
| exp > fromIntegral (maxBound :: Int) ||
exp < fromIntegral (minBound :: Int)
= Nothing
| otherwise
= let mFirstDigit = case dropWhile (0 ==) iPart of
iPart'@(_ : _) -> Just (length iPart')
[] -> case mFPart of
Nothing -> Nothing
Just fPart ->
case span (0 ==) fPart of
(_, []) -> Nothing
(zeroes, _) ->
Just (negate (length zeroes))
in case mFirstDigit of
Nothing -> Just 0
Just firstDigit ->
let firstDigit' = firstDigit + fromInteger exp
in if firstDigit' > (pos + 3)
then Nothing
else if firstDigit' < (neg - 3)
then Just 0
else Just (numberToRational n)
numberToRangedRational _ n = Just (numberToRational n)
-- | @since 4.6.0.0
numberToRational :: Number -> Rational
numberToRational (MkNumber base iPart) = val (fromIntegral base) iPart % 1
numberToRational (MkDecimal iPart mFPart mExp)
= let i = val 10 iPart
in case (mFPart, mExp) of
(Nothing, Nothing) -> i % 1
(Nothing, Just exp)
| exp >= 0 -> (i * (10 ^ exp)) % 1
| otherwise -> i % (10 ^ (- exp))
(Just fPart, Nothing) -> fracExp 0 i fPart
(Just fPart, Just exp) -> fracExp exp i fPart
-- fracExp is a bit more efficient in calculating the Rational.
-- Instead of calculating the fractional part alone, then
-- adding the integral part and finally multiplying with
-- 10 ^ exp if an exponent was given, do it all at once.
-- -----------------------------------------------------------------------------
-- Lexing
lex :: ReadP Lexeme
lex = skipSpaces >> lexToken
-- | @since 4.7.0.0
expect :: Lexeme -> ReadP ()
expect lexeme = do { skipSpaces
; thing <- lexToken
; if thing == lexeme then return () else pfail }
hsLex :: ReadP String
-- ^ Haskell lexer: returns the lexed string, rather than the lexeme
hsLex = do skipSpaces
(s,_) <- gather lexToken
return s
lexToken :: ReadP Lexeme
lexToken = lexEOF +++
lexLitChar +++
lexString +++
lexPunc +++
lexSymbol +++
lexId +++
lexNumber
-- ----------------------------------------------------------------------
-- End of file
lexEOF :: ReadP Lexeme
lexEOF = do s <- look
guard (null s)
return EOF
-- ---------------------------------------------------------------------------
-- Single character lexemes
lexPunc :: ReadP Lexeme
lexPunc =
do c <- satisfy isPuncChar
return (Punc [c])
-- | The @special@ character class as defined in the Haskell Report.
isPuncChar :: Char -> Bool
isPuncChar c = c `elem` ",;()[]{}`"
-- ----------------------------------------------------------------------
-- Symbols
lexSymbol :: ReadP Lexeme
lexSymbol =
do s <- munch1 isSymbolChar
if s `elem` reserved_ops then
return (Punc s) -- Reserved-ops count as punctuation
else
return (Symbol s)
where
reserved_ops = ["..", "::", "=", "\\", "|", "<-", "->", "@", "~", "=>"]
isSymbolChar :: Char -> Bool
isSymbolChar c = not (isPuncChar c) && case generalCategory c of
MathSymbol -> True
CurrencySymbol -> True
ModifierSymbol -> True
OtherSymbol -> True
DashPunctuation -> True
OtherPunctuation -> not (c `elem` "'\"")
ConnectorPunctuation -> c /= '_'
_ -> False
-- ----------------------------------------------------------------------
-- identifiers
lexId :: ReadP Lexeme
lexId = do c <- satisfy isIdsChar
s <- munch isIdfChar
return (Ident (c:s))
where
-- Identifiers can start with a '_'
isIdsChar c = isAlpha c || c == '_'
isIdfChar c = isAlphaNum c || c `elem` "_'"
-- ---------------------------------------------------------------------------
-- Lexing character literals
lexLitChar :: ReadP Lexeme
lexLitChar =
do _ <- char '\''
(c,esc) <- lexCharE
guard (esc || c /= '\'') -- Eliminate '' possibility
_ <- char '\''
return (Char c)
lexChar :: ReadP Char
lexChar = do { (c,_) <- lexCharE; consumeEmpties; return c }
where
-- Consumes the string "\&" repeatedly and greedily (will only produce one match)
consumeEmpties :: ReadP ()
consumeEmpties = do
rest <- look
case rest of
('\\':'&':_) -> string "\\&" >> consumeEmpties
_ -> return ()
lexCharE :: ReadP (Char, Bool) -- "escaped or not"?
lexCharE =
do c1 <- get
if c1 == '\\'
then do c2 <- lexEsc; return (c2, True)
else do return (c1, False)
where
lexEsc =
lexEscChar
+++ lexNumeric
+++ lexCntrlChar
+++ lexAscii
lexEscChar =
do c <- get
case c of
'a' -> return '\a'
'b' -> return '\b'
'f' -> return '\f'
'n' -> return '\n'
'r' -> return '\r'
't' -> return '\t'
'v' -> return '\v'
'\\' -> return '\\'
'\"' -> return '\"'
'\'' -> return '\''
_ -> pfail
lexNumeric =
do base <- lexBaseChar <++ return 10
n <- lexInteger base
guard (n <= toInteger (ord maxBound))
return (chr (fromInteger n))
lexCntrlChar =
do _ <- char '^'
c <- get
case c of
'@' -> return '\^@'
'A' -> return '\^A'
'B' -> return '\^B'
'C' -> return '\^C'
'D' -> return '\^D'
'E' -> return '\^E'
'F' -> return '\^F'
'G' -> return '\^G'
'H' -> return '\^H'
'I' -> return '\^I'
'J' -> return '\^J'
'K' -> return '\^K'
'L' -> return '\^L'
'M' -> return '\^M'
'N' -> return '\^N'
'O' -> return '\^O'
'P' -> return '\^P'
'Q' -> return '\^Q'
'R' -> return '\^R'
'S' -> return '\^S'
'T' -> return '\^T'
'U' -> return '\^U'
'V' -> return '\^V'
'W' -> return '\^W'
'X' -> return '\^X'
'Y' -> return '\^Y'
'Z' -> return '\^Z'
'[' -> return '\^['
'\\' -> return '\^\'
']' -> return '\^]'
'^' -> return '\^^'
'_' -> return '\^_'
_ -> pfail
lexAscii =
do choice
[ (string "SOH" >> return '\SOH') <++
(string "SO" >> return '\SO')
-- \SO and \SOH need maximal-munch treatment
-- See the Haskell report Sect 2.6
, string "NUL" >> return '\NUL'
, string "STX" >> return '\STX'
, string "ETX" >> return '\ETX'
, string "EOT" >> return '\EOT'
, string "ENQ" >> return '\ENQ'
, string "ACK" >> return '\ACK'
, string "BEL" >> return '\BEL'
, string "BS" >> return '\BS'
, string "HT" >> return '\HT'
, string "LF" >> return '\LF'
, string "VT" >> return '\VT'
, string "FF" >> return '\FF'
, string "CR" >> return '\CR'
, string "SI" >> return '\SI'
, string "DLE" >> return '\DLE'
, string "DC1" >> return '\DC1'
, string "DC2" >> return '\DC2'
, string "DC3" >> return '\DC3'
, string "DC4" >> return '\DC4'
, string "NAK" >> return '\NAK'
, string "SYN" >> return '\SYN'
, string "ETB" >> return '\ETB'
, string "CAN" >> return '\CAN'
, string "EM" >> return '\EM'
, string "SUB" >> return '\SUB'
, string "ESC" >> return '\ESC'
, string "FS" >> return '\FS'
, string "GS" >> return '\GS'
, string "RS" >> return '\RS'
, string "US" >> return '\US'
, string "SP" >> return '\SP'
, string "DEL" >> return '\DEL'
]
-- ---------------------------------------------------------------------------
-- string literal
lexString :: ReadP Lexeme
lexString =
do _ <- char '"'
body id
where
body f =
do (c,esc) <- lexStrItem
if c /= '"' || esc
then body (f.(c:))
else let s = f "" in
return (String s)
lexStrItem = (lexEmpty >> lexStrItem)
+++ lexCharE
lexEmpty =
do _ <- char '\\'
c <- get
case c of
'&' -> do return ()
_ | isSpace c -> do skipSpaces; _ <- char '\\'; return ()
_ -> do pfail
-- ---------------------------------------------------------------------------
-- Lexing numbers
type Base = Int
type Digits = [Int]
lexNumber :: ReadP Lexeme
lexNumber
= lexHexOct <++ -- First try for hex or octal 0x, 0o etc
-- If that fails, try for a decimal number
lexDecNumber -- Start with ordinary digits
lexHexOct :: ReadP Lexeme
lexHexOct
= do _ <- char '0'
base <- lexBaseChar
digits <- lexDigits base
return (Number (MkNumber base digits))
lexBaseChar :: ReadP Int
-- Lex a single character indicating the base; fail if not there
lexBaseChar = do { c <- get;
case c of
'o' -> return 8
'O' -> return 8
'x' -> return 16
'X' -> return 16
_ -> pfail }
lexDecNumber :: ReadP Lexeme
lexDecNumber =
do xs <- lexDigits 10
mFrac <- lexFrac <++ return Nothing
mExp <- lexExp <++ return Nothing
return (Number (MkDecimal xs mFrac mExp))
lexFrac :: ReadP (Maybe Digits)
-- Read the fractional part; fail if it doesn't
-- start ".d" where d is a digit
lexFrac = do _ <- char '.'
fraction <- lexDigits 10
return (Just fraction)
lexExp :: ReadP (Maybe Integer)
lexExp = do _ <- char 'e' +++ char 'E'
exp <- signedExp +++ lexInteger 10
return (Just exp)
where
signedExp
= do c <- char '-' +++ char '+'
n <- lexInteger 10
return (if c == '-' then -n else n)
lexDigits :: Int -> ReadP Digits
-- Lex a non-empty sequence of digits in specified base
lexDigits base =
do s <- look
xs <- scan s id
guard (not (null xs))
return xs
where
scan (c:cs) f = case valDig base c of
Just n -> do _ <- get; scan cs (f.(n:))
Nothing -> do return (f [])
scan [] f = do return (f [])
lexInteger :: Base -> ReadP Integer
lexInteger base =
do xs <- lexDigits base
return (val (fromIntegral base) xs)
val :: Num a => a -> Digits -> a
val = valSimple
{-# RULES
"val/Integer" val = valInteger
#-}
{-# INLINE [1] val #-}
-- The following algorithm is only linear for types whose Num operations
-- are in constant time.
valSimple :: (Num a, Integral d) => a -> [d] -> a
valSimple base = go 0
where
go r [] = r
go r (d : ds) = r' `seq` go r' ds
where
r' = r * base + fromIntegral d
{-# INLINE valSimple #-}
-- A sub-quadratic algorithm for Integer. Pairs of adjacent radix b
-- digits are combined into a single radix b^2 digit. This process is
-- repeated until we are left with a single digit. This algorithm
-- performs well only on large inputs, so we use the simple algorithm
-- for smaller inputs.
valInteger :: Integer -> Digits -> Integer
valInteger b0 ds0 = go b0 (length ds0) $ map fromIntegral ds0
where
go _ _ [] = 0
go _ _ [d] = d
go b l ds
| l > 40 = b' `seq` go b' l' (combine b ds')
| otherwise = valSimple b ds
where
-- ensure that we have an even number of digits
-- before we call combine:
ds' = if even l then ds else 0 : ds
b' = b * b
l' = (l + 1) `quot` 2
combine b (d1 : d2 : ds) = d `seq` (d : combine b ds)
where
d = d1 * b + d2
combine _ [] = []
combine _ [_] = errorWithoutStackTrace "this should not happen"
-- Calculate a Rational from the exponent [of 10 to multiply with],
-- the integral part of the mantissa and the digits of the fractional
-- part. Leaving the calculation of the power of 10 until the end,
-- when we know the effective exponent, saves multiplications.
-- More importantly, this way we need at most one gcd instead of three.
--
-- frac was never used with anything but Integer and base 10, so
-- those are hardcoded now (trivial to change if necessary).
fracExp :: Integer -> Integer -> Digits -> Rational
fracExp exp mant []
| exp < 0 = mant % (10 ^ (-exp))
| otherwise = fromInteger (mant * 10 ^ exp)
fracExp exp mant (d:ds) = exp' `seq` mant' `seq` fracExp exp' mant' ds
where
exp' = exp - 1
mant' = mant * 10 + fromIntegral d
valDig :: (Eq a, Num a) => a -> Char -> Maybe Int
valDig 8 c
| '0' <= c && c <= '7' = Just (ord c - ord '0')
| otherwise = Nothing
valDig 10 c = valDecDig c
valDig 16 c
| '0' <= c && c <= '9' = Just (ord c - ord '0')
| 'a' <= c && c <= 'f' = Just (ord c - ord 'a' + 10)
| 'A' <= c && c <= 'F' = Just (ord c - ord 'A' + 10)
| otherwise = Nothing
valDig _ _ = errorWithoutStackTrace "valDig: Bad base"
valDecDig :: Char -> Maybe Int
valDecDig c
| '0' <= c && c <= '9' = Just (ord c - ord '0')
| otherwise = Nothing
-- ----------------------------------------------------------------------
-- other numeric lexing functions
readIntP :: Num a => a -> (Char -> Bool) -> (Char -> Int) -> ReadP a
readIntP base isDigit valDigit =
do s <- munch1 isDigit
return (val base (map valDigit s))
{-# SPECIALISE readIntP
:: Integer -> (Char -> Bool) -> (Char -> Int) -> ReadP Integer #-}
readIntP' :: (Eq a, Num a) => a -> ReadP a
readIntP' base = readIntP base isDigit valDigit
where
isDigit c = maybe False (const True) (valDig base c)
valDigit c = maybe 0 id (valDig base c)
{-# SPECIALISE readIntP' :: Integer -> ReadP Integer #-}
readOctP, readDecP, readHexP :: (Eq a, Num a) => ReadP a
readOctP = readIntP' 8
readDecP = readIntP' 10
readHexP = readIntP' 16
{-# SPECIALISE readOctP :: ReadP Integer #-}
{-# SPECIALISE readDecP :: ReadP Integer #-}
{-# SPECIALISE readHexP :: ReadP Integer #-}
|