File: QC.hs

package info (click to toggle)
ghc 9.0.2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 177,780 kB
  • sloc: haskell: 494,441; ansic: 70,262; javascript: 9,423; sh: 8,537; python: 2,646; asm: 1,725; makefile: 1,333; xml: 196; cpp: 167; perl: 143; ruby: 84; lisp: 7
file content (711 lines) | stat: -rw-r--r-- 26,949 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
{-# LANGUAGE CPP, ScopedTypeVariables, DataKinds, TypeSynonymInstances #-}
module Main ( main ) where

#if MIN_VERSION_base(4,8,0)
#define HAS_NATURAL
#endif

#if MIN_VERSION_base(4,7,0)
#define HAS_FIXED_CONSTRUCTOR
#endif

import           Control.Applicative
import           Control.Exception                    as C (SomeException,
                                                            catch, evaluate)
import           Control.Monad                        (unless, liftM2)
import qualified Data.ByteString                      as B
import qualified Data.ByteString.Lazy                 as L
import qualified Data.ByteString.Lazy.Internal        as L
#if MIN_VERSION_bytestring(0,10,4)
import           Data.ByteString.Short                (ShortByteString)
#endif
import           Data.Int
import           Data.Ratio
import           Data.Typeable
import           System.IO.Unsafe

import           Data.Orphans ()

#ifdef HAS_NATURAL
import           Numeric.Natural
#endif

import           GHC.Fingerprint

import qualified Data.Fixed as Fixed

import           Test.Framework
import           Test.Framework.Providers.QuickCheck2
import           Test.QuickCheck hiding (total)

import qualified Action                               (tests)
import           Arbitrary                            ()
import           Data.Binary
import           Data.Binary.Get
import           Data.Binary.Put


------------------------------------------------------------------------

roundTrip :: (Eq a, Binary a) => a -> (L.ByteString -> L.ByteString) -> Bool
roundTrip a f = a ==
    {-# SCC "decode.refragment.encode" #-} decode (f (encode a))

roundTripWith ::  Eq a => (a -> Put) -> Get a -> a -> Property
roundTripWith putter getter x =
    forAll positiveList $ \xs ->
    x == runGet getter (refragment xs (runPut (putter x)))

-- make sure that a test fails
mustThrowError :: B a
mustThrowError a = unsafePerformIO $
    C.catch (do _ <- C.evaluate a
                return False)
            (\(_e :: SomeException) -> return True)

-- low level ones:
--
-- Words

prop_Word8 :: Word8 -> Property
prop_Word8 = roundTripWith putWord8 getWord8

prop_Word16be :: Word16 -> Property
prop_Word16be = roundTripWith putWord16be getWord16be

prop_Word16le :: Word16 -> Property
prop_Word16le = roundTripWith putWord16le getWord16le

prop_Word16host :: Word16 -> Property
prop_Word16host = roundTripWith putWord16host getWord16host

prop_Word32be :: Word32 -> Property
prop_Word32be = roundTripWith putWord32be getWord32be

prop_Word32le :: Word32 -> Property
prop_Word32le = roundTripWith putWord32le getWord32le

prop_Word32host :: Word32 -> Property
prop_Word32host = roundTripWith putWord32host getWord32host

prop_Word64be :: Word64 -> Property
prop_Word64be = roundTripWith putWord64be getWord64be

prop_Word64le :: Word64 -> Property
prop_Word64le = roundTripWith putWord64le getWord64le

prop_Word64host :: Word64 -> Property
prop_Word64host = roundTripWith putWord64host getWord64host

prop_Wordhost :: Word -> Property
prop_Wordhost = roundTripWith putWordhost getWordhost

-- Ints

prop_Int8 :: Int8 -> Property
prop_Int8 = roundTripWith putInt8 getInt8

prop_Int16be :: Int16 -> Property
prop_Int16be = roundTripWith putInt16be getInt16be

prop_Int16le :: Int16 -> Property
prop_Int16le = roundTripWith putInt16le getInt16le

prop_Int16host :: Int16 -> Property
prop_Int16host = roundTripWith putInt16host getInt16host

prop_Int32be :: Int32 -> Property
prop_Int32be = roundTripWith putInt32be getInt32be

prop_Int32le :: Int32 -> Property
prop_Int32le = roundTripWith putInt32le getInt32le

prop_Int32host :: Int32 -> Property
prop_Int32host = roundTripWith putInt32host getInt32host

prop_Int64be :: Int64 -> Property
prop_Int64be = roundTripWith putInt64be getInt64be

prop_Int64le :: Int64 -> Property
prop_Int64le = roundTripWith putInt64le getInt64le

prop_Int64host :: Int64 -> Property
prop_Int64host = roundTripWith putInt64host getInt64host

prop_Inthost :: Int -> Property
prop_Inthost = roundTripWith putInthost getInthost

-- Floats and Doubles

prop_Floatbe :: Float -> Property
prop_Floatbe = roundTripWith putFloatbe getFloatbe

prop_Floatle :: Float -> Property
prop_Floatle = roundTripWith putFloatle getFloatle

prop_Floathost :: Float -> Property
prop_Floathost = roundTripWith putFloathost getFloathost

prop_Doublebe :: Double -> Property
prop_Doublebe = roundTripWith putDoublebe getDoublebe

prop_Doublele :: Double -> Property
prop_Doublele = roundTripWith putDoublele getDoublele

prop_Doublehost :: Double -> Property
prop_Doublehost = roundTripWith putDoublehost getDoublehost

#if MIN_VERSION_base(4,10,0)
testTypeable :: Test
testTypeable = testProperty "TypeRep" prop_TypeRep

prop_TypeRep :: TypeRep -> Property
prop_TypeRep = roundTripWith put get

atomicTypeReps :: [TypeRep]
atomicTypeReps =
    [ typeRep (Proxy :: Proxy ())
    , typeRep (Proxy :: Proxy String)
    , typeRep (Proxy :: Proxy Int)
    , typeRep (Proxy :: Proxy (,))
    , typeRep (Proxy :: Proxy ((,) (Maybe Int)))
    , typeRep (Proxy :: Proxy Maybe)
    , typeRep (Proxy :: Proxy 'Nothing)
    , typeRep (Proxy :: Proxy 'Left)
    , typeRep (Proxy :: Proxy "Hello")
    , typeRep (Proxy :: Proxy 42)
    , typeRep (Proxy :: Proxy '[1,2,3,4])
    , typeRep (Proxy :: Proxy ('Left Int))
    , typeRep (Proxy :: Proxy (Either Int String))
    , typeRep (Proxy :: Proxy (() -> ()))
    ]

instance Arbitrary TypeRep where
    arbitrary = oneof (map pure atomicTypeReps)
#else
testTypeable :: Test
testTypeable = testGroup "Skipping Typeable tests" []
#endif

-- done, partial and fail

-- | Test partial results.
-- May or may not use the whole input, check conditions for the different
-- outcomes.
prop_partial :: L.ByteString -> Property
prop_partial lbs = forAll (choose (0, L.length lbs * 2)) $ \skipN ->
  let result = pushChunks (runGetIncremental decoder) lbs
      decoder = do
        s <- getByteString (fromIntegral skipN)
        return (L.fromChunks [s])
  in case result of
       Partial _ -> L.length lbs < skipN
       Done unused _pos value ->
         and [ L.length value == skipN
             , L.append value (L.fromChunks [unused]) == lbs
             ]
       Fail _ _ _ -> False

-- | Fail a decoder and make sure the result is sane.
prop_fail :: L.ByteString -> String -> Property
prop_fail lbs msg = forAll (choose (0, L.length lbs)) $ \pos ->
  let result = pushChunks (runGetIncremental decoder) lbs
      decoder = do
        -- use part of the input...
        _ <- getByteString (fromIntegral pos)
        -- ... then fail
        fail msg
  in case result of
     Fail unused pos' msg' ->
       and [ pos == pos'
           , msg == msg'
           , L.length lbs - pos == fromIntegral (B.length unused)
           , L.fromChunks [unused] `L.isSuffixOf` lbs
           ]
     _ -> False -- wuut?

-- read negative length
prop_getByteString_negative :: Int -> Property
prop_getByteString_negative n =
  n < 1 ==>
    runGet (getByteString n) L.empty == B.empty


prop_bytesRead :: L.ByteString -> Property
prop_bytesRead lbs =
  forAll (makeChunks 0 totalLength) $ \chunkSizes ->
  let result = pushChunks (runGetIncremental decoder) lbs
      decoder = do
        -- Read some data and invoke bytesRead several times.
        -- Each time, check that the values are what we expect.
        flip mapM_ chunkSizes $ \(total, step) -> do
          _ <- getByteString (fromIntegral step)
          n <- bytesRead
          unless (n == total) $ fail "unexpected position"
        bytesRead
  in case result of
       Done unused pos value ->
         and [ value == totalLength
             , pos == value
             , B.null unused
             ]
       Partial _ -> False
       Fail _ _ _ -> False
  where
    totalLength = L.length lbs
    makeChunks total i
      | i == 0 = return []
      | otherwise = do
          n <- choose (0,i)
          let total' = total + n
          rest <- makeChunks total' (i - n)
          return ((total',n):rest)


-- | We're trying to guarantee that the Decoder will not ask for more input
-- with Partial if it has been given Nothing once.
-- In this test we're making the decoder return 'Partial' to get more
-- input, and to get knownledge of the current position using 'BytesRead'.
-- Both of these operations, when used with the <|> operator, result internally
-- in that the decoder return with Partial and BytesRead multiple times,
-- in which case we need to keep track of if the user has passed Nothing to a
-- Partial in the past.
prop_partialOnlyOnce :: Property
prop_partialOnlyOnce = property $
  let result = runGetIncremental (decoder <|> decoder)
      decoder = do
        0 <- bytesRead
        _ <- getWord8 -- this will make the decoder return with Partial
        return "shouldn't get here"
  in case result of
       -- we expect Partial followed by Fail
       Partial k -> case k Nothing of -- push down a Nothing
                      Fail _ _ _ -> True
                      Partial _ -> error $ "partial twice! oh noes!"
                      Done _ _ _ -> error $ "we're not supposed to be done."
       _ -> error $ "not partial, error!"

-- read too much
prop_readTooMuch :: (Eq a, Binary a) => a -> Bool
prop_readTooMuch x = mustThrowError $ x == a && x /= b
  where
    -- encode 'a', but try to read 'b' too
    (a,b) = decode (encode x)
    _types = [a,b]

-- In binary-0.5 the Get monad looked like
--
-- > data S = S {-# UNPACK #-} !B.ByteString
-- >            L.ByteString
-- >            {-# UNPACK #-} !Int64
-- >
-- > newtype Get a = Get { unGet :: S -> (# a, S #) }
--
-- with a helper function
--
-- > mkState :: L.ByteString -> Int64 -> S
-- > mkState l = case l of
-- >     L.Empty      -> S B.empty L.empty
-- >     L.Chunk x xs -> S x xs
--
-- Note that mkState is strict in its first argument. This goes wrong in this
-- function:
--
-- > getBytes :: Int -> Get B.ByteString
-- > getBytes n = do
-- >     S s ss bytes <- traceNumBytes n $ get
-- >     if n <= B.length s
-- >         then do let (consume,rest) = B.splitAt n s
-- >                 put $! S rest ss (bytes + fromIntegral n)
-- >                 return $! consume
-- >         else
-- >               case L.splitAt (fromIntegral n) (s `join` ss) of
-- >                 (consuming, rest) ->
-- >                     do let now = B.concat . L.toChunks $ consuming
-- >                        put $ mkState rest (bytes + fromIntegral n)
-- >                        -- forces the next chunk before this one is returned
-- >                        if (B.length now < n)
-- >                          then
-- >                             fail "too few bytes"
-- >                          else
-- >                             return now
--
-- Consider the else-branch of this function; suppose we ask for n bytes;
-- the call to L.splitAt gives us a lazy bytestring 'consuming' of precisely @n@
-- bytes (unless we don't have enough data, in which case we fail); but then
-- the strict evaluation of mkState on 'rest' means we look ahead too far.
--
-- Although this is all done completely differently in binary-0.7 it is
-- important that the same bug does not get introduced in some other way. The
-- test is basically the same test that already exists in this test suite,
-- verifying that
--
-- > decode . refragment . encode == id
--
-- However, we use a different 'refragment', one that introduces an exception
-- as the tail of the bytestring after rechunking. If we don't look ahead too
-- far then this should make no difference, but if we do then this will throw
-- an exception (for instance, in binary-0.5, this will throw an exception for
-- certain rechunkings, but not for others).
--
-- To make sure that the property holds no matter what refragmentation we use,
-- we test exhaustively for a single chunk, and all ways to break the string
-- into 2, 3 and 4 chunks.
prop_lookAheadIndepOfChunking :: (Eq a, Binary a) => a -> Property
prop_lookAheadIndepOfChunking testInput =
   forAll (testCuts (L.length (encode testInput))) $
     roundTrip testInput . rechunk
  where
    testCuts :: forall a. (Num a, Enum a) => a -> Gen [a]
    testCuts len = elements $ [ [] ]
                           ++ [ [i]
                              | i <- [0 .. len] ]
                           ++ [ [i, j]
                              | i <- [0 .. len]
                              , j <- [0 .. len - i] ]
                           ++ [ [i, j, k]
                              | i <- [0 .. len]
                              , j <- [0 .. len - i]
                              , k <- [0 .. len - i - j] ]

    -- Rechunk a bytestring, leaving the tail as an exception rather than Empty
    rechunk :: forall a. Integral a => [a] -> L.ByteString -> L.ByteString
    rechunk cuts = fromChunks . cut cuts . B.concat . L.toChunks
      where
        cut :: [a] -> B.ByteString -> [B.ByteString]
        cut []     bs = [bs]
        cut (i:is) bs = let (bs0, bs1) = B.splitAt (fromIntegral i) bs
                        in bs0 : cut is bs1

        fromChunks :: [B.ByteString] ->  L.ByteString
        fromChunks []       = error "Binary should not have to ask for this chunk!"
        fromChunks (bs:bss) = L.Chunk bs (fromChunks bss)

-- String utilities

prop_getLazyByteString :: L.ByteString -> Property
prop_getLazyByteString lbs = forAll (choose (0, 2 * L.length lbs)) $ \len ->
  let result = pushChunks (runGetIncremental decoder) lbs
      decoder = getLazyByteString len
  in case result of
       Done unused _pos value ->
         and [ value == L.take len lbs
             , L.fromChunks [unused] == L.drop len lbs
             ]
       Partial _ -> len > L.length lbs
       _ -> False

prop_getLazyByteStringNul :: Word16 -> [Int] -> Property
prop_getLazyByteStringNul count0 fragments = count >= 0 ==>
  forAll (choose (0, count)) $ \pos ->
  let lbs = case L.splitAt pos (L.replicate count 65) of
              (start,end) -> refragment fragments $ L.concat [start, L.singleton 0, end]
      result = pushEndOfInput $ pushChunks (runGetIncremental getLazyByteStringNul) lbs
  in case result of
       Done unused pos' value ->
         and [ value == L.take pos lbs
             , pos + 1 == pos' -- 1 for the NUL
             , L.fromChunks [unused] == L.drop (pos + 1) lbs
             ]
       _ -> False
  where
  count = fromIntegral count0 -- to make the generated numbers a bit smaller

-- | Same as prop_getLazyByteStringNul, but without any NULL in the string.
prop_getLazyByteStringNul_noNul :: Word16 -> [Int] -> Property
prop_getLazyByteStringNul_noNul count0 fragments = count >= 0 ==>
  let lbs = refragment fragments $ L.replicate count 65
      result = pushEndOfInput $ pushChunks (runGetIncremental getLazyByteStringNul) lbs
  in case result of
       Fail _ _ _ -> True
       _ -> False
  where
  count = fromIntegral count0 -- to make the generated numbers a bit smaller

prop_getRemainingLazyByteString :: L.ByteString -> Property
prop_getRemainingLazyByteString lbs = property $
  let result = pushEndOfInput $ pushChunks (runGetIncremental getRemainingLazyByteString) lbs
  in case result of
    Done unused pos value ->
      and [ value == lbs
          , B.null unused
          , fromIntegral pos == L.length lbs
          ]
    _ -> False

-- sanity:

invariant_lbs :: L.ByteString -> Bool
invariant_lbs (L.Empty)      = True
invariant_lbs (L.Chunk x xs) = not (B.null x) && invariant_lbs xs

prop_invariant :: (Binary a) => a -> Bool
prop_invariant = invariant_lbs . encode

-- refragment a lazy bytestring's chunks
refragment :: [Int] -> L.ByteString -> L.ByteString
refragment [] lbs = lbs
refragment (x:xs) lbs =
    let x' = fromIntegral . (+1) . abs $ x
        rest = refragment xs (L.drop x' lbs) in
    L.append (L.fromChunks [B.concat . L.toChunks . L.take x' $ lbs]) rest

-- check identity of refragmentation
prop_refragment :: L.ByteString -> [Int] -> Bool
prop_refragment lbs xs = lbs == refragment xs lbs

-- check that refragmention still hold invariant
prop_refragment_inv :: L.ByteString -> [Int] -> Bool
prop_refragment_inv lbs xs = invariant_lbs $ refragment xs lbs

main :: IO ()
main = defaultMain tests

------------------------------------------------------------------------

genInteger :: Gen Integer
genInteger = do
  b <- arbitrary
  if b then genIntegerSmall else genIntegerSmall

genIntegerSmall :: Gen Integer
genIntegerSmall = arbitrary

genIntegerBig :: Gen Integer
genIntegerBig = do
  x <- arbitrarySizedIntegral :: Gen Integer
  -- arbitrarySizedIntegral generates numbers smaller than
  -- (maxBound :: Word32), so let's make them bigger to better test
  -- the Binary instance.
  return (x + fromIntegral (maxBound :: Word32))

#ifdef HAS_NATURAL
genNatural :: Gen Natural
genNatural = do
  b <- arbitrary
  if b then genNaturalSmall else genNaturalBig

genNaturalSmall :: Gen Natural
genNaturalSmall = arbitrarySizedNatural

genNaturalBig :: Gen Natural
genNaturalBig = do
  x <- arbitrarySizedNatural :: Gen Natural
  -- arbitrarySizedNatural generates numbers smaller than
  -- (maxBound :: Word64), so let's make them bigger to better test
  -- the Binary instance.
  return (x + fromIntegral (maxBound :: Word64))
#endif

------------------------------------------------------------------------

genFingerprint :: Gen Fingerprint
genFingerprint = liftM2 Fingerprint arbitrary arbitrary

------------------------------------------------------------------------

#ifdef HAS_FIXED_CONSTRUCTOR

fixedPut :: forall a. Fixed.HasResolution a => Fixed.Fixed a -> Put
fixedPut x = put (truncate (x * fromInteger (Fixed.resolution (undefined :: Maybe a))) :: Integer)

fixedGet :: forall a. Fixed.HasResolution a => Get (Fixed.Fixed a)
fixedGet = (\x -> fromInteger x / fromInteger (Fixed.resolution (undefined :: Maybe a))) `liftA` get

-- | Serialise using base >=4.7 and <4.7 methods agree
prop_fixed_ser :: Fixed.Fixed Fixed.E3 -> Bool
prop_fixed_ser x = runPut (put x) == runPut (fixedPut x)

-- | Serialised with base >=4.7, unserialised with base <4.7 method roundtrip
prop_fixed_constr_resolution :: Fixed.Fixed Fixed.E3 -> Bool
prop_fixed_constr_resolution x = runGet fixedGet (runPut (put x)) == x

-- | Serialised with base <4.7, unserialised with base >=4.7 method roundtrip
prop_fixed_resolution_constr :: Fixed.Fixed Fixed.E3 -> Bool
prop_fixed_resolution_constr x = runGet get (runPut (fixedPut x)) == x

#endif

------------------------------------------------------------------------

type T a = a -> Property
type B a = a -> Bool

p :: (Testable p) => p -> Property
p = property

test    :: (Eq a, Binary a) => a -> Property
test a  = forAll positiveList (roundTrip a . refragment)

test' :: (Show a, Arbitrary a) => String -> (a -> Property) -> ([a] -> Property) -> Test
test' desc prop propList =
  testGroup desc [
    testProperty desc prop,
    testProperty ("[" ++ desc ++ "]") propList
  ]

testWithGen :: (Show a, Eq a, Binary a) => String -> Gen a -> Test
testWithGen desc gen =
  testGroup desc [
    testProperty desc (forAll gen test),
    testProperty ("[" ++ desc ++ "]") (forAll (listOf gen) test)
  ]

positiveList :: Gen [Int]
positiveList = fmap (filter (/=0) . map abs) $ arbitrary

tests :: [Test]
tests =
        [ testGroup "Utils"
            [ testProperty "refragment id" (p prop_refragment)
            , testProperty "refragment invariant" (p prop_refragment_inv)
            ]

        , testGroup "Boundaries"
            [ testProperty "read to much"         (p (prop_readTooMuch :: B Word8))
            , testProperty "read negative length" (p (prop_getByteString_negative :: T Int))
            , -- Arbitrary test input
              let testInput :: [Int] ; testInput = [0 .. 10]
              in testProperty "look-ahead independent of chunking" (p (prop_lookAheadIndepOfChunking testInput))
            ]

        , testGroup "Partial"
            [ testProperty "partial" (p prop_partial)
            , testProperty "fail"    (p prop_fail)
            , testProperty "bytesRead" (p prop_bytesRead)
            , testProperty "partial only once" (p prop_partialOnlyOnce)
            ]

        , testGroup "Model"
            Action.tests

        , testGroup "Primitives"
            [ testProperty "Word8"      (p prop_Word8)
            , testProperty "Word16be"   (p prop_Word16be)
            , testProperty "Word16le"   (p prop_Word16le)
            , testProperty "Word16host" (p prop_Word16host)
            , testProperty "Word32be"   (p prop_Word32be)
            , testProperty "Word32le"   (p prop_Word32le)
            , testProperty "Word32host" (p prop_Word32host)
            , testProperty "Word64be"   (p prop_Word64be)
            , testProperty "Word64le"   (p prop_Word64le)
            , testProperty "Word64host" (p prop_Word64host)
            , testProperty "Wordhost"   (p prop_Wordhost)
              -- Int
            , testProperty "Int8"       (p prop_Int8)
            , testProperty "Int16be"    (p prop_Int16be)
            , testProperty "Int16le"    (p prop_Int16le)
            , testProperty "Int16host"  (p prop_Int16host)
            , testProperty "Int32be"    (p prop_Int32be)
            , testProperty "Int32le"    (p prop_Int32le)
            , testProperty "Int32host"  (p prop_Int32host)
            , testProperty "Int64be"    (p prop_Int64be)
            , testProperty "Int64le"    (p prop_Int64le)
            , testProperty "Int64host"  (p prop_Int64host)
            , testProperty "Inthost"    (p prop_Inthost)
              -- Float/Double
            , testProperty "Floatbe"    (p prop_Floatbe)
            , testProperty "Floatle"    (p prop_Floatle)
            , testProperty "Floathost"  (p prop_Floathost)
            , testProperty "Doublebe"   (p prop_Doublebe)
            , testProperty "Doublele"   (p prop_Doublele)
            , testProperty "Doublehost" (p prop_Doublehost)
            ]

        , testGroup "String utils"
            [ testProperty "getLazyByteString"          prop_getLazyByteString
            , testProperty "getLazyByteStringNul"       prop_getLazyByteStringNul
            , testProperty "getLazyByteStringNul No Null" prop_getLazyByteStringNul_noNul
            , testProperty "getRemainingLazyByteString" prop_getRemainingLazyByteString
            ]

        , testGroup "Using Binary class, refragmented ByteString"
            [ test' "()"          (test :: T ()         ) test
            , test' "Bool"        (test :: T Bool       ) test
            , test' "Char"        (test :: T Char       ) test
            , test' "Ordering"    (test :: T Ordering   ) test
            , test' "Ratio Int"   (test :: T (Ratio Int)) test

            , test' "Word"        (test :: T Word  ) test
            , test' "Word8"       (test :: T Word8 ) test
            , test' "Word16"      (test :: T Word16) test
            , test' "Word32"      (test :: T Word32) test
            , test' "Word64"      (test :: T Word64) test

            , test' "Int"         (test :: T Int  ) test
            , test' "Int8"        (test :: T Int8 ) test
            , test' "Int16"       (test :: T Int16) test
            , test' "Int32"       (test :: T Int32) test
            , test' "Int64"       (test :: T Int64) test

            , testWithGen "Integer mixed" genInteger
            , testWithGen "Integer small" genIntegerSmall
            , testWithGen "Integer big"   genIntegerBig

            , test' "Fixed"       (test :: T (Fixed.Fixed Fixed.E3) ) test
#ifdef HAS_NATURAL
            , testWithGen "Natural mixed" genNatural
            , testWithGen "Natural small" genNaturalSmall
            , testWithGen "Natural big"   genNaturalBig
#endif
            , testWithGen "GHC.Fingerprint" genFingerprint

            , test' "Float"       (test :: T Float ) test
            , test' "Double"      (test :: T Double) test

            , test' "((), ())"            (test :: T ((), ())            ) test
            , test' "(Word8, Word32)"     (test :: T (Word8, Word32)     ) test
            , test' "(Int8, Int32)"       (test :: T (Int8,  Int32)      ) test
            , test' "(Int32, [Int])"      (test :: T (Int32, [Int])      ) test
            , test' "Maybe Int8"          (test :: T (Maybe Int8)        ) test
            , test' "Either Int8 Int16"   (test :: T (Either Int8 Int16) ) test

            , test' "(Int, ByteString)"
                    (test     :: T (Int, B.ByteString)   ) test
            , test' "[(Int, ByteString)]"
                    (test     :: T [(Int, B.ByteString)] ) test

            , test' "(Maybe Int64, Bool, [Int])"
                    (test :: T (Maybe Int64, Bool, [Int])) test
            , test' "(Maybe Word8, Bool, [Int], Either Bool Word8)"
                    (test :: T (Maybe Word8, Bool, [Int], Either Bool Word8)) test
            , test' "(Maybe Word16, Bool, [Int], Either Bool Word16, Int)"
                    (test :: T (Maybe Word16, Bool, [Int], Either Bool Word16, Int)) test

            , test' "(Int,Int,Int,Int,Int,Int)"
                      (test :: T (Int,Int,Int,Int,Int,Int)) test
            , test' "(Int,Int,Int,Int,Int,Int,Int)"
                      (test :: T (Int,Int,Int,Int,Int,Int,Int)) test
            , test' "(Int,Int,Int,Int,Int,Int,Int,Int)"
                      (test :: T (Int,Int,Int,Int,Int,Int,Int,Int)) test
            , test' "(Int,Int,Int,Int,Int,Int,Int,Int,Int)"
                      (test :: T (Int,Int,Int,Int,Int,Int,Int,Int,Int)) test
            , test' "(Int,Int,Int,Int,Int,Int,Int,Int,Int,Int)"
                      (test :: T (Int,Int,Int,Int,Int,Int,Int,Int,Int,Int)) test

            , test' "B.ByteString" (test :: T B.ByteString) test
            , test' "L.ByteString" (test :: T L.ByteString) test
#if MIN_VERSION_bytestring(0,10,4)
            , test' "ShortByteString" (test :: T ShortByteString) test
#endif
            ]

        , testGroup "Invariants" $ map (uncurry testProperty)
            [ ("B.ByteString invariant",   p (prop_invariant :: B B.ByteString                 ))
            , ("[B.ByteString] invariant", p (prop_invariant :: B [B.ByteString]               ))
            , ("L.ByteString invariant",   p (prop_invariant :: B L.ByteString                 ))
            , ("[L.ByteString] invariant", p (prop_invariant :: B [L.ByteString]               ))
#if MIN_VERSION_bytestring(0,10,4)
            , ("ShortByteString invariant",  p (prop_invariant :: B ShortByteString            ))
            , ("[ShortByteString] invariant", p (prop_invariant :: B [ShortByteString]         ))
#endif
            ]
#ifdef HAS_FIXED_CONSTRUCTOR
        , testGroup "Fixed"
            [ testProperty "Serialisation same"       $ p prop_fixed_ser
            , testProperty "MkFixed -> HasResolution" $ p prop_fixed_constr_resolution
            , testProperty "HasResolution -> MkFixed" $ p prop_fixed_resolution_constr
            ]
#endif
        , testTypeable
        ]