1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
|
{-# LANGUAGE CPP, DeriveDataTypeable,
DeriveGeneric, FlexibleInstances, DefaultSignatures,
RankNTypes, RoleAnnotations, ScopedTypeVariables,
MagicHash, KindSignatures, PolyKinds, TypeApplications, DataKinds,
GADTs, UnboxedTuples, UnboxedSums, TypeInType,
Trustworthy, DeriveFunctor #-}
{-# OPTIONS_GHC -fno-warn-inline-rule-shadowing #-}
-----------------------------------------------------------------------------
-- |
-- Module : Language.Haskell.Syntax
-- Copyright : (c) The University of Glasgow 2003
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Abstract syntax definitions for Template Haskell.
--
-----------------------------------------------------------------------------
module Language.Haskell.TH.Syntax
( module Language.Haskell.TH.Syntax
-- * Language extensions
, module Language.Haskell.TH.LanguageExtensions
, ForeignSrcLang(..)
) where
import Data.Data hiding (Fixity(..))
import Data.IORef
import System.IO.Unsafe ( unsafePerformIO )
import GHC.IO.Unsafe ( unsafeDupableInterleaveIO )
import Control.Monad (liftM)
import Control.Monad.IO.Class (MonadIO (..))
import Control.Monad.Fix (MonadFix (..))
import Control.Applicative (liftA2)
import Control.Exception (BlockedIndefinitelyOnMVar (..), catch, throwIO)
import Control.Exception.Base (FixIOException (..))
import Control.Concurrent.MVar (newEmptyMVar, readMVar, putMVar)
import System.IO ( hPutStrLn, stderr )
import Data.Char ( isAlpha, isAlphaNum, isUpper, ord )
import Data.Int
import Data.List.NonEmpty ( NonEmpty(..) )
import Data.Void ( Void, absurd )
import Data.Word
import Data.Ratio
import GHC.CString ( unpackCString# )
import GHC.Generics ( Generic )
import GHC.Types ( Int(..), Word(..), Char(..), Double(..), Float(..),
TYPE, RuntimeRep(..) )
import GHC.Prim ( Int#, Word#, Char#, Double#, Float#, Addr# )
import GHC.Ptr ( Ptr, plusPtr )
import GHC.Lexeme ( startsVarSym, startsVarId )
import GHC.ForeignSrcLang.Type
import Language.Haskell.TH.LanguageExtensions
import Numeric.Natural
import Prelude
import Foreign.ForeignPtr
import Foreign.C.String
import Foreign.C.Types
-----------------------------------------------------
--
-- The Quasi class
--
-----------------------------------------------------
class (MonadIO m, MonadFail m) => Quasi m where
qNewName :: String -> m Name
-- ^ Fresh names
-- Error reporting and recovery
qReport :: Bool -> String -> m () -- ^ Report an error (True) or warning (False)
-- ...but carry on; use 'fail' to stop
qRecover :: m a -- ^ the error handler
-> m a -- ^ action which may fail
-> m a -- ^ Recover from the monadic 'fail'
-- Inspect the type-checker's environment
qLookupName :: Bool -> String -> m (Maybe Name)
-- True <=> type namespace, False <=> value namespace
qReify :: Name -> m Info
qReifyFixity :: Name -> m (Maybe Fixity)
qReifyType :: Name -> m Type
qReifyInstances :: Name -> [Type] -> m [Dec]
-- Is (n tys) an instance?
-- Returns list of matching instance Decs
-- (with empty sub-Decs)
-- Works for classes and type functions
qReifyRoles :: Name -> m [Role]
qReifyAnnotations :: Data a => AnnLookup -> m [a]
qReifyModule :: Module -> m ModuleInfo
qReifyConStrictness :: Name -> m [DecidedStrictness]
qLocation :: m Loc
qRunIO :: IO a -> m a
qRunIO = liftIO
-- ^ Input/output (dangerous)
qAddDependentFile :: FilePath -> m ()
qAddTempFile :: String -> m FilePath
qAddTopDecls :: [Dec] -> m ()
qAddForeignFilePath :: ForeignSrcLang -> String -> m ()
qAddModFinalizer :: Q () -> m ()
qAddCorePlugin :: String -> m ()
qGetQ :: Typeable a => m (Maybe a)
qPutQ :: Typeable a => a -> m ()
qIsExtEnabled :: Extension -> m Bool
qExtsEnabled :: m [Extension]
-----------------------------------------------------
-- The IO instance of Quasi
--
-- This instance is used only when running a Q
-- computation in the IO monad, usually just to
-- print the result. There is no interesting
-- type environment, so reification isn't going to
-- work.
--
-----------------------------------------------------
instance Quasi IO where
qNewName = newNameIO
qReport True msg = hPutStrLn stderr ("Template Haskell error: " ++ msg)
qReport False msg = hPutStrLn stderr ("Template Haskell error: " ++ msg)
qLookupName _ _ = badIO "lookupName"
qReify _ = badIO "reify"
qReifyFixity _ = badIO "reifyFixity"
qReifyType _ = badIO "reifyFixity"
qReifyInstances _ _ = badIO "reifyInstances"
qReifyRoles _ = badIO "reifyRoles"
qReifyAnnotations _ = badIO "reifyAnnotations"
qReifyModule _ = badIO "reifyModule"
qReifyConStrictness _ = badIO "reifyConStrictness"
qLocation = badIO "currentLocation"
qRecover _ _ = badIO "recover" -- Maybe we could fix this?
qAddDependentFile _ = badIO "addDependentFile"
qAddTempFile _ = badIO "addTempFile"
qAddTopDecls _ = badIO "addTopDecls"
qAddForeignFilePath _ _ = badIO "addForeignFilePath"
qAddModFinalizer _ = badIO "addModFinalizer"
qAddCorePlugin _ = badIO "addCorePlugin"
qGetQ = badIO "getQ"
qPutQ _ = badIO "putQ"
qIsExtEnabled _ = badIO "isExtEnabled"
qExtsEnabled = badIO "extsEnabled"
instance Quote IO where
newName = newNameIO
newNameIO :: String -> IO Name
newNameIO s = do { n <- atomicModifyIORef' counter (\x -> (x + 1, x))
; pure (mkNameU s n) }
badIO :: String -> IO a
badIO op = do { qReport True ("Can't do `" ++ op ++ "' in the IO monad")
; fail "Template Haskell failure" }
-- Global variable to generate unique symbols
counter :: IORef Uniq
{-# NOINLINE counter #-}
counter = unsafePerformIO (newIORef 0)
-----------------------------------------------------
--
-- The Q monad
--
-----------------------------------------------------
newtype Q a = Q { unQ :: forall m. Quasi m => m a }
-- \"Runs\" the 'Q' monad. Normal users of Template Haskell
-- should not need this function, as the splice brackets @$( ... )@
-- are the usual way of running a 'Q' computation.
--
-- This function is primarily used in GHC internals, and for debugging
-- splices by running them in 'IO'.
--
-- Note that many functions in 'Q', such as 'reify' and other compiler
-- queries, are not supported when running 'Q' in 'IO'; these operations
-- simply fail at runtime. Indeed, the only operations guaranteed to succeed
-- are 'newName', 'runIO', 'reportError' and 'reportWarning'.
runQ :: Quasi m => Q a -> m a
runQ (Q m) = m
instance Monad Q where
Q m >>= k = Q (m >>= \x -> unQ (k x))
(>>) = (*>)
instance MonadFail Q where
fail s = report True s >> Q (fail "Q monad failure")
instance Functor Q where
fmap f (Q x) = Q (fmap f x)
instance Applicative Q where
pure x = Q (pure x)
Q f <*> Q x = Q (f <*> x)
Q m *> Q n = Q (m *> n)
-- | @since 2.17.0.0
instance Semigroup a => Semigroup (Q a) where
(<>) = liftA2 (<>)
-- | @since 2.17.0.0
instance Monoid a => Monoid (Q a) where
mempty = pure mempty
-- | If the function passed to 'mfix' inspects its argument,
-- the resulting action will throw a 'FixIOException'.
--
-- @since 2.17.0.0
instance MonadFix Q where
-- We use the same blackholing approach as in fixIO.
-- See Note [Blackholing in fixIO] in System.IO in base.
mfix k = do
m <- runIO newEmptyMVar
ans <- runIO (unsafeDupableInterleaveIO
(readMVar m `catch` \BlockedIndefinitelyOnMVar ->
throwIO FixIOException))
result <- k ans
runIO (putMVar m result)
return result
-----------------------------------------------------
--
-- The Quote class
--
-----------------------------------------------------
-- | The 'Quote' class implements the minimal interface which is necessary for
-- desugaring quotations.
--
-- * The @Monad m@ superclass is needed to stitch together the different
-- AST fragments.
-- * 'newName' is used when desugaring binding structures such as lambdas
-- to generate fresh names.
--
-- Therefore the type of an untyped quotation in GHC is `Quote m => m Exp`
--
-- For many years the type of a quotation was fixed to be `Q Exp` but by
-- more precisely specifying the minimal interface it enables the `Exp` to
-- be extracted purely from the quotation without interacting with `Q`.
class Monad m => Quote m where
{- |
Generate a fresh name, which cannot be captured.
For example, this:
@f = $(do
nm1 <- newName \"x\"
let nm2 = 'mkName' \"x\"
return ('LamE' ['VarP' nm1] (LamE [VarP nm2] ('VarE' nm1)))
)@
will produce the splice
>f = \x0 -> \x -> x0
In particular, the occurrence @VarE nm1@ refers to the binding @VarP nm1@,
and is not captured by the binding @VarP nm2@.
Although names generated by @newName@ cannot /be captured/, they can
/capture/ other names. For example, this:
>g = $(do
> nm1 <- newName "x"
> let nm2 = mkName "x"
> return (LamE [VarP nm2] (LamE [VarP nm1] (VarE nm2)))
> )
will produce the splice
>g = \x -> \x0 -> x0
since the occurrence @VarE nm2@ is captured by the innermost binding
of @x@, namely @VarP nm1@.
-}
newName :: String -> m Name
instance Quote Q where
newName s = Q (qNewName s)
-----------------------------------------------------
--
-- The TExp type
--
-----------------------------------------------------
type role TExp nominal -- See Note [Role of TExp]
newtype TExp (a :: TYPE (r :: RuntimeRep)) = TExp
{ unType :: Exp -- ^ Underlying untyped Template Haskell expression
}
-- ^ Represents an expression which has type @a@. Built on top of 'Exp', typed
-- expressions allow for type-safe splicing via:
--
-- - typed quotes, written as @[|| ... ||]@ where @...@ is an expression; if
-- that expression has type @a@, then the quotation has type
-- @'Q' ('TExp' a)@
--
-- - typed splices inside of typed quotes, written as @$$(...)@ where @...@
-- is an arbitrary expression of type @'Q' ('TExp' a)@
--
-- Traditional expression quotes and splices let us construct ill-typed
-- expressions:
--
-- >>> fmap ppr $ runQ [| True == $( [| "foo" |] ) |]
-- GHC.Types.True GHC.Classes.== "foo"
-- >>> GHC.Types.True GHC.Classes.== "foo"
-- <interactive> error:
-- • Couldn't match expected type ‘Bool’ with actual type ‘[Char]’
-- • In the second argument of ‘(==)’, namely ‘"foo"’
-- In the expression: True == "foo"
-- In an equation for ‘it’: it = True == "foo"
--
-- With typed expressions, the type error occurs when /constructing/ the
-- Template Haskell expression:
--
-- >>> fmap ppr $ runQ [|| True == $$( [|| "foo" ||] ) ||]
-- <interactive> error:
-- • Couldn't match type ‘[Char]’ with ‘Bool’
-- Expected type: Q (TExp Bool)
-- Actual type: Q (TExp [Char])
-- • In the Template Haskell quotation [|| "foo" ||]
-- In the expression: [|| "foo" ||]
-- In the Template Haskell splice $$([|| "foo" ||])
--
-- Levity-polymorphic since /template-haskell-2.16.0.0/.
-- | Discard the type annotation and produce a plain Template Haskell
-- expression
--
-- Levity-polymorphic since /template-haskell-2.16.0.0/.
unTypeQ :: forall (r :: RuntimeRep) (a :: TYPE r) m . Quote m => m (TExp a) -> m Exp
unTypeQ m = do { TExp e <- m
; return e }
-- | Annotate the Template Haskell expression with a type
--
-- This is unsafe because GHC cannot check for you that the expression
-- really does have the type you claim it has.
--
-- Levity-polymorphic since /template-haskell-2.16.0.0/.
unsafeTExpCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m .
Quote m => m Exp -> m (TExp a)
unsafeTExpCoerce m = do { e <- m
; return (TExp e) }
{- Note [Role of TExp]
~~~~~~~~~~~~~~~~~~~~~~
TExp's argument must have a nominal role, not phantom as would
be inferred (#8459). Consider
e :: TExp Age
e = MkAge 3
foo = $(coerce e) + 4::Int
The splice will evaluate to (MkAge 3) and you can't add that to
4::Int. So you can't coerce a (TExp Age) to a (TExp Int). -}
-- Code constructor
type role Code representational nominal -- See Note [Role of TExp]
newtype Code m (a :: TYPE (r :: RuntimeRep)) = Code
{ examineCode :: m (TExp a) -- ^ Underlying monadic value
}
-- | Unsafely convert an untyped code representation into a typed code
-- representation.
unsafeCodeCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m .
Quote m => m Exp -> Code m a
unsafeCodeCoerce m = Code (unsafeTExpCoerce m)
-- | Lift a monadic action producing code into the typed 'Code'
-- representation
liftCode :: forall (r :: RuntimeRep) (a :: TYPE r) m . m (TExp a) -> Code m a
liftCode = Code
-- | Extract the untyped representation from the typed representation
unTypeCode :: forall (r :: RuntimeRep) (a :: TYPE r) m . Quote m
=> Code m a -> m Exp
unTypeCode = unTypeQ . examineCode
-- | Modify the ambient monad used during code generation. For example, you
-- can use `hoistCode` to handle a state effect:
-- @
-- handleState :: Code (StateT Int Q) a -> Code Q a
-- handleState = hoistCode (flip runState 0)
-- @
hoistCode :: forall m n (r :: RuntimeRep) (a :: TYPE r) . Monad m
=> (forall x . m x -> n x) -> Code m a -> Code n a
hoistCode f (Code a) = Code (f a)
-- | Variant of (>>=) which allows effectful computations to be injected
-- into code generation.
bindCode :: forall m a (r :: RuntimeRep) (b :: TYPE r) . Monad m
=> m a -> (a -> Code m b) -> Code m b
bindCode q k = liftCode (q >>= examineCode . k)
-- | Variant of (>>) which allows effectful computations to be injected
-- into code generation.
bindCode_ :: forall m a (r :: RuntimeRep) (b :: TYPE r) . Monad m
=> m a -> Code m b -> Code m b
bindCode_ q c = liftCode ( q >> examineCode c)
-- | A useful combinator for embedding monadic actions into 'Code'
-- @
-- myCode :: ... => Code m a
-- myCode = joinCode $ do
-- x <- someSideEffect
-- return (makeCodeWith x)
-- @
joinCode :: forall m (r :: RuntimeRep) (a :: TYPE r) . Monad m
=> m (Code m a) -> Code m a
joinCode = flip bindCode id
----------------------------------------------------
-- Packaged versions for the programmer, hiding the Quasi-ness
-- | Report an error (True) or warning (False),
-- but carry on; use 'fail' to stop.
report :: Bool -> String -> Q ()
report b s = Q (qReport b s)
{-# DEPRECATED report "Use reportError or reportWarning instead" #-} -- deprecated in 7.6
-- | Report an error to the user, but allow the current splice's computation to carry on. To abort the computation, use 'fail'.
reportError :: String -> Q ()
reportError = report True
-- | Report a warning to the user, and carry on.
reportWarning :: String -> Q ()
reportWarning = report False
-- | Recover from errors raised by 'reportError' or 'fail'.
recover :: Q a -- ^ handler to invoke on failure
-> Q a -- ^ computation to run
-> Q a
recover (Q r) (Q m) = Q (qRecover r m)
-- We don't export lookupName; the Bool isn't a great API
-- Instead we export lookupTypeName, lookupValueName
lookupName :: Bool -> String -> Q (Maybe Name)
lookupName ns s = Q (qLookupName ns s)
-- | Look up the given name in the (type namespace of the) current splice's scope. See "Language.Haskell.TH.Syntax#namelookup" for more details.
lookupTypeName :: String -> Q (Maybe Name)
lookupTypeName s = Q (qLookupName True s)
-- | Look up the given name in the (value namespace of the) current splice's scope. See "Language.Haskell.TH.Syntax#namelookup" for more details.
lookupValueName :: String -> Q (Maybe Name)
lookupValueName s = Q (qLookupName False s)
{-
Note [Name lookup]
~~~~~~~~~~~~~~~~~~
-}
{- $namelookup #namelookup#
The functions 'lookupTypeName' and 'lookupValueName' provide
a way to query the current splice's context for what names
are in scope. The function 'lookupTypeName' queries the type
namespace, whereas 'lookupValueName' queries the value namespace,
but the functions are otherwise identical.
A call @lookupValueName s@ will check if there is a value
with name @s@ in scope at the current splice's location. If
there is, the @Name@ of this value is returned;
if not, then @Nothing@ is returned.
The returned name cannot be \"captured\".
For example:
> f = "global"
> g = $( do
> Just nm <- lookupValueName "f"
> [| let f = "local" in $( varE nm ) |]
In this case, @g = \"global\"@; the call to @lookupValueName@
returned the global @f@, and this name was /not/ captured by
the local definition of @f@.
The lookup is performed in the context of the /top-level/ splice
being run. For example:
> f = "global"
> g = $( [| let f = "local" in
> $(do
> Just nm <- lookupValueName "f"
> varE nm
> ) |] )
Again in this example, @g = \"global\"@, because the call to
@lookupValueName@ queries the context of the outer-most @$(...)@.
Operators should be queried without any surrounding parentheses, like so:
> lookupValueName "+"
Qualified names are also supported, like so:
> lookupValueName "Prelude.+"
> lookupValueName "Prelude.map"
-}
{- | 'reify' looks up information about the 'Name'.
It is sometimes useful to construct the argument name using 'lookupTypeName' or 'lookupValueName'
to ensure that we are reifying from the right namespace. For instance, in this context:
> data D = D
which @D@ does @reify (mkName \"D\")@ return information about? (Answer: @D@-the-type, but don't rely on it.)
To ensure we get information about @D@-the-value, use 'lookupValueName':
> do
> Just nm <- lookupValueName "D"
> reify nm
and to get information about @D@-the-type, use 'lookupTypeName'.
-}
reify :: Name -> Q Info
reify v = Q (qReify v)
{- | @reifyFixity nm@ attempts to find a fixity declaration for @nm@. For
example, if the function @foo@ has the fixity declaration @infixr 7 foo@, then
@reifyFixity 'foo@ would return @'Just' ('Fixity' 7 'InfixR')@. If the function
@bar@ does not have a fixity declaration, then @reifyFixity 'bar@ returns
'Nothing', so you may assume @bar@ has 'defaultFixity'.
-}
reifyFixity :: Name -> Q (Maybe Fixity)
reifyFixity nm = Q (qReifyFixity nm)
{- | @reifyType nm@ attempts to find the type or kind of @nm@. For example,
@reifyType 'not@ returns @Bool -> Bool@, and
@reifyType ''Bool@ returns @Type@.
This works even if there's no explicit signature and the type or kind is inferred.
-}
reifyType :: Name -> Q Type
reifyType nm = Q (qReifyType nm)
{- | @reifyInstances nm tys@ returns a list of visible instances of @nm tys@. That is,
if @nm@ is the name of a type class, then all instances of this class at the types @tys@
are returned. Alternatively, if @nm@ is the name of a data family or type family,
all instances of this family at the types @tys@ are returned.
Note that this is a \"shallow\" test; the declarations returned merely have
instance heads which unify with @nm tys@, they need not actually be satisfiable.
- @reifyInstances ''Eq [ 'TupleT' 2 \``AppT`\` 'ConT' ''A \``AppT`\` 'ConT' ''B ]@ contains
the @instance (Eq a, Eq b) => Eq (a, b)@ regardless of whether @A@ and
@B@ themselves implement 'Eq'
- @reifyInstances ''Show [ 'VarT' ('mkName' "a") ]@ produces every available
instance of 'Eq'
There is one edge case: @reifyInstances ''Typeable tys@ currently always
produces an empty list (no matter what @tys@ are given).
-}
reifyInstances :: Name -> [Type] -> Q [InstanceDec]
reifyInstances cls tys = Q (qReifyInstances cls tys)
{- | @reifyRoles nm@ returns the list of roles associated with the parameters of
the tycon @nm@. Fails if @nm@ cannot be found or is not a tycon.
The returned list should never contain 'InferR'.
-}
reifyRoles :: Name -> Q [Role]
reifyRoles nm = Q (qReifyRoles nm)
-- | @reifyAnnotations target@ returns the list of annotations
-- associated with @target@. Only the annotations that are
-- appropriately typed is returned. So if you have @Int@ and @String@
-- annotations for the same target, you have to call this function twice.
reifyAnnotations :: Data a => AnnLookup -> Q [a]
reifyAnnotations an = Q (qReifyAnnotations an)
-- | @reifyModule mod@ looks up information about module @mod@. To
-- look up the current module, call this function with the return
-- value of 'Language.Haskell.TH.Lib.thisModule'.
reifyModule :: Module -> Q ModuleInfo
reifyModule m = Q (qReifyModule m)
-- | @reifyConStrictness nm@ looks up the strictness information for the fields
-- of the constructor with the name @nm@. Note that the strictness information
-- that 'reifyConStrictness' returns may not correspond to what is written in
-- the source code. For example, in the following data declaration:
--
-- @
-- data Pair a = Pair a a
-- @
--
-- 'reifyConStrictness' would return @['DecidedLazy', DecidedLazy]@ under most
-- circumstances, but it would return @['DecidedStrict', DecidedStrict]@ if the
-- @-XStrictData@ language extension was enabled.
reifyConStrictness :: Name -> Q [DecidedStrictness]
reifyConStrictness n = Q (qReifyConStrictness n)
-- | Is the list of instances returned by 'reifyInstances' nonempty?
isInstance :: Name -> [Type] -> Q Bool
isInstance nm tys = do { decs <- reifyInstances nm tys
; return (not (null decs)) }
-- | The location at which this computation is spliced.
location :: Q Loc
location = Q qLocation
-- |The 'runIO' function lets you run an I\/O computation in the 'Q' monad.
-- Take care: you are guaranteed the ordering of calls to 'runIO' within
-- a single 'Q' computation, but not about the order in which splices are run.
--
-- Note: for various murky reasons, stdout and stderr handles are not
-- necessarily flushed when the compiler finishes running, so you should
-- flush them yourself.
runIO :: IO a -> Q a
runIO m = Q (qRunIO m)
-- | Record external files that runIO is using (dependent upon).
-- The compiler can then recognize that it should re-compile the Haskell file
-- when an external file changes.
--
-- Expects an absolute file path.
--
-- Notes:
--
-- * ghc -M does not know about these dependencies - it does not execute TH.
--
-- * The dependency is based on file content, not a modification time
addDependentFile :: FilePath -> Q ()
addDependentFile fp = Q (qAddDependentFile fp)
-- | Obtain a temporary file path with the given suffix. The compiler will
-- delete this file after compilation.
addTempFile :: String -> Q FilePath
addTempFile suffix = Q (qAddTempFile suffix)
-- | Add additional top-level declarations. The added declarations will be type
-- checked along with the current declaration group.
addTopDecls :: [Dec] -> Q ()
addTopDecls ds = Q (qAddTopDecls ds)
-- |
addForeignFile :: ForeignSrcLang -> String -> Q ()
addForeignFile = addForeignSource
{-# DEPRECATED addForeignFile
"Use 'Language.Haskell.TH.Syntax.addForeignSource' instead"
#-} -- deprecated in 8.6
-- | Emit a foreign file which will be compiled and linked to the object for
-- the current module. Currently only languages that can be compiled with
-- the C compiler are supported, and the flags passed as part of -optc will
-- be also applied to the C compiler invocation that will compile them.
--
-- Note that for non-C languages (for example C++) @extern "C"@ directives
-- must be used to get symbols that we can access from Haskell.
--
-- To get better errors, it is recommended to use #line pragmas when
-- emitting C files, e.g.
--
-- > {-# LANGUAGE CPP #-}
-- > ...
-- > addForeignSource LangC $ unlines
-- > [ "#line " ++ show (__LINE__ + 1) ++ " " ++ show __FILE__
-- > , ...
-- > ]
addForeignSource :: ForeignSrcLang -> String -> Q ()
addForeignSource lang src = do
let suffix = case lang of
LangC -> "c"
LangCxx -> "cpp"
LangObjc -> "m"
LangObjcxx -> "mm"
LangAsm -> "s"
RawObject -> "a"
path <- addTempFile suffix
runIO $ writeFile path src
addForeignFilePath lang path
-- | Same as 'addForeignSource', but expects to receive a path pointing to the
-- foreign file instead of a 'String' of its contents. Consider using this in
-- conjunction with 'addTempFile'.
--
-- This is a good alternative to 'addForeignSource' when you are trying to
-- directly link in an object file.
addForeignFilePath :: ForeignSrcLang -> FilePath -> Q ()
addForeignFilePath lang fp = Q (qAddForeignFilePath lang fp)
-- | Add a finalizer that will run in the Q monad after the current module has
-- been type checked. This only makes sense when run within a top-level splice.
--
-- The finalizer is given the local type environment at the splice point. Thus
-- 'reify' is able to find the local definitions when executed inside the
-- finalizer.
addModFinalizer :: Q () -> Q ()
addModFinalizer act = Q (qAddModFinalizer (unQ act))
-- | Adds a core plugin to the compilation pipeline.
--
-- @addCorePlugin m@ has almost the same effect as passing @-fplugin=m@ to ghc
-- in the command line. The major difference is that the plugin module @m@
-- must not belong to the current package. When TH executes, it is too late
-- to tell the compiler that we needed to compile first a plugin module in the
-- current package.
addCorePlugin :: String -> Q ()
addCorePlugin plugin = Q (qAddCorePlugin plugin)
-- | Get state from the 'Q' monad. Note that the state is local to the
-- Haskell module in which the Template Haskell expression is executed.
getQ :: Typeable a => Q (Maybe a)
getQ = Q qGetQ
-- | Replace the state in the 'Q' monad. Note that the state is local to the
-- Haskell module in which the Template Haskell expression is executed.
putQ :: Typeable a => a -> Q ()
putQ x = Q (qPutQ x)
-- | Determine whether the given language extension is enabled in the 'Q' monad.
isExtEnabled :: Extension -> Q Bool
isExtEnabled ext = Q (qIsExtEnabled ext)
-- | List all enabled language extensions.
extsEnabled :: Q [Extension]
extsEnabled = Q qExtsEnabled
instance MonadIO Q where
liftIO = runIO
instance Quasi Q where
qNewName = newName
qReport = report
qRecover = recover
qReify = reify
qReifyFixity = reifyFixity
qReifyType = reifyType
qReifyInstances = reifyInstances
qReifyRoles = reifyRoles
qReifyAnnotations = reifyAnnotations
qReifyModule = reifyModule
qReifyConStrictness = reifyConStrictness
qLookupName = lookupName
qLocation = location
qAddDependentFile = addDependentFile
qAddTempFile = addTempFile
qAddTopDecls = addTopDecls
qAddForeignFilePath = addForeignFilePath
qAddModFinalizer = addModFinalizer
qAddCorePlugin = addCorePlugin
qGetQ = getQ
qPutQ = putQ
qIsExtEnabled = isExtEnabled
qExtsEnabled = extsEnabled
----------------------------------------------------
-- The following operations are used solely in GHC.HsToCore.Quote when
-- desugaring brackets. They are not necessary for the user, who can use
-- ordinary return and (>>=) etc
sequenceQ :: forall m . Monad m => forall a . [m a] -> m [a]
sequenceQ = sequence
-----------------------------------------------------
--
-- The Lift class
--
-----------------------------------------------------
-- | A 'Lift' instance can have any of its values turned into a Template
-- Haskell expression. This is needed when a value used within a Template
-- Haskell quotation is bound outside the Oxford brackets (@[| ... |]@ or
-- @[|| ... ||]@) but not at the top level. As an example:
--
-- > add1 :: Int -> Q (TExp Int)
-- > add1 x = [|| x + 1 ||]
--
-- Template Haskell has no way of knowing what value @x@ will take on at
-- splice-time, so it requires the type of @x@ to be an instance of 'Lift'.
--
-- A 'Lift' instance must satisfy @$(lift x) ≡ x@ and @$$(liftTyped x) ≡ x@
-- for all @x@, where @$(...)@ and @$$(...)@ are Template Haskell splices.
-- It is additionally expected that @'lift' x ≡ 'unTypeQ' ('liftTyped' x)@.
--
-- 'Lift' instances can be derived automatically by use of the @-XDeriveLift@
-- GHC language extension:
--
-- > {-# LANGUAGE DeriveLift #-}
-- > module Foo where
-- >
-- > import Language.Haskell.TH.Syntax
-- >
-- > data Bar a = Bar1 a (Bar a) | Bar2 String
-- > deriving Lift
--
-- Levity-polymorphic since /template-haskell-2.16.0.0/.
class Lift (t :: TYPE r) where
-- | Turn a value into a Template Haskell expression, suitable for use in
-- a splice.
lift :: Quote m => t -> m Exp
default lift :: (r ~ 'LiftedRep, Quote m) => t -> m Exp
lift = unTypeCode . liftTyped
-- | Turn a value into a Template Haskell typed expression, suitable for use
-- in a typed splice.
--
-- @since 2.16.0.0
liftTyped :: Quote m => t -> Code m t
-- If you add any instances here, consider updating test th/TH_Lift
instance Lift Integer where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL x))
instance Lift Int where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
-- | @since 2.16.0.0
instance Lift Int# where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntPrimL (fromIntegral (I# x))))
instance Lift Int8 where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
instance Lift Int16 where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
instance Lift Int32 where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
instance Lift Int64 where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
-- | @since 2.16.0.0
instance Lift Word# where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (WordPrimL (fromIntegral (W# x))))
instance Lift Word where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
instance Lift Word8 where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
instance Lift Word16 where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
instance Lift Word32 where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
instance Lift Word64 where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
instance Lift Natural where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (IntegerL (fromIntegral x)))
instance Integral a => Lift (Ratio a) where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (RationalL (toRational x)))
instance Lift Float where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (RationalL (toRational x)))
-- | @since 2.16.0.0
instance Lift Float# where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (FloatPrimL (toRational (F# x))))
instance Lift Double where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (RationalL (toRational x)))
-- | @since 2.16.0.0
instance Lift Double# where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (DoublePrimL (toRational (D# x))))
instance Lift Char where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (CharL x))
-- | @since 2.16.0.0
instance Lift Char# where
liftTyped x = unsafeCodeCoerce (lift x)
lift x = return (LitE (CharPrimL (C# x)))
instance Lift Bool where
liftTyped x = unsafeCodeCoerce (lift x)
lift True = return (ConE trueName)
lift False = return (ConE falseName)
-- | Produces an 'Addr#' literal from the NUL-terminated C-string starting at
-- the given memory address.
--
-- @since 2.16.0.0
instance Lift Addr# where
liftTyped x = unsafeCodeCoerce (lift x)
lift x
= return (LitE (StringPrimL (map (fromIntegral . ord) (unpackCString# x))))
instance Lift a => Lift (Maybe a) where
liftTyped x = unsafeCodeCoerce (lift x)
lift Nothing = return (ConE nothingName)
lift (Just x) = liftM (ConE justName `AppE`) (lift x)
instance (Lift a, Lift b) => Lift (Either a b) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (Left x) = liftM (ConE leftName `AppE`) (lift x)
lift (Right y) = liftM (ConE rightName `AppE`) (lift y)
instance Lift a => Lift [a] where
liftTyped x = unsafeCodeCoerce (lift x)
lift xs = do { xs' <- mapM lift xs; return (ListE xs') }
liftString :: Quote m => String -> m Exp
-- Used in GHC.Tc.Gen.Expr to short-circuit the lifting for strings
liftString s = return (LitE (StringL s))
-- | @since 2.15.0.0
instance Lift a => Lift (NonEmpty a) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (x :| xs) = do
x' <- lift x
xs' <- lift xs
return (InfixE (Just x') (ConE nonemptyName) (Just xs'))
-- | @since 2.15.0.0
instance Lift Void where
liftTyped = liftCode . absurd
lift = pure . absurd
instance Lift () where
liftTyped x = unsafeCodeCoerce (lift x)
lift () = return (ConE (tupleDataName 0))
instance (Lift a, Lift b) => Lift (a, b) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (a, b)
= liftM TupE $ sequence $ map (fmap Just) [lift a, lift b]
instance (Lift a, Lift b, Lift c) => Lift (a, b, c) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (a, b, c)
= liftM TupE $ sequence $ map (fmap Just) [lift a, lift b, lift c]
instance (Lift a, Lift b, Lift c, Lift d) => Lift (a, b, c, d) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (a, b, c, d)
= liftM TupE $ sequence $ map (fmap Just) [lift a, lift b, lift c, lift d]
instance (Lift a, Lift b, Lift c, Lift d, Lift e)
=> Lift (a, b, c, d, e) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (a, b, c, d, e)
= liftM TupE $ sequence $ map (fmap Just) [ lift a, lift b
, lift c, lift d, lift e ]
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f)
=> Lift (a, b, c, d, e, f) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (a, b, c, d, e, f)
= liftM TupE $ sequence $ map (fmap Just) [ lift a, lift b, lift c
, lift d, lift e, lift f ]
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g)
=> Lift (a, b, c, d, e, f, g) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (a, b, c, d, e, f, g)
= liftM TupE $ sequence $ map (fmap Just) [ lift a, lift b, lift c
, lift d, lift e, lift f, lift g ]
-- | @since 2.16.0.0
instance Lift (# #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (# #) = return (ConE (unboxedTupleTypeName 0))
-- | @since 2.16.0.0
instance (Lift a) => Lift (# a #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (# a #)
= liftM UnboxedTupE $ sequence $ map (fmap Just) [lift a]
-- | @since 2.16.0.0
instance (Lift a, Lift b) => Lift (# a, b #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (# a, b #)
= liftM UnboxedTupE $ sequence $ map (fmap Just) [lift a, lift b]
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c)
=> Lift (# a, b, c #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (# a, b, c #)
= liftM UnboxedTupE $ sequence $ map (fmap Just) [lift a, lift b, lift c]
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d)
=> Lift (# a, b, c, d #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (# a, b, c, d #)
= liftM UnboxedTupE $ sequence $ map (fmap Just) [ lift a, lift b
, lift c, lift d ]
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e)
=> Lift (# a, b, c, d, e #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (# a, b, c, d, e #)
= liftM UnboxedTupE $ sequence $ map (fmap Just) [ lift a, lift b
, lift c, lift d, lift e ]
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f)
=> Lift (# a, b, c, d, e, f #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (# a, b, c, d, e, f #)
= liftM UnboxedTupE $ sequence $ map (fmap Just) [ lift a, lift b, lift c
, lift d, lift e, lift f ]
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g)
=> Lift (# a, b, c, d, e, f, g #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift (# a, b, c, d, e, f, g #)
= liftM UnboxedTupE $ sequence $ map (fmap Just) [ lift a, lift b, lift c
, lift d, lift e, lift f
, lift g ]
-- | @since 2.16.0.0
instance (Lift a, Lift b) => Lift (# a | b #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift x
= case x of
(# y | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 2
(# | y #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 2
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c)
=> Lift (# a | b | c #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift x
= case x of
(# y | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 3
(# | y | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 3
(# | | y #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 3
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d)
=> Lift (# a | b | c | d #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift x
= case x of
(# y | | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 4
(# | y | | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 4
(# | | y | #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 4
(# | | | y #) -> UnboxedSumE <$> lift y <*> pure 4 <*> pure 4
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e)
=> Lift (# a | b | c | d | e #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift x
= case x of
(# y | | | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 5
(# | y | | | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 5
(# | | y | | #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 5
(# | | | y | #) -> UnboxedSumE <$> lift y <*> pure 4 <*> pure 5
(# | | | | y #) -> UnboxedSumE <$> lift y <*> pure 5 <*> pure 5
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f)
=> Lift (# a | b | c | d | e | f #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift x
= case x of
(# y | | | | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 6
(# | y | | | | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 6
(# | | y | | | #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 6
(# | | | y | | #) -> UnboxedSumE <$> lift y <*> pure 4 <*> pure 6
(# | | | | y | #) -> UnboxedSumE <$> lift y <*> pure 5 <*> pure 6
(# | | | | | y #) -> UnboxedSumE <$> lift y <*> pure 6 <*> pure 6
-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g)
=> Lift (# a | b | c | d | e | f | g #) where
liftTyped x = unsafeCodeCoerce (lift x)
lift x
= case x of
(# y | | | | | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 7
(# | y | | | | | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 7
(# | | y | | | | #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 7
(# | | | y | | | #) -> UnboxedSumE <$> lift y <*> pure 4 <*> pure 7
(# | | | | y | | #) -> UnboxedSumE <$> lift y <*> pure 5 <*> pure 7
(# | | | | | y | #) -> UnboxedSumE <$> lift y <*> pure 6 <*> pure 7
(# | | | | | | y #) -> UnboxedSumE <$> lift y <*> pure 7 <*> pure 7
-- TH has a special form for literal strings,
-- which we should take advantage of.
-- NB: the lhs of the rule has no args, so that
-- the rule will apply to a 'lift' all on its own
-- which happens to be the way the type checker
-- creates it.
{-# RULES "TH:liftString" lift = \s -> return (LitE (StringL s)) #-}
trueName, falseName :: Name
trueName = mkNameG DataName "ghc-prim" "GHC.Types" "True"
falseName = mkNameG DataName "ghc-prim" "GHC.Types" "False"
nothingName, justName :: Name
nothingName = mkNameG DataName "base" "GHC.Maybe" "Nothing"
justName = mkNameG DataName "base" "GHC.Maybe" "Just"
leftName, rightName :: Name
leftName = mkNameG DataName "base" "Data.Either" "Left"
rightName = mkNameG DataName "base" "Data.Either" "Right"
nonemptyName :: Name
nonemptyName = mkNameG DataName "base" "GHC.Base" ":|"
oneName, manyName :: Name
oneName = mkNameG DataName "ghc-prim" "GHC.Types" "One"
manyName = mkNameG DataName "ghc-prim" "GHC.Types" "Many"
-----------------------------------------------------
--
-- Generic Lift implementations
--
-----------------------------------------------------
-- | 'dataToQa' is an internal utility function for constructing generic
-- conversion functions from types with 'Data' instances to various
-- quasi-quoting representations. See the source of 'dataToExpQ' and
-- 'dataToPatQ' for two example usages: @mkCon@, @mkLit@
-- and @appQ@ are overloadable to account for different syntax for
-- expressions and patterns; @antiQ@ allows you to override type-specific
-- cases, a common usage is just @const Nothing@, which results in
-- no overloading.
dataToQa :: forall m a k q. (Quote m, Data a)
=> (Name -> k)
-> (Lit -> m q)
-> (k -> [m q] -> m q)
-> (forall b . Data b => b -> Maybe (m q))
-> a
-> m q
dataToQa mkCon mkLit appCon antiQ t =
case antiQ t of
Nothing ->
case constrRep constr of
AlgConstr _ ->
appCon (mkCon funOrConName) conArgs
where
funOrConName :: Name
funOrConName =
case showConstr constr of
"(:)" -> Name (mkOccName ":")
(NameG DataName
(mkPkgName "ghc-prim")
(mkModName "GHC.Types"))
con@"[]" -> Name (mkOccName con)
(NameG DataName
(mkPkgName "ghc-prim")
(mkModName "GHC.Types"))
con@('(':_) -> Name (mkOccName con)
(NameG DataName
(mkPkgName "ghc-prim")
(mkModName "GHC.Tuple"))
-- Tricky case: see Note [Data for non-algebraic types]
fun@(x:_) | startsVarSym x || startsVarId x
-> mkNameG_v tyconPkg tyconMod fun
con -> mkNameG_d tyconPkg tyconMod con
where
tycon :: TyCon
tycon = (typeRepTyCon . typeOf) t
tyconPkg, tyconMod :: String
tyconPkg = tyConPackage tycon
tyconMod = tyConModule tycon
conArgs :: [m q]
conArgs = gmapQ (dataToQa mkCon mkLit appCon antiQ) t
IntConstr n ->
mkLit $ IntegerL n
FloatConstr n ->
mkLit $ RationalL n
CharConstr c ->
mkLit $ CharL c
where
constr :: Constr
constr = toConstr t
Just y -> y
{- Note [Data for non-algebraic types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Class Data was originally intended for algebraic data types. But
it is possible to use it for abstract types too. For example, in
package `text` we find
instance Data Text where
...
toConstr _ = packConstr
packConstr :: Constr
packConstr = mkConstr textDataType "pack" [] Prefix
Here `packConstr` isn't a real data constructor, it's an ordinary
function. Two complications
* In such a case, we must take care to build the Name using
mkNameG_v (for values), not mkNameG_d (for data constructors).
See #10796.
* The pseudo-constructor is named only by its string, here "pack".
But 'dataToQa' needs the TyCon of its defining module, and has
to assume it's defined in the same module as the TyCon itself.
But nothing enforces that; #12596 shows what goes wrong if
"pack" is defined in a different module than the data type "Text".
-}
-- | 'dataToExpQ' converts a value to a 'Exp' representation of the
-- same value, in the SYB style. It is generalized to take a function
-- override type-specific cases; see 'liftData' for a more commonly
-- used variant.
dataToExpQ :: (Quote m, Data a)
=> (forall b . Data b => b -> Maybe (m Exp))
-> a
-> m Exp
dataToExpQ = dataToQa varOrConE litE (foldl appE)
where
-- Make sure that VarE is used if the Constr value relies on a
-- function underneath the surface (instead of a constructor).
-- See #10796.
varOrConE s =
case nameSpace s of
Just VarName -> return (VarE s)
Just DataName -> return (ConE s)
_ -> error $ "Can't construct an expression from name "
++ showName s
appE x y = do { a <- x; b <- y; return (AppE a b)}
litE c = return (LitE c)
-- | 'liftData' is a variant of 'lift' in the 'Lift' type class which
-- works for any type with a 'Data' instance.
liftData :: (Quote m, Data a) => a -> m Exp
liftData = dataToExpQ (const Nothing)
-- | 'dataToPatQ' converts a value to a 'Pat' representation of the same
-- value, in the SYB style. It takes a function to handle type-specific cases,
-- alternatively, pass @const Nothing@ to get default behavior.
dataToPatQ :: (Quote m, Data a)
=> (forall b . Data b => b -> Maybe (m Pat))
-> a
-> m Pat
dataToPatQ = dataToQa id litP conP
where litP l = return (LitP l)
conP n ps =
case nameSpace n of
Just DataName -> do
ps' <- sequence ps
return (ConP n ps')
_ -> error $ "Can't construct a pattern from name "
++ showName n
-----------------------------------------------------
-- Names and uniques
-----------------------------------------------------
newtype ModName = ModName String -- Module name
deriving (Show,Eq,Ord,Data,Generic)
newtype PkgName = PkgName String -- package name
deriving (Show,Eq,Ord,Data,Generic)
-- | Obtained from 'reifyModule' and 'Language.Haskell.TH.Lib.thisModule'.
data Module = Module PkgName ModName -- package qualified module name
deriving (Show,Eq,Ord,Data,Generic)
newtype OccName = OccName String
deriving (Show,Eq,Ord,Data,Generic)
mkModName :: String -> ModName
mkModName s = ModName s
modString :: ModName -> String
modString (ModName m) = m
mkPkgName :: String -> PkgName
mkPkgName s = PkgName s
pkgString :: PkgName -> String
pkgString (PkgName m) = m
-----------------------------------------------------
-- OccName
-----------------------------------------------------
mkOccName :: String -> OccName
mkOccName s = OccName s
occString :: OccName -> String
occString (OccName occ) = occ
-----------------------------------------------------
-- Names
-----------------------------------------------------
--
-- For "global" names ('NameG') we need a totally unique name,
-- so we must include the name-space of the thing
--
-- For unique-numbered things ('NameU'), we've got a unique reference
-- anyway, so no need for name space
--
-- For dynamically bound thing ('NameS') we probably want them to
-- in a context-dependent way, so again we don't want the name
-- space. For example:
--
-- > let v = mkName "T" in [| data $v = $v |]
--
-- Here we use the same Name for both type constructor and data constructor
--
--
-- NameL and NameG are bound *outside* the TH syntax tree
-- either globally (NameG) or locally (NameL). Ex:
--
-- > f x = $(h [| (map, x) |])
--
-- The 'map' will be a NameG, and 'x' wil be a NameL
--
-- These Names should never appear in a binding position in a TH syntax tree
{- $namecapture #namecapture#
Much of 'Name' API is concerned with the problem of /name capture/, which
can be seen in the following example.
> f expr = [| let x = 0 in $expr |]
> ...
> g x = $( f [| x |] )
> h y = $( f [| y |] )
A naive desugaring of this would yield:
> g x = let x = 0 in x
> h y = let x = 0 in y
All of a sudden, @g@ and @h@ have different meanings! In this case,
we say that the @x@ in the RHS of @g@ has been /captured/
by the binding of @x@ in @f@.
What we actually want is for the @x@ in @f@ to be distinct from the
@x@ in @g@, so we get the following desugaring:
> g x = let x' = 0 in x
> h y = let x' = 0 in y
which avoids name capture as desired.
In the general case, we say that a @Name@ can be captured if
the thing it refers to can be changed by adding new declarations.
-}
{- |
An abstract type representing names in the syntax tree.
'Name's can be constructed in several ways, which come with different
name-capture guarantees (see "Language.Haskell.TH.Syntax#namecapture" for
an explanation of name capture):
* the built-in syntax @'f@ and @''T@ can be used to construct names,
The expression @'f@ gives a @Name@ which refers to the value @f@
currently in scope, and @''T@ gives a @Name@ which refers to the
type @T@ currently in scope. These names can never be captured.
* 'lookupValueName' and 'lookupTypeName' are similar to @'f@ and
@''T@ respectively, but the @Name@s are looked up at the point
where the current splice is being run. These names can never be
captured.
* 'newName' monadically generates a new name, which can never
be captured.
* 'mkName' generates a capturable name.
Names constructed using @newName@ and @mkName@ may be used in bindings
(such as @let x = ...@ or @\x -> ...@), but names constructed using
@lookupValueName@, @lookupTypeName@, @'f@, @''T@ may not.
-}
data Name = Name OccName NameFlavour deriving (Data, Eq, Generic)
instance Ord Name where
-- check if unique is different before looking at strings
(Name o1 f1) `compare` (Name o2 f2) = (f1 `compare` f2) `thenCmp`
(o1 `compare` o2)
data NameFlavour
= NameS -- ^ An unqualified name; dynamically bound
| NameQ ModName -- ^ A qualified name; dynamically bound
| NameU !Uniq -- ^ A unique local name
| NameL !Uniq -- ^ Local name bound outside of the TH AST
| NameG NameSpace PkgName ModName -- ^ Global name bound outside of the TH AST:
-- An original name (occurrences only, not binders)
-- Need the namespace too to be sure which
-- thing we are naming
deriving ( Data, Eq, Ord, Show, Generic )
data NameSpace = VarName -- ^ Variables
| DataName -- ^ Data constructors
| TcClsName -- ^ Type constructors and classes; Haskell has them
-- in the same name space for now.
deriving( Eq, Ord, Show, Data, Generic )
-- | @Uniq@ is used by GHC to distinguish names from each other.
type Uniq = Integer
-- | The name without its module prefix.
--
-- ==== __Examples__
--
-- >>> nameBase ''Data.Either.Either
-- "Either"
-- >>> nameBase (mkName "foo")
-- "foo"
-- >>> nameBase (mkName "Module.foo")
-- "foo"
nameBase :: Name -> String
nameBase (Name occ _) = occString occ
-- | Module prefix of a name, if it exists.
--
-- ==== __Examples__
--
-- >>> nameModule ''Data.Either.Either
-- Just "Data.Either"
-- >>> nameModule (mkName "foo")
-- Nothing
-- >>> nameModule (mkName "Module.foo")
-- Just "Module"
nameModule :: Name -> Maybe String
nameModule (Name _ (NameQ m)) = Just (modString m)
nameModule (Name _ (NameG _ _ m)) = Just (modString m)
nameModule _ = Nothing
-- | A name's package, if it exists.
--
-- ==== __Examples__
--
-- >>> namePackage ''Data.Either.Either
-- Just "base"
-- >>> namePackage (mkName "foo")
-- Nothing
-- >>> namePackage (mkName "Module.foo")
-- Nothing
namePackage :: Name -> Maybe String
namePackage (Name _ (NameG _ p _)) = Just (pkgString p)
namePackage _ = Nothing
-- | Returns whether a name represents an occurrence of a top-level variable
-- ('VarName'), data constructor ('DataName'), type constructor, or type class
-- ('TcClsName'). If we can't be sure, it returns 'Nothing'.
--
-- ==== __Examples__
--
-- >>> nameSpace 'Prelude.id
-- Just VarName
-- >>> nameSpace (mkName "id")
-- Nothing -- only works for top-level variable names
-- >>> nameSpace 'Data.Maybe.Just
-- Just DataName
-- >>> nameSpace ''Data.Maybe.Maybe
-- Just TcClsName
-- >>> nameSpace ''Data.Ord.Ord
-- Just TcClsName
nameSpace :: Name -> Maybe NameSpace
nameSpace (Name _ (NameG ns _ _)) = Just ns
nameSpace _ = Nothing
{- |
Generate a capturable name. Occurrences of such names will be
resolved according to the Haskell scoping rules at the occurrence
site.
For example:
> f = [| pi + $(varE (mkName "pi")) |]
> ...
> g = let pi = 3 in $f
In this case, @g@ is desugared to
> g = Prelude.pi + 3
Note that @mkName@ may be used with qualified names:
> mkName "Prelude.pi"
See also 'Language.Haskell.TH.Lib.dyn' for a useful combinator. The above example could
be rewritten using 'Language.Haskell.TH.Lib.dyn' as
> f = [| pi + $(dyn "pi") |]
-}
mkName :: String -> Name
-- The string can have a '.', thus "Foo.baz",
-- giving a dynamically-bound qualified name,
-- in which case we want to generate a NameQ
--
-- Parse the string to see if it has a "." in it
-- so we know whether to generate a qualified or unqualified name
-- It's a bit tricky because we need to parse
--
-- > Foo.Baz.x as Qual Foo.Baz x
--
-- So we parse it from back to front
mkName str
= split [] (reverse str)
where
split occ [] = Name (mkOccName occ) NameS
split occ ('.':rev) | not (null occ)
, is_rev_mod_name rev
= Name (mkOccName occ) (NameQ (mkModName (reverse rev)))
-- The 'not (null occ)' guard ensures that
-- mkName "&." = Name "&." NameS
-- The 'is_rev_mod' guards ensure that
-- mkName ".&" = Name ".&" NameS
-- mkName "^.." = Name "^.." NameS -- #8633
-- mkName "Data.Bits..&" = Name ".&" (NameQ "Data.Bits")
-- This rather bizarre case actually happened; (.&.) is in Data.Bits
split occ (c:rev) = split (c:occ) rev
-- Recognises a reversed module name xA.yB.C,
-- with at least one component,
-- and each component looks like a module name
-- (i.e. non-empty, starts with capital, all alpha)
is_rev_mod_name rev_mod_str
| (compt, rest) <- break (== '.') rev_mod_str
, not (null compt), isUpper (last compt), all is_mod_char compt
= case rest of
[] -> True
(_dot : rest') -> is_rev_mod_name rest'
| otherwise
= False
is_mod_char c = isAlphaNum c || c == '_' || c == '\''
-- | Only used internally
mkNameU :: String -> Uniq -> Name
mkNameU s u = Name (mkOccName s) (NameU u)
-- | Only used internally
mkNameL :: String -> Uniq -> Name
mkNameL s u = Name (mkOccName s) (NameL u)
-- | Used for 'x etc, but not available to the programmer
mkNameG :: NameSpace -> String -> String -> String -> Name
mkNameG ns pkg modu occ
= Name (mkOccName occ) (NameG ns (mkPkgName pkg) (mkModName modu))
mkNameS :: String -> Name
mkNameS n = Name (mkOccName n) NameS
mkNameG_v, mkNameG_tc, mkNameG_d :: String -> String -> String -> Name
mkNameG_v = mkNameG VarName
mkNameG_tc = mkNameG TcClsName
mkNameG_d = mkNameG DataName
data NameIs = Alone | Applied | Infix
showName :: Name -> String
showName = showName' Alone
showName' :: NameIs -> Name -> String
showName' ni nm
= case ni of
Alone -> nms
Applied
| pnam -> nms
| otherwise -> "(" ++ nms ++ ")"
Infix
| pnam -> "`" ++ nms ++ "`"
| otherwise -> nms
where
-- For now, we make the NameQ and NameG print the same, even though
-- NameQ is a qualified name (so what it means depends on what the
-- current scope is), and NameG is an original name (so its meaning
-- should be independent of what's in scope.
-- We may well want to distinguish them in the end.
-- Ditto NameU and NameL
nms = case nm of
Name occ NameS -> occString occ
Name occ (NameQ m) -> modString m ++ "." ++ occString occ
Name occ (NameG _ _ m) -> modString m ++ "." ++ occString occ
Name occ (NameU u) -> occString occ ++ "_" ++ show u
Name occ (NameL u) -> occString occ ++ "_" ++ show u
pnam = classify nms
-- True if we are function style, e.g. f, [], (,)
-- False if we are operator style, e.g. +, :+
classify "" = False -- shouldn't happen; . operator is handled below
classify (x:xs) | isAlpha x || (x `elem` "_[]()") =
case dropWhile (/='.') xs of
(_:xs') -> classify xs'
[] -> True
| otherwise = False
instance Show Name where
show = showName
-- Tuple data and type constructors
-- | Tuple data constructor
tupleDataName :: Int -> Name
-- | Tuple type constructor
tupleTypeName :: Int -> Name
tupleDataName n = mk_tup_name n DataName True
tupleTypeName n = mk_tup_name n TcClsName True
-- Unboxed tuple data and type constructors
-- | Unboxed tuple data constructor
unboxedTupleDataName :: Int -> Name
-- | Unboxed tuple type constructor
unboxedTupleTypeName :: Int -> Name
unboxedTupleDataName n = mk_tup_name n DataName False
unboxedTupleTypeName n = mk_tup_name n TcClsName False
mk_tup_name :: Int -> NameSpace -> Bool -> Name
mk_tup_name n space boxed
= Name (mkOccName tup_occ) (NameG space (mkPkgName "ghc-prim") tup_mod)
where
withParens thing
| boxed = "(" ++ thing ++ ")"
| otherwise = "(#" ++ thing ++ "#)"
tup_occ | n == 1 = if boxed then "Solo" else "Solo#"
| otherwise = withParens (replicate n_commas ',')
n_commas = n - 1
tup_mod = mkModName "GHC.Tuple"
-- Unboxed sum data and type constructors
-- | Unboxed sum data constructor
unboxedSumDataName :: SumAlt -> SumArity -> Name
-- | Unboxed sum type constructor
unboxedSumTypeName :: SumArity -> Name
unboxedSumDataName alt arity
| alt > arity
= error $ prefix ++ "Index out of bounds." ++ debug_info
| alt <= 0
= error $ prefix ++ "Alt must be > 0." ++ debug_info
| arity < 2
= error $ prefix ++ "Arity must be >= 2." ++ debug_info
| otherwise
= Name (mkOccName sum_occ)
(NameG DataName (mkPkgName "ghc-prim") (mkModName "GHC.Prim"))
where
prefix = "unboxedSumDataName: "
debug_info = " (alt: " ++ show alt ++ ", arity: " ++ show arity ++ ")"
-- Synced with the definition of mkSumDataConOcc in GHC.Builtin.Types
sum_occ = '(' : '#' : bars nbars_before ++ '_' : bars nbars_after ++ "#)"
bars i = replicate i '|'
nbars_before = alt - 1
nbars_after = arity - alt
unboxedSumTypeName arity
| arity < 2
= error $ "unboxedSumTypeName: Arity must be >= 2."
++ " (arity: " ++ show arity ++ ")"
| otherwise
= Name (mkOccName sum_occ)
(NameG TcClsName (mkPkgName "ghc-prim") (mkModName "GHC.Prim"))
where
-- Synced with the definition of mkSumTyConOcc in GHC.Builtin.Types
sum_occ = '(' : '#' : replicate (arity - 1) '|' ++ "#)"
-----------------------------------------------------
-- Locations
-----------------------------------------------------
data Loc
= Loc { loc_filename :: String
, loc_package :: String
, loc_module :: String
, loc_start :: CharPos
, loc_end :: CharPos }
deriving( Show, Eq, Ord, Data, Generic )
type CharPos = (Int, Int) -- ^ Line and character position
-----------------------------------------------------
--
-- The Info returned by reification
--
-----------------------------------------------------
-- | Obtained from 'reify' in the 'Q' Monad.
data Info
=
-- | A class, with a list of its visible instances
ClassI
Dec
[InstanceDec]
-- | A class method
| ClassOpI
Name
Type
ParentName
-- | A \"plain\" type constructor. \"Fancier\" type constructors are returned
-- using 'PrimTyConI' or 'FamilyI' as appropriate. At present, this reified
-- declaration will never have derived instances attached to it (if you wish
-- to check for an instance, see 'reifyInstances').
| TyConI
Dec
-- | A type or data family, with a list of its visible instances. A closed
-- type family is returned with 0 instances.
| FamilyI
Dec
[InstanceDec]
-- | A \"primitive\" type constructor, which can't be expressed with a 'Dec'.
-- Examples: @(->)@, @Int#@.
| PrimTyConI
Name
Arity
Unlifted
-- | A data constructor
| DataConI
Name
Type
ParentName
-- | A pattern synonym
| PatSynI
Name
PatSynType
{- |
A \"value\" variable (as opposed to a type variable, see 'TyVarI').
The @Maybe Dec@ field contains @Just@ the declaration which
defined the variable - including the RHS of the declaration -
or else @Nothing@, in the case where the RHS is unavailable to
the compiler. At present, this value is /always/ @Nothing@:
returning the RHS has not yet been implemented because of
lack of interest.
-}
| VarI
Name
Type
(Maybe Dec)
{- |
A type variable.
The @Type@ field contains the type which underlies the variable.
At present, this is always @'VarT' theName@, but future changes
may permit refinement of this.
-}
| TyVarI -- Scoped type variable
Name
Type -- What it is bound to
deriving( Show, Eq, Ord, Data, Generic )
-- | Obtained from 'reifyModule' in the 'Q' Monad.
data ModuleInfo =
-- | Contains the import list of the module.
ModuleInfo [Module]
deriving( Show, Eq, Ord, Data, Generic )
{- |
In 'ClassOpI' and 'DataConI', name of the parent class or type
-}
type ParentName = Name
-- | In 'UnboxedSumE' and 'UnboxedSumP', the number associated with a
-- particular data constructor. 'SumAlt's are one-indexed and should never
-- exceed the value of its corresponding 'SumArity'. For example:
--
-- * @(\#_|\#)@ has 'SumAlt' 1 (out of a total 'SumArity' of 2)
--
-- * @(\#|_\#)@ has 'SumAlt' 2 (out of a total 'SumArity' of 2)
type SumAlt = Int
-- | In 'UnboxedSumE', 'UnboxedSumT', and 'UnboxedSumP', the total number of
-- 'SumAlt's. For example, @(\#|\#)@ has a 'SumArity' of 2.
type SumArity = Int
-- | In 'PrimTyConI', arity of the type constructor
type Arity = Int
-- | In 'PrimTyConI', is the type constructor unlifted?
type Unlifted = Bool
-- | 'InstanceDec' describes a single instance of a class or type function.
-- It is just a 'Dec', but guaranteed to be one of the following:
--
-- * 'InstanceD' (with empty @['Dec']@)
--
-- * 'DataInstD' or 'NewtypeInstD' (with empty derived @['Name']@)
--
-- * 'TySynInstD'
type InstanceDec = Dec
data Fixity = Fixity Int FixityDirection
deriving( Eq, Ord, Show, Data, Generic )
data FixityDirection = InfixL | InfixR | InfixN
deriving( Eq, Ord, Show, Data, Generic )
-- | Highest allowed operator precedence for 'Fixity' constructor (answer: 9)
maxPrecedence :: Int
maxPrecedence = (9::Int)
-- | Default fixity: @infixl 9@
defaultFixity :: Fixity
defaultFixity = Fixity maxPrecedence InfixL
{-
Note [Unresolved infix]
~~~~~~~~~~~~~~~~~~~~~~~
-}
{- $infix #infix#
When implementing antiquotation for quasiquoters, one often wants
to parse strings into expressions:
> parse :: String -> Maybe Exp
But how should we parse @a + b * c@? If we don't know the fixities of
@+@ and @*@, we don't know whether to parse it as @a + (b * c)@ or @(a
+ b) * c@.
In cases like this, use 'UInfixE', 'UInfixP', or 'UInfixT', which stand for
\"unresolved infix expression/pattern/type\", respectively. When the compiler
is given a splice containing a tree of @UInfixE@ applications such as
> UInfixE
> (UInfixE e1 op1 e2)
> op2
> (UInfixE e3 op3 e4)
it will look up and the fixities of the relevant operators and
reassociate the tree as necessary.
* trees will not be reassociated across 'ParensE', 'ParensP', or 'ParensT',
which are of use for parsing expressions like
> (a + b * c) + d * e
* 'InfixE', 'InfixP', and 'InfixT' expressions are never reassociated.
* The 'UInfixE' constructor doesn't support sections. Sections
such as @(a *)@ have no ambiguity, so 'InfixE' suffices. For longer
sections such as @(a + b * c -)@, use an 'InfixE' constructor for the
outer-most section, and use 'UInfixE' constructors for all
other operators:
> InfixE
> Just (UInfixE ...a + b * c...)
> op
> Nothing
Sections such as @(a + b +)@ and @((a + b) +)@ should be rendered
into 'Exp's differently:
> (+ a + b) ---> InfixE Nothing + (Just $ UInfixE a + b)
> -- will result in a fixity error if (+) is left-infix
> (+ (a + b)) ---> InfixE Nothing + (Just $ ParensE $ UInfixE a + b)
> -- no fixity errors
* Quoted expressions such as
> [| a * b + c |] :: Q Exp
> [p| a : b : c |] :: Q Pat
> [t| T + T |] :: Q Type
will never contain 'UInfixE', 'UInfixP', 'UInfixT', 'InfixT', 'ParensE',
'ParensP', or 'ParensT' constructors.
-}
-----------------------------------------------------
--
-- The main syntax data types
--
-----------------------------------------------------
data Lit = CharL Char
| StringL String
| IntegerL Integer -- ^ Used for overloaded and non-overloaded
-- literals. We don't have a good way to
-- represent non-overloaded literals at
-- the moment. Maybe that doesn't matter?
| RationalL Rational -- Ditto
| IntPrimL Integer
| WordPrimL Integer
| FloatPrimL Rational
| DoublePrimL Rational
| StringPrimL [Word8] -- ^ A primitive C-style string, type 'Addr#'
| BytesPrimL Bytes -- ^ Some raw bytes, type 'Addr#':
| CharPrimL Char
deriving( Show, Eq, Ord, Data, Generic )
-- We could add Int, Float, Double etc, as we do in HsLit,
-- but that could complicate the
-- supposedly-simple TH.Syntax literal type
-- | Raw bytes embedded into the binary.
--
-- Avoid using Bytes constructor directly as it is likely to change in the
-- future. Use helpers such as `mkBytes` in Language.Haskell.TH.Lib instead.
data Bytes = Bytes
{ bytesPtr :: ForeignPtr Word8 -- ^ Pointer to the data
, bytesOffset :: Word -- ^ Offset from the pointer
, bytesSize :: Word -- ^ Number of bytes
-- Maybe someday:
-- , bytesAlignement :: Word -- ^ Alignement constraint
-- , bytesReadOnly :: Bool -- ^ Shall we embed into a read-only
-- -- section or not
-- , bytesInitialized :: Bool -- ^ False: only use `bytesSize` to allocate
-- -- an uninitialized region
}
deriving (Data,Generic)
-- We can't derive Show instance for Bytes because we don't want to show the
-- pointer value but the actual bytes (similarly to what ByteString does). See
-- #16457.
instance Show Bytes where
show b = unsafePerformIO $ withForeignPtr (bytesPtr b) $ \ptr ->
peekCStringLen ( ptr `plusPtr` fromIntegral (bytesOffset b)
, fromIntegral (bytesSize b)
)
-- We can't derive Eq and Ord instances for Bytes because we don't want to
-- compare pointer values but the actual bytes (similarly to what ByteString
-- does). See #16457
instance Eq Bytes where
(==) = eqBytes
instance Ord Bytes where
compare = compareBytes
eqBytes :: Bytes -> Bytes -> Bool
eqBytes a@(Bytes fp off len) b@(Bytes fp' off' len')
| len /= len' = False -- short cut on length
| fp == fp' && off == off' = True -- short cut for the same bytes
| otherwise = compareBytes a b == EQ
compareBytes :: Bytes -> Bytes -> Ordering
compareBytes (Bytes _ _ 0) (Bytes _ _ 0) = EQ -- short cut for empty Bytes
compareBytes (Bytes fp1 off1 len1) (Bytes fp2 off2 len2) =
unsafePerformIO $
withForeignPtr fp1 $ \p1 ->
withForeignPtr fp2 $ \p2 -> do
i <- memcmp (p1 `plusPtr` fromIntegral off1)
(p2 `plusPtr` fromIntegral off2)
(fromIntegral (min len1 len2))
return $! (i `compare` 0) <> (len1 `compare` len2)
foreign import ccall unsafe "memcmp"
memcmp :: Ptr a -> Ptr b -> CSize -> IO CInt
-- | Pattern in Haskell given in @{}@
data Pat
= LitP Lit -- ^ @{ 5 or \'c\' }@
| VarP Name -- ^ @{ x }@
| TupP [Pat] -- ^ @{ (p1,p2) }@
| UnboxedTupP [Pat] -- ^ @{ (\# p1,p2 \#) }@
| UnboxedSumP Pat SumAlt SumArity -- ^ @{ (\#|p|\#) }@
| ConP Name [Pat] -- ^ @data T1 = C1 t1 t2; {C1 p1 p1} = e@
| InfixP Pat Name Pat -- ^ @foo ({x :+ y}) = e@
| UInfixP Pat Name Pat -- ^ @foo ({x :+ y}) = e@
--
-- See "Language.Haskell.TH.Syntax#infix"
| ParensP Pat -- ^ @{(p)}@
--
-- See "Language.Haskell.TH.Syntax#infix"
| TildeP Pat -- ^ @{ ~p }@
| BangP Pat -- ^ @{ !p }@
| AsP Name Pat -- ^ @{ x \@ p }@
| WildP -- ^ @{ _ }@
| RecP Name [FieldPat] -- ^ @f (Pt { pointx = x }) = g x@
| ListP [ Pat ] -- ^ @{ [1,2,3] }@
| SigP Pat Type -- ^ @{ p :: t }@
| ViewP Exp Pat -- ^ @{ e -> p }@
deriving( Show, Eq, Ord, Data, Generic )
type FieldPat = (Name,Pat)
data Match = Match Pat Body [Dec] -- ^ @case e of { pat -> body where decs }@
deriving( Show, Eq, Ord, Data, Generic )
data Clause = Clause [Pat] Body [Dec]
-- ^ @f { p1 p2 = body where decs }@
deriving( Show, Eq, Ord, Data, Generic )
data Exp
= VarE Name -- ^ @{ x }@
| ConE Name -- ^ @data T1 = C1 t1 t2; p = {C1} e1 e2 @
| LitE Lit -- ^ @{ 5 or \'c\'}@
| AppE Exp Exp -- ^ @{ f x }@
| AppTypeE Exp Type -- ^ @{ f \@Int }@
| InfixE (Maybe Exp) Exp (Maybe Exp) -- ^ @{x + y} or {(x+)} or {(+ x)} or {(+)}@
-- It's a bit gruesome to use an Exp as the operator when a Name
-- would suffice. Historically, Exp was used to make it easier to
-- distinguish between infix constructors and non-constructors.
-- This is a bit overkill, since one could just as well call
-- `startsConId` or `startsConSym` (from `GHC.Lexeme`) on a Name.
-- Unfortunately, changing this design now would involve lots of
-- code churn for consumers of the TH API, so we continue to use
-- an Exp as the operator and perform an extra check during conversion
-- to ensure that the Exp is a constructor or a variable (#16895).
| UInfixE Exp Exp Exp -- ^ @{x + y}@
--
-- See "Language.Haskell.TH.Syntax#infix"
| ParensE Exp -- ^ @{ (e) }@
--
-- See "Language.Haskell.TH.Syntax#infix"
| LamE [Pat] Exp -- ^ @{ \\ p1 p2 -> e }@
| LamCaseE [Match] -- ^ @{ \\case m1; m2 }@
| TupE [Maybe Exp] -- ^ @{ (e1,e2) } @
--
-- The 'Maybe' is necessary for handling
-- tuple sections.
--
-- > (1,)
--
-- translates to
--
-- > TupE [Just (LitE (IntegerL 1)),Nothing]
| UnboxedTupE [Maybe Exp] -- ^ @{ (\# e1,e2 \#) } @
--
-- The 'Maybe' is necessary for handling
-- tuple sections.
--
-- > (# 'c', #)
--
-- translates to
--
-- > UnboxedTupE [Just (LitE (CharL 'c')),Nothing]
| UnboxedSumE Exp SumAlt SumArity -- ^ @{ (\#|e|\#) }@
| CondE Exp Exp Exp -- ^ @{ if e1 then e2 else e3 }@
| MultiIfE [(Guard, Exp)] -- ^ @{ if | g1 -> e1 | g2 -> e2 }@
| LetE [Dec] Exp -- ^ @{ let { x=e1; y=e2 } in e3 }@
| CaseE Exp [Match] -- ^ @{ case e of m1; m2 }@
| DoE (Maybe ModName) [Stmt] -- ^ @{ do { p <- e1; e2 } }@ or a qualified do if
-- the module name is present
| MDoE (Maybe ModName) [Stmt] -- ^ @{ mdo { x <- e1 y; y <- e2 x; } }@ or a qualified
-- mdo if the module name is present
| CompE [Stmt] -- ^ @{ [ (x,y) | x <- xs, y <- ys ] }@
--
-- The result expression of the comprehension is
-- the /last/ of the @'Stmt'@s, and should be a 'NoBindS'.
--
-- E.g. translation:
--
-- > [ f x | x <- xs ]
--
-- > CompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))]
| ArithSeqE Range -- ^ @{ [ 1 ,2 .. 10 ] }@
| ListE [ Exp ] -- ^ @{ [1,2,3] }@
| SigE Exp Type -- ^ @{ e :: t }@
| RecConE Name [FieldExp] -- ^ @{ T { x = y, z = w } }@
| RecUpdE Exp [FieldExp] -- ^ @{ (f x) { z = w } }@
| StaticE Exp -- ^ @{ static e }@
| UnboundVarE Name -- ^ @{ _x }@
--
-- This is used for holes or unresolved
-- identifiers in AST quotes. Note that
-- it could either have a variable name
-- or constructor name.
| LabelE String -- ^ @{ #x }@ ( Overloaded label )
| ImplicitParamVarE String -- ^ @{ ?x }@ ( Implicit parameter )
deriving( Show, Eq, Ord, Data, Generic )
type FieldExp = (Name,Exp)
-- Omitted: implicit parameters
data Body
= GuardedB [(Guard,Exp)] -- ^ @f p { | e1 = e2
-- | e3 = e4 }
-- where ds@
| NormalB Exp -- ^ @f p { = e } where ds@
deriving( Show, Eq, Ord, Data, Generic )
data Guard
= NormalG Exp -- ^ @f x { | odd x } = x@
| PatG [Stmt] -- ^ @f x { | Just y <- x, Just z <- y } = z@
deriving( Show, Eq, Ord, Data, Generic )
data Stmt
= BindS Pat Exp -- ^ @p <- e@
| LetS [ Dec ] -- ^ @{ let { x=e1; y=e2 } }@
| NoBindS Exp -- ^ @e@
| ParS [[Stmt]] -- ^ @x <- e1 | s2, s3 | s4@ (in 'CompE')
| RecS [Stmt] -- ^ @rec { s1; s2 }@
deriving( Show, Eq, Ord, Data, Generic )
data Range = FromR Exp | FromThenR Exp Exp
| FromToR Exp Exp | FromThenToR Exp Exp Exp
deriving( Show, Eq, Ord, Data, Generic )
data Dec
= FunD Name [Clause] -- ^ @{ f p1 p2 = b where decs }@
| ValD Pat Body [Dec] -- ^ @{ p = b where decs }@
| DataD Cxt Name [TyVarBndr ()]
(Maybe Kind) -- Kind signature (allowed only for GADTs)
[Con] [DerivClause]
-- ^ @{ data Cxt x => T x = A x | B (T x)
-- deriving (Z,W)
-- deriving stock Eq }@
| NewtypeD Cxt Name [TyVarBndr ()]
(Maybe Kind) -- Kind signature
Con [DerivClause] -- ^ @{ newtype Cxt x => T x = A (B x)
-- deriving (Z,W Q)
-- deriving stock Eq }@
| TySynD Name [TyVarBndr ()] Type -- ^ @{ type T x = (x,x) }@
| ClassD Cxt Name [TyVarBndr ()]
[FunDep] [Dec] -- ^ @{ class Eq a => Ord a where ds }@
| InstanceD (Maybe Overlap) Cxt Type [Dec]
-- ^ @{ instance {\-\# OVERLAPS \#-\}
-- Show w => Show [w] where ds }@
| SigD Name Type -- ^ @{ length :: [a] -> Int }@
| KiSigD Name Kind -- ^ @{ type TypeRep :: k -> Type }@
| ForeignD Foreign -- ^ @{ foreign import ... }
--{ foreign export ... }@
| InfixD Fixity Name -- ^ @{ infix 3 foo }@
-- | pragmas
| PragmaD Pragma -- ^ @{ {\-\# INLINE [1] foo \#-\} }@
-- | data families (may also appear in [Dec] of 'ClassD' and 'InstanceD')
| DataFamilyD Name [TyVarBndr ()]
(Maybe Kind)
-- ^ @{ data family T a b c :: * }@
| DataInstD Cxt (Maybe [TyVarBndr ()]) Type
(Maybe Kind) -- Kind signature
[Con] [DerivClause] -- ^ @{ data instance Cxt x => T [x]
-- = A x | B (T x)
-- deriving (Z,W)
-- deriving stock Eq }@
| NewtypeInstD Cxt (Maybe [TyVarBndr ()]) Type -- Quantified type vars
(Maybe Kind) -- Kind signature
Con [DerivClause] -- ^ @{ newtype instance Cxt x => T [x]
-- = A (B x)
-- deriving (Z,W)
-- deriving stock Eq }@
| TySynInstD TySynEqn -- ^ @{ type instance ... }@
-- | open type families (may also appear in [Dec] of 'ClassD' and 'InstanceD')
| OpenTypeFamilyD TypeFamilyHead
-- ^ @{ type family T a b c = (r :: *) | r -> a b }@
| ClosedTypeFamilyD TypeFamilyHead [TySynEqn]
-- ^ @{ type family F a b = (r :: *) | r -> a where ... }@
| RoleAnnotD Name [Role] -- ^ @{ type role T nominal representational }@
| StandaloneDerivD (Maybe DerivStrategy) Cxt Type
-- ^ @{ deriving stock instance Ord a => Ord (Foo a) }@
| DefaultSigD Name Type -- ^ @{ default size :: Data a => a -> Int }@
-- | Pattern Synonyms
| PatSynD Name PatSynArgs PatSynDir Pat
-- ^ @{ pattern P v1 v2 .. vn <- p }@ unidirectional or
-- @{ pattern P v1 v2 .. vn = p }@ implicit bidirectional or
-- @{ pattern P v1 v2 .. vn <- p
-- where P v1 v2 .. vn = e }@ explicit bidirectional
--
-- also, besides prefix pattern synonyms, both infix and record
-- pattern synonyms are supported. See 'PatSynArgs' for details
| PatSynSigD Name PatSynType -- ^ A pattern synonym's type signature.
| ImplicitParamBindD String Exp
-- ^ @{ ?x = expr }@
--
-- Implicit parameter binding declaration. Can only be used in let
-- and where clauses which consist entirely of implicit bindings.
deriving( Show, Eq, Ord, Data, Generic )
-- | Varieties of allowed instance overlap.
data Overlap = Overlappable -- ^ May be overlapped by more specific instances
| Overlapping -- ^ May overlap a more general instance
| Overlaps -- ^ Both 'Overlapping' and 'Overlappable'
| Incoherent -- ^ Both 'Overlappable' and 'Overlappable', and
-- pick an arbitrary one if multiple choices are
-- available.
deriving( Show, Eq, Ord, Data, Generic )
-- | A single @deriving@ clause at the end of a datatype.
data DerivClause = DerivClause (Maybe DerivStrategy) Cxt
-- ^ @{ deriving stock (Eq, Ord) }@
deriving( Show, Eq, Ord, Data, Generic )
-- | What the user explicitly requests when deriving an instance.
data DerivStrategy = StockStrategy -- ^ A \"standard\" derived instance
| AnyclassStrategy -- ^ @-XDeriveAnyClass@
| NewtypeStrategy -- ^ @-XGeneralizedNewtypeDeriving@
| ViaStrategy Type -- ^ @-XDerivingVia@
deriving( Show, Eq, Ord, Data, Generic )
-- | A pattern synonym's type. Note that a pattern synonym's /fully/
-- specified type has a peculiar shape coming with two forall
-- quantifiers and two constraint contexts. For example, consider the
-- pattern synonym
--
-- > pattern P x1 x2 ... xn = <some-pattern>
--
-- P's complete type is of the following form
--
-- > pattern P :: forall universals. required constraints
-- > => forall existentials. provided constraints
-- > => t1 -> t2 -> ... -> tn -> t
--
-- consisting of four parts:
--
-- 1. the (possibly empty lists of) universally quantified type
-- variables and required constraints on them.
-- 2. the (possibly empty lists of) existentially quantified
-- type variables and the provided constraints on them.
-- 3. the types @t1@, @t2@, .., @tn@ of @x1@, @x2@, .., @xn@, respectively
-- 4. the type @t@ of @\<some-pattern\>@, mentioning only universals.
--
-- Pattern synonym types interact with TH when (a) reifying a pattern
-- synonym, (b) pretty printing, or (c) specifying a pattern synonym's
-- type signature explicitly:
--
-- * Reification always returns a pattern synonym's /fully/ specified
-- type in abstract syntax.
--
-- * Pretty printing via 'Language.Haskell.TH.Ppr.pprPatSynType' abbreviates
-- a pattern synonym's type unambiguously in concrete syntax: The rule of
-- thumb is to print initial empty universals and the required
-- context as @() =>@, if existentials and a provided context
-- follow. If only universals and their required context, but no
-- existentials are specified, only the universals and their
-- required context are printed. If both or none are specified, so
-- both (or none) are printed.
--
-- * When specifying a pattern synonym's type explicitly with
-- 'PatSynSigD' either one of the universals, the existentials, or
-- their contexts may be left empty.
--
-- See the GHC user's guide for more information on pattern synonyms
-- and their types:
-- <https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#pattern-synonyms>.
type PatSynType = Type
-- | Common elements of 'OpenTypeFamilyD' and 'ClosedTypeFamilyD'. By
-- analogy with "head" for type classes and type class instances as
-- defined in /Type classes: an exploration of the design space/, the
-- @TypeFamilyHead@ is defined to be the elements of the declaration
-- between @type family@ and @where@.
data TypeFamilyHead =
TypeFamilyHead Name [TyVarBndr ()] FamilyResultSig (Maybe InjectivityAnn)
deriving( Show, Eq, Ord, Data, Generic )
-- | One equation of a type family instance or closed type family. The
-- arguments are the left-hand-side type and the right-hand-side result.
--
-- For instance, if you had the following type family:
--
-- @
-- type family Foo (a :: k) :: k where
-- forall k (a :: k). Foo \@k a = a
-- @
--
-- The @Foo \@k a = a@ equation would be represented as follows:
--
-- @
-- 'TySynEqn' ('Just' ['PlainTV' k, 'KindedTV' a ('VarT' k)])
-- ('AppT' ('AppKindT' ('ConT' ''Foo) ('VarT' k)) ('VarT' a))
-- ('VarT' a)
-- @
data TySynEqn = TySynEqn (Maybe [TyVarBndr ()]) Type Type
deriving( Show, Eq, Ord, Data, Generic )
data FunDep = FunDep [Name] [Name]
deriving( Show, Eq, Ord, Data, Generic )
data Foreign = ImportF Callconv Safety String Name Type
| ExportF Callconv String Name Type
deriving( Show, Eq, Ord, Data, Generic )
-- keep Callconv in sync with module ForeignCall in ghc/compiler/GHC/Types/ForeignCall.hs
data Callconv = CCall | StdCall | CApi | Prim | JavaScript
deriving( Show, Eq, Ord, Data, Generic )
data Safety = Unsafe | Safe | Interruptible
deriving( Show, Eq, Ord, Data, Generic )
data Pragma = InlineP Name Inline RuleMatch Phases
| SpecialiseP Name Type (Maybe Inline) Phases
| SpecialiseInstP Type
| RuleP String (Maybe [TyVarBndr ()]) [RuleBndr] Exp Exp Phases
| AnnP AnnTarget Exp
| LineP Int String
| CompleteP [Name] (Maybe Name)
-- ^ @{ {\-\# COMPLETE C_1, ..., C_i [ :: T ] \#-} }@
deriving( Show, Eq, Ord, Data, Generic )
data Inline = NoInline
| Inline
| Inlinable
deriving (Show, Eq, Ord, Data, Generic)
data RuleMatch = ConLike
| FunLike
deriving (Show, Eq, Ord, Data, Generic)
data Phases = AllPhases
| FromPhase Int
| BeforePhase Int
deriving (Show, Eq, Ord, Data, Generic)
data RuleBndr = RuleVar Name
| TypedRuleVar Name Type
deriving (Show, Eq, Ord, Data, Generic)
data AnnTarget = ModuleAnnotation
| TypeAnnotation Name
| ValueAnnotation Name
deriving (Show, Eq, Ord, Data, Generic)
type Cxt = [Pred] -- ^ @(Eq a, Ord b)@
-- | Since the advent of @ConstraintKinds@, constraints are really just types.
-- Equality constraints use the 'EqualityT' constructor. Constraints may also
-- be tuples of other constraints.
type Pred = Type
data SourceUnpackedness
= NoSourceUnpackedness -- ^ @C a@
| SourceNoUnpack -- ^ @C { {\-\# NOUNPACK \#-\} } a@
| SourceUnpack -- ^ @C { {\-\# UNPACK \#-\} } a@
deriving (Show, Eq, Ord, Data, Generic)
data SourceStrictness = NoSourceStrictness -- ^ @C a@
| SourceLazy -- ^ @C {~}a@
| SourceStrict -- ^ @C {!}a@
deriving (Show, Eq, Ord, Data, Generic)
-- | Unlike 'SourceStrictness' and 'SourceUnpackedness', 'DecidedStrictness'
-- refers to the strictness that the compiler chooses for a data constructor
-- field, which may be different from what is written in source code. See
-- 'reifyConStrictness' for more information.
data DecidedStrictness = DecidedLazy
| DecidedStrict
| DecidedUnpack
deriving (Show, Eq, Ord, Data, Generic)
-- | A single data constructor.
--
-- The constructors for 'Con' can roughly be divided up into two categories:
-- those for constructors with \"vanilla\" syntax ('NormalC', 'RecC', and
-- 'InfixC'), and those for constructors with GADT syntax ('GadtC' and
-- 'RecGadtC'). The 'ForallC' constructor, which quantifies additional type
-- variables and class contexts, can surround either variety of constructor.
-- However, the type variables that it quantifies are different depending
-- on what constructor syntax is used:
--
-- * If a 'ForallC' surrounds a constructor with vanilla syntax, then the
-- 'ForallC' will only quantify /existential/ type variables. For example:
--
-- @
-- data Foo a = forall b. MkFoo a b
-- @
--
-- In @MkFoo@, 'ForallC' will quantify @b@, but not @a@.
--
-- * If a 'ForallC' surrounds a constructor with GADT syntax, then the
-- 'ForallC' will quantify /all/ type variables used in the constructor.
-- For example:
--
-- @
-- data Bar a b where
-- MkBar :: (a ~ b) => c -> MkBar a b
-- @
--
-- In @MkBar@, 'ForallC' will quantify @a@, @b@, and @c@.
data Con = NormalC Name [BangType] -- ^ @C Int a@
| RecC Name [VarBangType] -- ^ @C { v :: Int, w :: a }@
| InfixC BangType Name BangType -- ^ @Int :+ a@
| ForallC [TyVarBndr Specificity] Cxt Con -- ^ @forall a. Eq a => C [a]@
| GadtC [Name] [BangType]
Type -- See Note [GADT return type]
-- ^ @C :: a -> b -> T b Int@
| RecGadtC [Name] [VarBangType]
Type -- See Note [GADT return type]
-- ^ @C :: { v :: Int } -> T b Int@
deriving (Show, Eq, Ord, Data, Generic)
-- Note [GADT return type]
-- ~~~~~~~~~~~~~~~~~~~~~~~
--
-- The return type of a GADT constructor does not necessarily match the name of
-- the data type:
--
-- type S = T
--
-- data T a where
-- MkT :: S Int
--
--
-- type S a = T
--
-- data T a where
-- MkT :: S Char Int
--
--
-- type Id a = a
-- type S a = T
--
-- data T a where
-- MkT :: Id (S Char Int)
--
--
-- That is why we allow the return type stored by a constructor to be an
-- arbitrary type. See also #11341
data Bang = Bang SourceUnpackedness SourceStrictness
-- ^ @C { {\-\# UNPACK \#-\} !}a@
deriving (Show, Eq, Ord, Data, Generic)
type BangType = (Bang, Type)
type VarBangType = (Name, Bang, Type)
-- | As of @template-haskell-2.11.0.0@, 'Strict' has been replaced by 'Bang'.
type Strict = Bang
-- | As of @template-haskell-2.11.0.0@, 'StrictType' has been replaced by
-- 'BangType'.
type StrictType = BangType
-- | As of @template-haskell-2.11.0.0@, 'VarStrictType' has been replaced by
-- 'VarBangType'.
type VarStrictType = VarBangType
-- | A pattern synonym's directionality.
data PatSynDir
= Unidir -- ^ @pattern P x {<-} p@
| ImplBidir -- ^ @pattern P x {=} p@
| ExplBidir [Clause] -- ^ @pattern P x {<-} p where P x = e@
deriving( Show, Eq, Ord, Data, Generic )
-- | A pattern synonym's argument type.
data PatSynArgs
= PrefixPatSyn [Name] -- ^ @pattern P {x y z} = p@
| InfixPatSyn Name Name -- ^ @pattern {x P y} = p@
| RecordPatSyn [Name] -- ^ @pattern P { {x,y,z} } = p@
deriving( Show, Eq, Ord, Data, Generic )
data Type = ForallT [TyVarBndr Specificity] Cxt Type -- ^ @forall \<vars\>. \<ctxt\> => \<type\>@
| ForallVisT [TyVarBndr ()] Type -- ^ @forall \<vars\> -> \<type\>@
| AppT Type Type -- ^ @T a b@
| AppKindT Type Kind -- ^ @T \@k t@
| SigT Type Kind -- ^ @t :: k@
| VarT Name -- ^ @a@
| ConT Name -- ^ @T@
| PromotedT Name -- ^ @'T@
| InfixT Type Name Type -- ^ @T + T@
| UInfixT Type Name Type -- ^ @T + T@
--
-- See "Language.Haskell.TH.Syntax#infix"
| ParensT Type -- ^ @(T)@
-- See Note [Representing concrete syntax in types]
| TupleT Int -- ^ @(,), (,,), etc.@
| UnboxedTupleT Int -- ^ @(\#,\#), (\#,,\#), etc.@
| UnboxedSumT SumArity -- ^ @(\#|\#), (\#||\#), etc.@
| ArrowT -- ^ @->@
| MulArrowT -- ^ @FUN@
| EqualityT -- ^ @~@
| ListT -- ^ @[]@
| PromotedTupleT Int -- ^ @'(), '(,), '(,,), etc.@
| PromotedNilT -- ^ @'[]@
| PromotedConsT -- ^ @(':)@
| StarT -- ^ @*@
| ConstraintT -- ^ @Constraint@
| LitT TyLit -- ^ @0,1,2, etc.@
| WildCardT -- ^ @_@
| ImplicitParamT String Type -- ^ @?x :: t@
deriving( Show, Eq, Ord, Data, Generic )
data Specificity = SpecifiedSpec -- ^ @a@
| InferredSpec -- ^ @{a}@
deriving( Show, Eq, Ord, Data, Generic )
data TyVarBndr flag = PlainTV Name flag -- ^ @a@
| KindedTV Name flag Kind -- ^ @(a :: k)@
deriving( Show, Eq, Ord, Data, Generic, Functor )
-- | Type family result signature
data FamilyResultSig = NoSig -- ^ no signature
| KindSig Kind -- ^ @k@
| TyVarSig (TyVarBndr ()) -- ^ @= r, = (r :: k)@
deriving( Show, Eq, Ord, Data, Generic )
-- | Injectivity annotation
data InjectivityAnn = InjectivityAnn Name [Name]
deriving ( Show, Eq, Ord, Data, Generic )
data TyLit = NumTyLit Integer -- ^ @2@
| StrTyLit String -- ^ @\"Hello\"@
deriving ( Show, Eq, Ord, Data, Generic )
-- | Role annotations
data Role = NominalR -- ^ @nominal@
| RepresentationalR -- ^ @representational@
| PhantomR -- ^ @phantom@
| InferR -- ^ @_@
deriving( Show, Eq, Ord, Data, Generic )
-- | Annotation target for reifyAnnotations
data AnnLookup = AnnLookupModule Module
| AnnLookupName Name
deriving( Show, Eq, Ord, Data, Generic )
-- | To avoid duplication between kinds and types, they
-- are defined to be the same. Naturally, you would never
-- have a type be 'StarT' and you would never have a kind
-- be 'SigT', but many of the other constructors are shared.
-- Note that the kind @Bool@ is denoted with 'ConT', not
-- 'PromotedT'. Similarly, tuple kinds are made with 'TupleT',
-- not 'PromotedTupleT'.
type Kind = Type
{- Note [Representing concrete syntax in types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Haskell has a rich concrete syntax for types, including
t1 -> t2, (t1,t2), [t], and so on
In TH we represent all of this using AppT, with a distinguished
type constructor at the head. So,
Type TH representation
-----------------------------------------------
t1 -> t2 ArrowT `AppT` t2 `AppT` t2
[t] ListT `AppT` t
(t1,t2) TupleT 2 `AppT` t1 `AppT` t2
'(t1,t2) PromotedTupleT 2 `AppT` t1 `AppT` t2
But if the original HsSyn used prefix application, we won't use
these special TH constructors. For example
[] t ConT "[]" `AppT` t
(->) t ConT "->" `AppT` t
In this way we can faithfully represent in TH whether the original
HsType used concrete syntax or not.
The one case that doesn't fit this pattern is that of promoted lists
'[ Maybe, IO ] PromotedListT 2 `AppT` t1 `AppT` t2
but it's very smelly because there really is no type constructor
corresponding to PromotedListT. So we encode HsExplicitListTy with
PromotedConsT and PromotedNilT (which *do* have underlying type
constructors):
'[ Maybe, IO ] PromotedConsT `AppT` Maybe `AppT`
(PromotedConsT `AppT` IO `AppT` PromotedNilT)
-}
-----------------------------------------------------
-- Internal helper functions
-----------------------------------------------------
cmpEq :: Ordering -> Bool
cmpEq EQ = True
cmpEq _ = False
thenCmp :: Ordering -> Ordering -> Ordering
thenCmp EQ o2 = o2
thenCmp o1 _ = o1
|