1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE RecordWildCards #-}
{-# OPTIONS_GHC -optc-DNON_POSIX_SOURCE #-}
--
-- (c) The University of Glasgow 2002-2006
--
-- | Bytecode assembler and linker
module GHC.ByteCode.Asm (
assembleBCOs, assembleOneBCO,
bcoFreeNames,
SizedSeq, sizeSS, ssElts,
iNTERP_STACK_CHECK_THRESH,
mkNativeCallInfoLit
) where
import GHC.Prelude
import GHC.ByteCode.Instr
import GHC.ByteCode.InfoTable
import GHC.ByteCode.Types
import GHCi.RemoteTypes
import GHC.Runtime.Interpreter
import GHC.Runtime.Heap.Layout ( fromStgWord, StgWord )
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Literal
import GHC.Types.Unique.DSet
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Core.TyCon
import GHC.Data.FastString
import GHC.Data.SizedSeq
import GHC.StgToCmm.Layout ( ArgRep(..) )
import GHC.Cmm.Expr
import GHC.Cmm.CallConv ( allArgRegsCover )
import GHC.Platform
import GHC.Platform.Profile
import Control.Monad
import Control.Monad.Trans.Class
import Control.Monad.Trans.State.Strict
import qualified Data.Array.Unboxed as Array
import Data.Array.Base ( UArray(..) )
import Foreign hiding (shiftL, shiftR)
import Data.Char ( ord )
import Data.Map.Strict (Map)
import Data.Maybe (fromMaybe)
import qualified Data.Map.Strict as Map
import GHC.Float (castFloatToWord32, castDoubleToWord64)
-- -----------------------------------------------------------------------------
-- Unlinked BCOs
-- CompiledByteCode represents the result of byte-code
-- compiling a bunch of functions and data types
-- | Finds external references. Remember to remove the names
-- defined by this group of BCOs themselves
bcoFreeNames :: UnlinkedBCO -> UniqDSet Name
bcoFreeNames bco
= bco_refs bco `uniqDSetMinusUniqSet` mkNameSet [unlinkedBCOName bco]
where
bco_refs (UnlinkedBCO _ _ _ _ nonptrs ptrs)
= unionManyUniqDSets (
mkUniqDSet [ n | BCOPtrName n <- elemsFlatBag ptrs ] :
mkUniqDSet [ n | BCONPtrItbl n <- elemsFlatBag nonptrs ] :
map bco_refs [ bco | BCOPtrBCO bco <- elemsFlatBag ptrs ]
)
-- -----------------------------------------------------------------------------
-- The bytecode assembler
-- The object format for bytecodes is: 16 bits for the opcode, and 16
-- for each field -- so the code can be considered a sequence of
-- 16-bit ints. Each field denotes either a stack offset or number of
-- items on the stack (eg SLIDE), and index into the pointer table (eg
-- PUSH_G), an index into the literal table (eg PUSH_I/D/L), or a
-- bytecode address in this BCO.
-- Top level assembler fn.
assembleBCOs
:: Interp
-> Profile
-> [ProtoBCO Name]
-> [TyCon]
-> AddrEnv
-> Maybe ModBreaks
-> IO CompiledByteCode
assembleBCOs interp profile proto_bcos tycons top_strs modbreaks = do
-- TODO: the profile should be bundled with the interpreter: the rts ways are
-- fixed for an interpreter
itblenv <- mkITbls interp profile tycons
bcos <- mapM (assembleBCO (profilePlatform profile)) proto_bcos
bcos' <- mallocStrings interp bcos
return CompiledByteCode
{ bc_bcos = bcos'
, bc_itbls = itblenv
, bc_ffis = concatMap protoBCOFFIs proto_bcos
, bc_strs = top_strs
, bc_breaks = modbreaks
}
-- Note [Allocating string literals]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Our strategy for handling top-level string literal bindings is described in
-- Note [Generating code for top-level string literal bindings] in GHC.StgToByteCode,
-- but not all Addr# literals in a program are guaranteed to be lifted to the
-- top level. Our strategy for handling local Addr# literals is somewhat simpler:
-- after assembling, we find all the BCONPtrStr arguments in the program, malloc
-- memory for them, and bake the resulting addresses into the instruction stream
-- in the form of BCONPtrWord arguments.
--
-- Since we do this when assembling, we only allocate the memory when we compile
-- the module, not each time we relink it. However, we do want to take care to
-- malloc the memory all in one go, since that is more efficient with
-- -fexternal-interpreter, especially when compiling in parallel.
--
-- Note that, as with top-level string literal bindings, this memory is never
-- freed, so it just leaks if the BCO is unloaded. See Note [Generating code for
-- top-level string literal bindings] in GHC.StgToByteCode for some discussion
-- about why.
--
mallocStrings :: Interp -> [UnlinkedBCO] -> IO [UnlinkedBCO]
mallocStrings interp ulbcos = do
let bytestrings = reverse (execState (mapM_ collect ulbcos) [])
ptrs <- interpCmd interp (MallocStrings bytestrings)
return (evalState (mapM splice ulbcos) ptrs)
where
splice bco@UnlinkedBCO{..} = do
lits <- mapM spliceLit unlinkedBCOLits
ptrs <- mapM splicePtr unlinkedBCOPtrs
return bco { unlinkedBCOLits = lits, unlinkedBCOPtrs = ptrs }
spliceLit (BCONPtrStr _) = do
rptrs <- get
case rptrs of
(RemotePtr p : rest) -> do
put rest
return (BCONPtrWord (fromIntegral p))
_ -> panic "mallocStrings:spliceLit"
spliceLit other = return other
splicePtr (BCOPtrBCO bco) = BCOPtrBCO <$> splice bco
splicePtr other = return other
collect UnlinkedBCO{..} = do
mapM_ collectLit unlinkedBCOLits
mapM_ collectPtr unlinkedBCOPtrs
collectLit (BCONPtrStr bs) = do
strs <- get
put (bs:strs)
collectLit _ = return ()
collectPtr (BCOPtrBCO bco) = collect bco
collectPtr _ = return ()
assembleOneBCO :: Interp -> Profile -> ProtoBCO Name -> IO UnlinkedBCO
assembleOneBCO interp profile pbco = do
-- TODO: the profile should be bundled with the interpreter: the rts ways are
-- fixed for an interpreter
ubco <- assembleBCO (profilePlatform profile) pbco
[ubco'] <- mallocStrings interp [ubco]
return ubco'
assembleBCO :: Platform -> ProtoBCO Name -> IO UnlinkedBCO
assembleBCO platform (ProtoBCO { protoBCOName = nm
, protoBCOInstrs = instrs
, protoBCOBitmap = bitmap
, protoBCOBitmapSize = bsize
, protoBCOArity = arity }) = do
-- pass 1: collect up the offsets of the local labels.
let asm = mapM_ (assembleI platform) instrs
initial_offset = 0
-- Jump instructions are variable-sized, there are long and short variants
-- depending on the magnitude of the offset. However, we can't tell what
-- size instructions we will need until we have calculated the offsets of
-- the labels, which depends on the size of the instructions... So we
-- first create the label environment assuming that all jumps are short,
-- and if the final size is indeed small enough for short jumps, we are
-- done. Otherwise, we repeat the calculation, and we force all jumps in
-- this BCO to be long.
(n_insns0, lbl_map0) = inspectAsm platform False initial_offset asm
((n_insns, lbl_map), long_jumps)
| isLargeW (fromIntegral $ Map.size lbl_map0)
|| isLargeW n_insns0
= (inspectAsm platform True initial_offset asm, True)
| otherwise = ((n_insns0, lbl_map0), False)
env :: LocalLabel -> Word
env lbl = fromMaybe
(pprPanic "assembleBCO.findLabel" (ppr lbl))
(Map.lookup lbl lbl_map)
-- pass 2: run assembler and generate instructions, literals and pointers
let initial_state = (emptySS, emptySS, emptySS)
(final_insns, final_lits, final_ptrs) <- flip execStateT initial_state $ runAsm platform long_jumps env asm
-- precomputed size should be equal to final size
massertPpr (n_insns == sizeSS final_insns)
(text "bytecode instruction count mismatch")
let asm_insns = ssElts final_insns
!insns_arr = mkBCOByteArray $ Array.listArray (0 :: Int, fromIntegral n_insns - 1) asm_insns
!bitmap_arr = mkBCOByteArray $ mkBitmapArray bsize bitmap
ul_bco = UnlinkedBCO nm arity insns_arr bitmap_arr (fromSizedSeq final_lits) (fromSizedSeq final_ptrs)
-- 8 Aug 01: Finalisers aren't safe when attached to non-primitive
-- objects, since they might get run too early. Disable this until
-- we figure out what to do.
-- when (notNull malloced) (addFinalizer ul_bco (mapM_ zonk malloced))
return ul_bco
mkBitmapArray :: Word -> [StgWord] -> UArray Int Word
-- Here the return type must be an array of Words, not StgWords,
-- because the underlying ByteArray# will end up as a component
-- of a BCO object.
mkBitmapArray bsize bitmap
= Array.listArray (0, length bitmap) $
fromIntegral bsize : map (fromInteger . fromStgWord) bitmap
-- instrs nonptrs ptrs
type AsmState = (SizedSeq Word16,
SizedSeq BCONPtr,
SizedSeq BCOPtr)
data Operand
= Op Word
| IOp Int
| SmallOp Word16
| LabelOp LocalLabel
wOp :: WordOff -> Operand
wOp = Op . fromIntegral
bOp :: ByteOff -> Operand
bOp = Op . fromIntegral
truncHalfWord :: Platform -> HalfWord -> Operand
truncHalfWord platform w = case platformWordSize platform of
PW4 | w <= 65535 -> Op (fromIntegral w)
PW8 | w <= 4294967295 -> Op (fromIntegral w)
_ -> pprPanic "GHC.ByteCode.Asm.truncHalfWord" (ppr w)
data Assembler a
= AllocPtr (IO BCOPtr) (Word -> Assembler a)
| AllocLit [BCONPtr] (Word -> Assembler a)
| AllocLabel LocalLabel (Assembler a)
| Emit Word16 [Operand] (Assembler a)
| NullAsm a
deriving (Functor)
instance Applicative Assembler where
pure = NullAsm
(<*>) = ap
instance Monad Assembler where
NullAsm x >>= f = f x
AllocPtr p k >>= f = AllocPtr p (k >=> f)
AllocLit l k >>= f = AllocLit l (k >=> f)
AllocLabel lbl k >>= f = AllocLabel lbl (k >>= f)
Emit w ops k >>= f = Emit w ops (k >>= f)
ioptr :: IO BCOPtr -> Assembler Word
ioptr p = AllocPtr p return
ptr :: BCOPtr -> Assembler Word
ptr = ioptr . return
lit :: [BCONPtr] -> Assembler Word
lit l = AllocLit l return
label :: LocalLabel -> Assembler ()
label w = AllocLabel w (return ())
emit :: Word16 -> [Operand] -> Assembler ()
emit w ops = Emit w ops (return ())
type LabelEnv = LocalLabel -> Word
largeOp :: Bool -> Operand -> Bool
largeOp long_jumps op = case op of
SmallOp _ -> False
Op w -> isLargeW w
IOp i -> isLargeI i
LabelOp _ -> long_jumps
runAsm :: Platform -> Bool -> LabelEnv -> Assembler a -> StateT AsmState IO a
runAsm platform long_jumps e = go
where
go (NullAsm x) = return x
go (AllocPtr p_io k) = do
p <- lift p_io
w <- state $ \(st_i0,st_l0,st_p0) ->
let st_p1 = addToSS st_p0 p
in (sizeSS st_p0, (st_i0,st_l0,st_p1))
go $ k w
go (AllocLit lits k) = do
w <- state $ \(st_i0,st_l0,st_p0) ->
let st_l1 = addListToSS st_l0 lits
in (sizeSS st_l0, (st_i0,st_l1,st_p0))
go $ k w
go (AllocLabel _ k) = go k
go (Emit w ops k) = do
let largeArgs = any (largeOp long_jumps) ops
opcode
| largeArgs = largeArgInstr w
| otherwise = w
words = concatMap expand ops
expand (SmallOp w) = [w]
expand (LabelOp w) = expand (Op (e w))
expand (Op w) = if largeArgs then largeArg platform (fromIntegral w) else [fromIntegral w]
expand (IOp i) = if largeArgs then largeArg platform (fromIntegral i) else [fromIntegral i]
state $ \(st_i0,st_l0,st_p0) ->
let st_i1 = addListToSS st_i0 (opcode : words)
in ((), (st_i1,st_l0,st_p0))
go k
type LabelEnvMap = Map LocalLabel Word
data InspectState = InspectState
{ instrCount :: !Word
, ptrCount :: !Word
, litCount :: !Word
, lblEnv :: LabelEnvMap
}
inspectAsm :: Platform -> Bool -> Word -> Assembler a -> (Word, LabelEnvMap)
inspectAsm platform long_jumps initial_offset
= go (InspectState initial_offset 0 0 Map.empty)
where
go s (NullAsm _) = (instrCount s, lblEnv s)
go s (AllocPtr _ k) = go (s { ptrCount = n + 1 }) (k n)
where n = ptrCount s
go s (AllocLit ls k) = go (s { litCount = n + strictGenericLength ls }) (k n)
where n = litCount s
go s (AllocLabel lbl k) = go s' k
where s' = s { lblEnv = Map.insert lbl (instrCount s) (lblEnv s) }
go s (Emit _ ops k) = go s' k
where
s' = s { instrCount = instrCount s + size }
size = sum (map count ops) + 1
largeOps = any (largeOp long_jumps) ops
count (SmallOp _) = 1
count (LabelOp _) = count (Op 0)
count (Op _) = if largeOps then largeArg16s platform else 1
count (IOp _) = if largeOps then largeArg16s platform else 1
-- Bring in all the bci_ bytecode constants.
#include "Bytecodes.h"
largeArgInstr :: Word16 -> Word16
largeArgInstr bci = bci_FLAG_LARGE_ARGS .|. bci
largeArg :: Platform -> Word64 -> [Word16]
largeArg platform w = case platformWordSize platform of
PW8 -> [fromIntegral (w `shiftR` 48),
fromIntegral (w `shiftR` 32),
fromIntegral (w `shiftR` 16),
fromIntegral w]
PW4 -> assertPpr (w < fromIntegral (maxBound :: Word32))
(text "largeArg too big:" <+> ppr w) $
[fromIntegral (w `shiftR` 16),
fromIntegral w]
largeArg16s :: Platform -> Word
largeArg16s platform = case platformWordSize platform of
PW8 -> 4
PW4 -> 2
assembleI :: Platform
-> BCInstr
-> Assembler ()
assembleI platform i = case i of
STKCHECK n -> emit bci_STKCHECK [Op n]
PUSH_L o1 -> emit bci_PUSH_L [wOp o1]
PUSH_LL o1 o2 -> emit bci_PUSH_LL [wOp o1, wOp o2]
PUSH_LLL o1 o2 o3 -> emit bci_PUSH_LLL [wOp o1, wOp o2, wOp o3]
PUSH8 o1 -> emit bci_PUSH8 [bOp o1]
PUSH16 o1 -> emit bci_PUSH16 [bOp o1]
PUSH32 o1 -> emit bci_PUSH32 [bOp o1]
PUSH8_W o1 -> emit bci_PUSH8_W [bOp o1]
PUSH16_W o1 -> emit bci_PUSH16_W [bOp o1]
PUSH32_W o1 -> emit bci_PUSH32_W [bOp o1]
PUSH_G nm -> do p <- ptr (BCOPtrName nm)
emit bci_PUSH_G [Op p]
PUSH_PRIMOP op -> do p <- ptr (BCOPtrPrimOp op)
emit bci_PUSH_G [Op p]
PUSH_BCO proto -> do let ul_bco = assembleBCO platform proto
p <- ioptr (liftM BCOPtrBCO ul_bco)
emit bci_PUSH_G [Op p]
PUSH_ALTS proto pk
-> do let ul_bco = assembleBCO platform proto
p <- ioptr (liftM BCOPtrBCO ul_bco)
emit (push_alts pk) [Op p]
PUSH_ALTS_TUPLE proto call_info tuple_proto
-> do let ul_bco = assembleBCO platform proto
ul_tuple_bco = assembleBCO platform
tuple_proto
p <- ioptr (liftM BCOPtrBCO ul_bco)
p_tup <- ioptr (liftM BCOPtrBCO ul_tuple_bco)
info <- word (fromIntegral $
mkNativeCallInfoSig platform call_info)
emit bci_PUSH_ALTS_T
[Op p, Op info, Op p_tup]
PUSH_PAD8 -> emit bci_PUSH_PAD8 []
PUSH_PAD16 -> emit bci_PUSH_PAD16 []
PUSH_PAD32 -> emit bci_PUSH_PAD32 []
PUSH_UBX8 lit -> do np <- literal lit
emit bci_PUSH_UBX8 [Op np]
PUSH_UBX16 lit -> do np <- literal lit
emit bci_PUSH_UBX16 [Op np]
PUSH_UBX32 lit -> do np <- literal lit
emit bci_PUSH_UBX32 [Op np]
PUSH_UBX lit nws -> do np <- literal lit
emit bci_PUSH_UBX [Op np, wOp nws]
-- see Note [Generating code for top-level string literal bindings] in GHC.StgToByteCode
PUSH_ADDR nm -> do np <- lit [BCONPtrAddr nm]
emit bci_PUSH_UBX [Op np, SmallOp 1]
PUSH_APPLY_N -> emit bci_PUSH_APPLY_N []
PUSH_APPLY_V -> emit bci_PUSH_APPLY_V []
PUSH_APPLY_F -> emit bci_PUSH_APPLY_F []
PUSH_APPLY_D -> emit bci_PUSH_APPLY_D []
PUSH_APPLY_L -> emit bci_PUSH_APPLY_L []
PUSH_APPLY_P -> emit bci_PUSH_APPLY_P []
PUSH_APPLY_PP -> emit bci_PUSH_APPLY_PP []
PUSH_APPLY_PPP -> emit bci_PUSH_APPLY_PPP []
PUSH_APPLY_PPPP -> emit bci_PUSH_APPLY_PPPP []
PUSH_APPLY_PPPPP -> emit bci_PUSH_APPLY_PPPPP []
PUSH_APPLY_PPPPPP -> emit bci_PUSH_APPLY_PPPPPP []
SLIDE n by -> emit bci_SLIDE [wOp n, wOp by]
ALLOC_AP n -> emit bci_ALLOC_AP [truncHalfWord platform n]
ALLOC_AP_NOUPD n -> emit bci_ALLOC_AP_NOUPD [truncHalfWord platform n]
ALLOC_PAP arity n -> emit bci_ALLOC_PAP [truncHalfWord platform arity, truncHalfWord platform n]
MKAP off sz -> emit bci_MKAP [wOp off, truncHalfWord platform sz]
MKPAP off sz -> emit bci_MKPAP [wOp off, truncHalfWord platform sz]
UNPACK n -> emit bci_UNPACK [wOp n]
PACK dcon sz -> do itbl_no <- lit [BCONPtrItbl (getName dcon)]
emit bci_PACK [Op itbl_no, wOp sz]
LABEL lbl -> label lbl
TESTLT_I i l -> do np <- int i
emit bci_TESTLT_I [Op np, LabelOp l]
TESTEQ_I i l -> do np <- int i
emit bci_TESTEQ_I [Op np, LabelOp l]
TESTLT_W w l -> do np <- word w
emit bci_TESTLT_W [Op np, LabelOp l]
TESTEQ_W w l -> do np <- word w
emit bci_TESTEQ_W [Op np, LabelOp l]
TESTLT_I64 i l -> do np <- word64 (fromIntegral i)
emit bci_TESTLT_I64 [Op np, LabelOp l]
TESTEQ_I64 i l -> do np <- word64 (fromIntegral i)
emit bci_TESTEQ_I64 [Op np, LabelOp l]
TESTLT_I32 i l -> do np <- word (fromIntegral i)
emit bci_TESTLT_I32 [Op np, LabelOp l]
TESTEQ_I32 i l -> do np <- word (fromIntegral i)
emit bci_TESTEQ_I32 [Op np, LabelOp l]
TESTLT_I16 i l -> do np <- word (fromIntegral i)
emit bci_TESTLT_I16 [Op np, LabelOp l]
TESTEQ_I16 i l -> do np <- word (fromIntegral i)
emit bci_TESTEQ_I16 [Op np, LabelOp l]
TESTLT_I8 i l -> do np <- word (fromIntegral i)
emit bci_TESTLT_I8 [Op np, LabelOp l]
TESTEQ_I8 i l -> do np <- word (fromIntegral i)
emit bci_TESTEQ_I8 [Op np, LabelOp l]
TESTLT_W64 w l -> do np <- word64 w
emit bci_TESTLT_W64 [Op np, LabelOp l]
TESTEQ_W64 w l -> do np <- word64 w
emit bci_TESTEQ_W64 [Op np, LabelOp l]
TESTLT_W32 w l -> do np <- word (fromIntegral w)
emit bci_TESTLT_W32 [Op np, LabelOp l]
TESTEQ_W32 w l -> do np <- word (fromIntegral w)
emit bci_TESTEQ_W32 [Op np, LabelOp l]
TESTLT_W16 w l -> do np <- word (fromIntegral w)
emit bci_TESTLT_W16 [Op np, LabelOp l]
TESTEQ_W16 w l -> do np <- word (fromIntegral w)
emit bci_TESTEQ_W16 [Op np, LabelOp l]
TESTLT_W8 w l -> do np <- word (fromIntegral w)
emit bci_TESTLT_W8 [Op np, LabelOp l]
TESTEQ_W8 w l -> do np <- word (fromIntegral w)
emit bci_TESTEQ_W8 [Op np, LabelOp l]
TESTLT_F f l -> do np <- float f
emit bci_TESTLT_F [Op np, LabelOp l]
TESTEQ_F f l -> do np <- float f
emit bci_TESTEQ_F [Op np, LabelOp l]
TESTLT_D d l -> do np <- double d
emit bci_TESTLT_D [Op np, LabelOp l]
TESTEQ_D d l -> do np <- double d
emit bci_TESTEQ_D [Op np, LabelOp l]
TESTLT_P i l -> emit bci_TESTLT_P [SmallOp i, LabelOp l]
TESTEQ_P i l -> emit bci_TESTEQ_P [SmallOp i, LabelOp l]
CASEFAIL -> emit bci_CASEFAIL []
SWIZZLE stkoff n -> emit bci_SWIZZLE [wOp stkoff, IOp n]
JMP l -> emit bci_JMP [LabelOp l]
ENTER -> emit bci_ENTER []
RETURN rep -> emit (return_non_tuple rep) []
RETURN_TUPLE -> emit bci_RETURN_T []
CCALL off m_addr i -> do np <- addr m_addr
emit bci_CCALL [wOp off, Op np, SmallOp i]
PRIMCALL -> emit bci_PRIMCALL []
BRK_FUN arr tick_mod tickx info_mod infox cc ->
do p1 <- ptr (BCOPtrBreakArray arr)
tick_addr <- addr tick_mod
info_addr <- addr info_mod
np <- addr cc
emit bci_BRK_FUN [ Op p1
, Op tick_addr, Op info_addr
, SmallOp tickx, SmallOp infox
, Op np
]
where
literal (LitLabel fs (Just sz) _)
| platformOS platform == OSMinGW32
= litlabel (appendFS fs (mkFastString ('@':show sz)))
-- On Windows, stdcall labels have a suffix indicating the no. of
-- arg words, e.g. foo@8. testcase: ffi012(ghci)
literal (LitLabel fs _ _) = litlabel fs
literal LitNullAddr = word 0
literal (LitFloat r) = float (fromRational r)
literal (LitDouble r) = double (fromRational r)
literal (LitChar c) = int (ord c)
literal (LitString bs) = lit [BCONPtrStr bs]
-- LitString requires a zero-terminator when emitted
literal (LitNumber nt i) = case nt of
LitNumInt -> word (fromIntegral i)
LitNumWord -> word (fromIntegral i)
LitNumInt8 -> word8 (fromIntegral i)
LitNumWord8 -> word8 (fromIntegral i)
LitNumInt16 -> word16 (fromIntegral i)
LitNumWord16 -> word16 (fromIntegral i)
LitNumInt32 -> word32 (fromIntegral i)
LitNumWord32 -> word32 (fromIntegral i)
LitNumInt64 -> word64 (fromIntegral i)
LitNumWord64 -> word64 (fromIntegral i)
LitNumBigNat -> panic "GHC.ByteCode.Asm.literal: LitNumBigNat"
-- We can lower 'LitRubbish' to an arbitrary constant, but @NULL@ is most
-- likely to elicit a crash (rather than corrupt memory) in case absence
-- analysis messed up.
literal (LitRubbish {}) = word 0
litlabel fs = lit [BCONPtrLbl fs]
addr (RemotePtr a) = words [fromIntegral a]
words ws = lit (map BCONPtrWord ws)
word w = words [w]
word_size = platformWordSize platform
word_size_bits = platformWordSizeInBits platform
-- Make lists of host-sized words for literals, so that when the
-- words are placed in memory at increasing addresses, the
-- bit pattern is correct for the host's word size and endianness.
--
-- Note that we only support host endianness == target endianness for now,
-- even with the external interpreter. This would need to be fixed to
-- support host endianness /= target endianness
int :: Int -> Assembler Word
int i = word (fromIntegral i)
float :: Float -> Assembler Word
float f = word32 (castFloatToWord32 f)
double :: Double -> Assembler Word
double d = word64 (castDoubleToWord64 d)
word64 :: Word64 -> Assembler Word
word64 ww = case word_size of
PW4 ->
let !wl = fromIntegral ww
!wh = fromIntegral (ww `unsafeShiftR` 32)
in case platformByteOrder platform of
LittleEndian -> words [wl,wh]
BigEndian -> words [wh,wl]
PW8 -> word (fromIntegral ww)
word8 :: Word8 -> Assembler Word
word8 x = case platformByteOrder platform of
LittleEndian -> word (fromIntegral x)
BigEndian -> word (fromIntegral x `unsafeShiftL` (word_size_bits - 8))
word16 :: Word16 -> Assembler Word
word16 x = case platformByteOrder platform of
LittleEndian -> word (fromIntegral x)
BigEndian -> word (fromIntegral x `unsafeShiftL` (word_size_bits - 16))
word32 :: Word32 -> Assembler Word
word32 x = case platformByteOrder platform of
LittleEndian -> word (fromIntegral x)
BigEndian -> case word_size of
PW4 -> word (fromIntegral x)
PW8 -> word (fromIntegral x `unsafeShiftL` 32)
isLargeW :: Word -> Bool
isLargeW n = n > 65535
isLargeI :: Int -> Bool
isLargeI n = n > 32767 || n < -32768
push_alts :: ArgRep -> Word16
push_alts V = bci_PUSH_ALTS_V
push_alts P = bci_PUSH_ALTS_P
push_alts N = bci_PUSH_ALTS_N
push_alts L = bci_PUSH_ALTS_L
push_alts F = bci_PUSH_ALTS_F
push_alts D = bci_PUSH_ALTS_D
push_alts V16 = error "push_alts: vector"
push_alts V32 = error "push_alts: vector"
push_alts V64 = error "push_alts: vector"
return_non_tuple :: ArgRep -> Word16
return_non_tuple V = bci_RETURN_V
return_non_tuple P = bci_RETURN_P
return_non_tuple N = bci_RETURN_N
return_non_tuple L = bci_RETURN_L
return_non_tuple F = bci_RETURN_F
return_non_tuple D = bci_RETURN_D
return_non_tuple V16 = error "return_non_tuple: vector"
return_non_tuple V32 = error "return_non_tuple: vector"
return_non_tuple V64 = error "return_non_tuple: vector"
{-
we can only handle up to a fixed number of words on the stack,
because we need a stg_ctoi_tN stack frame for each size N. See
Note [unboxed tuple bytecodes and tuple_BCO].
If needed, you can support larger tuples by adding more in
StgMiscClosures.cmm, Interpreter.c and MiscClosures.h and
raising this limit.
Note that the limit is the number of words passed on the stack.
If the calling convention passes part of the tuple in registers, the
maximum number of tuple elements may be larger. Elements can also
take multiple words on the stack (for example Double# on a 32 bit
platform).
-}
maxTupleReturnNativeStackSize :: WordOff
maxTupleReturnNativeStackSize = 62
{-
Construct the call_info word that stg_ctoi_t, stg_ret_t and stg_primcall
use to convert arguments between the native calling convention and the
interpreter.
See Note [GHCi and native call registers] for more information.
-}
mkNativeCallInfoSig :: Platform -> NativeCallInfo -> Word32
mkNativeCallInfoSig platform NativeCallInfo{..}
| nativeCallType == NativeTupleReturn && nativeCallStackSpillSize > maxTupleReturnNativeStackSize
= pprPanic "mkNativeCallInfoSig: tuple too big for the bytecode compiler"
(ppr nativeCallStackSpillSize <+> text "stack words." <+>
text "Use -fobject-code to get around this limit"
)
| otherwise
= assertPpr (length regs <= 24) (text "too many registers for bitmap:" <+> ppr (length regs)) {- 24 bits for register bitmap -}
assertPpr (cont_offset < 255) (text "continuation offset too large:" <+> ppr cont_offset) {- 8 bits for continuation offset (only for NativeTupleReturn) -}
assertPpr (all (`elem` regs) (regSetToList nativeCallRegs)) (text "not all registers accounted for") {- all regs accounted for -}
foldl' reg_bit 0 (zip regs [0..]) .|. (cont_offset `shiftL` 24)
where
cont_offset :: Word32
cont_offset
| nativeCallType == NativeTupleReturn = fromIntegral nativeCallStackSpillSize
| otherwise = 0 -- there is no continuation for primcalls
reg_bit :: Word32 -> (GlobalReg, Int) -> Word32
reg_bit x (r, n)
| r `elemRegSet` nativeCallRegs = x .|. 1 `shiftL` n
| otherwise = x
regs = allArgRegsCover platform
mkNativeCallInfoLit :: Platform -> NativeCallInfo -> Literal
mkNativeCallInfoLit platform call_info =
mkLitWord platform . fromIntegral $ mkNativeCallInfoSig platform call_info
iNTERP_STACK_CHECK_THRESH :: Int
iNTERP_STACK_CHECK_THRESH = INTERP_STACK_CHECK_THRESH
|