1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnliftedNewtypes #-}
--
-- (c) The University of Glasgow 2002-2006
--
-- | Bytecode assembler types
module GHC.ByteCode.Types
( CompiledByteCode(..), seqCompiledByteCode
, BCOByteArray(..), mkBCOByteArray
, FFIInfo(..)
, RegBitmap(..)
, NativeCallType(..), NativeCallInfo(..), voidTupleReturnInfo, voidPrimCallInfo
, ByteOff(..), WordOff(..), HalfWord(..)
, UnlinkedBCO(..), BCOPtr(..), BCONPtr(..)
, ItblEnv, ItblPtr(..)
, AddrEnv, AddrPtr(..)
, CgBreakInfo(..)
, ModBreaks (..), BreakIndex, emptyModBreaks
, CCostCentre
, FlatBag, sizeFlatBag, fromSizedSeq, elemsFlatBag
) where
import GHC.Prelude
import GHC.Data.FastString
import GHC.Data.FlatBag
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Utils.Outputable
import GHC.Builtin.PrimOps
import GHC.Types.SrcLoc
import GHCi.BreakArray
import GHCi.RemoteTypes
import GHCi.FFI
import Control.DeepSeq
import GHCi.ResolvedBCO ( BCOByteArray(..), mkBCOByteArray )
import Foreign
import Data.Array
import Data.ByteString (ByteString)
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import qualified GHC.Exts.Heap as Heap
import GHC.Stack.CCS
import GHC.Cmm.Expr ( GlobalRegSet, emptyRegSet, regSetToList )
import GHC.Iface.Syntax
import Language.Haskell.Syntax.Module.Name (ModuleName)
-- -----------------------------------------------------------------------------
-- Compiled Byte Code
data CompiledByteCode = CompiledByteCode
{ bc_bcos :: [UnlinkedBCO] -- Bunch of interpretable bindings
, bc_itbls :: ItblEnv -- A mapping from DataCons to their itbls
, bc_ffis :: [FFIInfo] -- ffi blocks we allocated
, bc_strs :: AddrEnv -- malloc'd top-level strings
, bc_breaks :: Maybe ModBreaks -- breakpoint info (Nothing if we're not
-- creating breakpoints, for some reason)
}
-- ToDo: we're not tracking strings that we malloc'd
newtype FFIInfo = FFIInfo (RemotePtr C_ffi_cif)
deriving (Show, NFData)
instance Outputable CompiledByteCode where
ppr CompiledByteCode{..} = ppr bc_bcos
-- Not a real NFData instance, because ModBreaks contains some things
-- we can't rnf
seqCompiledByteCode :: CompiledByteCode -> ()
seqCompiledByteCode CompiledByteCode{..} =
rnf bc_bcos `seq`
seqEltsNameEnv rnf bc_itbls `seq`
rnf bc_ffis `seq`
seqEltsNameEnv rnf bc_strs `seq`
rnf (fmap seqModBreaks bc_breaks)
newtype ByteOff = ByteOff Int
deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Outputable)
newtype WordOff = WordOff Int
deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Outputable)
-- A type for values that are half the size of a word on the target
-- platform where the interpreter runs (which may be a different
-- wordsize than the compiler).
newtype HalfWord = HalfWord Word
deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Outputable)
newtype RegBitmap = RegBitmap { unRegBitmap :: Word32 }
deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Bits, FiniteBits, Outputable)
{- Note [GHCi TupleInfo]
~~~~~~~~~~~~~~~~~~~~~~~~
This contains the data we need for passing unboxed tuples between
bytecode and native code
In general we closely follow the native calling convention that
GHC uses for unboxed tuples, but we don't use any registers in
bytecode. All tuple elements are expanded to use a full register
or a full word on the stack.
The position of tuple elements that are returned on the stack in
the native calling convention is unchanged when returning the same
tuple in bytecode.
The order of the remaining elements is determined by the register in
which they would have been returned, rather than by their position in
the tuple in the Haskell source code. This makes jumping between bytecode
and native code easier: A map of live registers is enough to convert the
tuple.
See GHC.StgToByteCode.layoutTuple for more details.
-}
data NativeCallType = NativePrimCall
| NativeTupleReturn
deriving (Eq)
data NativeCallInfo = NativeCallInfo
{ nativeCallType :: !NativeCallType
, nativeCallSize :: !WordOff -- total size of arguments in words
, nativeCallRegs :: !GlobalRegSet
, nativeCallStackSpillSize :: !WordOff {- words spilled on the stack by
GHCs native calling convention -}
}
instance Outputable NativeCallInfo where
ppr NativeCallInfo{..} = text "<arg_size" <+> ppr nativeCallSize <+>
text "stack" <+> ppr nativeCallStackSpillSize <+>
text "regs" <+>
ppr (map (text @SDoc . show) $ regSetToList nativeCallRegs) <>
char '>'
voidTupleReturnInfo :: NativeCallInfo
voidTupleReturnInfo = NativeCallInfo NativeTupleReturn 0 emptyRegSet 0
voidPrimCallInfo :: NativeCallInfo
voidPrimCallInfo = NativeCallInfo NativePrimCall 0 emptyRegSet 0
type ItblEnv = NameEnv (Name, ItblPtr)
type AddrEnv = NameEnv (Name, AddrPtr)
-- We need the Name in the range so we know which
-- elements to filter out when unloading a module
newtype ItblPtr = ItblPtr (RemotePtr Heap.StgInfoTable)
deriving (Show, NFData)
newtype AddrPtr = AddrPtr (RemotePtr ())
deriving (NFData)
data UnlinkedBCO
= UnlinkedBCO {
unlinkedBCOName :: !Name,
unlinkedBCOArity :: {-# UNPACK #-} !Int,
unlinkedBCOInstrs :: !(BCOByteArray Word16), -- insns
unlinkedBCOBitmap :: !(BCOByteArray Word), -- bitmap
unlinkedBCOLits :: !(FlatBag BCONPtr), -- non-ptrs
unlinkedBCOPtrs :: !(FlatBag BCOPtr) -- ptrs
}
instance NFData UnlinkedBCO where
rnf UnlinkedBCO{..} =
rnf unlinkedBCOLits `seq`
rnf unlinkedBCOPtrs
data BCOPtr
= BCOPtrName !Name
| BCOPtrPrimOp !PrimOp
| BCOPtrBCO !UnlinkedBCO
| BCOPtrBreakArray (ForeignRef BreakArray)
-- ^ a pointer to a breakpoint's module's BreakArray in GHCi's memory
instance NFData BCOPtr where
rnf (BCOPtrBCO bco) = rnf bco
rnf x = x `seq` ()
data BCONPtr
= BCONPtrWord {-# UNPACK #-} !Word
| BCONPtrLbl !FastString
| BCONPtrItbl !Name
-- | A reference to a top-level string literal; see
-- Note [Generating code for top-level string literal bindings] in GHC.StgToByteCode.
| BCONPtrAddr !Name
-- | Only used internally in the assembler in an intermediate representation;
-- should never appear in a fully-assembled UnlinkedBCO.
-- Also see Note [Allocating string literals] in GHC.ByteCode.Asm.
| BCONPtrStr !ByteString
instance NFData BCONPtr where
rnf x = x `seq` ()
-- | Information about a breakpoint that we know at code-generation time
-- In order to be used, this needs to be hydrated relative to the current HscEnv by
-- 'hydrateCgBreakInfo'. Everything here can be fully forced and that's critical for
-- preventing space leaks (see #22530)
data CgBreakInfo
= CgBreakInfo
{ cgb_tyvars :: ![IfaceTvBndr] -- ^ Type variables in scope at the breakpoint
, cgb_vars :: ![Maybe (IfaceIdBndr, Word)]
, cgb_resty :: !IfaceType
}
-- See Note [Syncing breakpoint info] in GHC.Runtime.Eval
seqCgBreakInfo :: CgBreakInfo -> ()
seqCgBreakInfo CgBreakInfo{..} =
rnf cgb_tyvars `seq`
rnf cgb_vars `seq`
rnf cgb_resty
instance Outputable UnlinkedBCO where
ppr (UnlinkedBCO nm _arity _insns _bitmap lits ptrs)
= sep [text "BCO", ppr nm, text "with",
ppr (sizeFlatBag lits), text "lits",
ppr (sizeFlatBag ptrs), text "ptrs" ]
instance Outputable CgBreakInfo where
ppr info = text "CgBreakInfo" <+>
parens (ppr (cgb_vars info) <+>
ppr (cgb_resty info))
-- -----------------------------------------------------------------------------
-- Breakpoints
-- | Breakpoint index
type BreakIndex = Int
-- | C CostCentre type
data CCostCentre
-- | All the information about the breakpoints for a module
data ModBreaks
= ModBreaks
{ modBreaks_flags :: ForeignRef BreakArray
-- ^ The array of flags, one per breakpoint,
-- indicating which breakpoints are enabled.
, modBreaks_locs :: !(Array BreakIndex SrcSpan)
-- ^ An array giving the source span of each breakpoint.
, modBreaks_vars :: !(Array BreakIndex [OccName])
-- ^ An array giving the names of the free variables at each breakpoint.
, modBreaks_decls :: !(Array BreakIndex [String])
-- ^ An array giving the names of the declarations enclosing each breakpoint.
-- See Note [Field modBreaks_decls]
, modBreaks_ccs :: !(Array BreakIndex (RemotePtr CostCentre))
-- ^ Array pointing to cost centre for each breakpoint
, modBreaks_breakInfo :: IntMap CgBreakInfo
-- ^ info about each breakpoint from the bytecode generator
, modBreaks_module :: RemotePtr ModuleName
}
seqModBreaks :: ModBreaks -> ()
seqModBreaks ModBreaks{..} =
rnf modBreaks_flags `seq`
rnf modBreaks_locs `seq`
rnf modBreaks_vars `seq`
rnf modBreaks_decls `seq`
rnf modBreaks_ccs `seq`
rnf (fmap seqCgBreakInfo modBreaks_breakInfo) `seq`
rnf modBreaks_module
-- | Construct an empty ModBreaks
emptyModBreaks :: ModBreaks
emptyModBreaks = ModBreaks
{ modBreaks_flags = error "ModBreaks.modBreaks_array not initialised"
-- ToDo: can we avoid this?
, modBreaks_locs = array (0,-1) []
, modBreaks_vars = array (0,-1) []
, modBreaks_decls = array (0,-1) []
, modBreaks_ccs = array (0,-1) []
, modBreaks_breakInfo = IntMap.empty
, modBreaks_module = toRemotePtr nullPtr
}
{-
Note [Field modBreaks_decls]
~~~~~~~~~~~~~~~~~~~~~~
A value of eg ["foo", "bar", "baz"] in a `modBreaks_decls` field means:
The breakpoint is in the function called "baz" that is declared in a `let`
or `where` clause of a declaration called "bar", which itself is declared
in a `let` or `where` clause of the top-level function called "foo".
-}
|