1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[FloatOut]{Float bindings outwards (towards the top level)}
``Long-distance'' floating of bindings towards the top level.
-}
module GHC.Core.Opt.FloatOut ( floatOutwards ) where
import GHC.Prelude
import GHC.Core
import GHC.Core.Utils
import GHC.Core.Make
-- import GHC.Core.Opt.Arity ( exprArity, etaExpand )
import GHC.Core.Opt.Monad ( FloatOutSwitches(..) )
import GHC.Driver.Flags ( DumpFlag (..) )
import GHC.Utils.Logger
import GHC.Types.Id ( Id, idType,
-- idArity, isDeadEndId,
isJoinId, idJoinPointHood )
import GHC.Types.Tickish
import GHC.Core.Opt.SetLevels
import GHC.Types.Unique.Supply ( UniqSupply )
import GHC.Data.Bag
import GHC.Utils.Misc
import GHC.Data.Maybe
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Core.Type
import qualified Data.IntMap as M
import Data.List ( partition )
{-
-----------------
Overall game plan
-----------------
The Big Main Idea is:
To float out sub-expressions that can thereby get outside
a non-one-shot value lambda, and hence may be shared.
To achieve this we may need to do two things:
a) Let-bind the sub-expression:
f (g x) ==> let lvl = f (g x) in lvl
Now we can float the binding for 'lvl'.
b) More than that, we may need to abstract wrt a type variable
\x -> ... /\a -> let v = ...a... in ....
Here the binding for v mentions 'a' but not 'x'. So we
abstract wrt 'a', to give this binding for 'v':
vp = /\a -> ...a...
v = vp a
Now the binding for vp can float out unimpeded.
I can't remember why this case seemed important enough to
deal with, but I certainly found cases where important floats
didn't happen if we did not abstract wrt tyvars.
With this in mind we can also achieve another goal: lambda lifting.
We can make an arbitrary (function) binding float to top level by
abstracting wrt *all* local variables, not just type variables, leaving
a binding that can be floated right to top level. Whether or not this
happens is controlled by a flag.
Random comments
~~~~~~~~~~~~~~~
At the moment we never float a binding out to between two adjacent
lambdas. For example:
@
\x y -> let t = x+x in ...
===>
\x -> let t = x+x in \y -> ...
@
Reason: this is less efficient in the case where the original lambda
is never partially applied.
But there's a case I've seen where this might not be true. Consider:
@
elEm2 x ys
= elem' x ys
where
elem' _ [] = False
elem' x (y:ys) = x==y || elem' x ys
@
It turns out that this generates a subexpression of the form
@
\deq x ys -> let eq = eqFromEqDict deq in ...
@
which might usefully be separated to
@
\deq -> let eq = eqFromEqDict deq in \xy -> ...
@
Well, maybe. We don't do this at the moment.
Note [Join points]
~~~~~~~~~~~~~~~~~~
Every occurrence of a join point must be a tail call (see Note [Invariants on
join points] in GHC.Core), so we must be careful with how far we float them. The
mechanism for doing so is the *join ceiling*, detailed in Note [Join ceiling]
in GHC.Core.Opt.SetLevels. For us, the significance is that a binder might be marked to be
dropped at the nearest boundary between tail calls and non-tail calls. For
example:
(< join j = ... in
let x = < ... > in
case < ... > of
A -> ...
B -> ...
>) < ... > < ... >
Here the join ceilings are marked with angle brackets. Either side of an
application is a join ceiling, as is the scrutinee position of a case
expression or the RHS of a let binding (but not a join point).
Why do we *want* do float join points at all? After all, they're never
allocated, so there's no sharing to be gained by floating them. However, the
other benefit of floating is making RHSes small, and this can have a significant
impact. In particular, stream fusion has been known to produce nested loops like
this:
joinrec j1 x1 =
joinrec j2 x2 =
joinrec j3 x3 = ... jump j1 (x3 + 1) ... jump j2 (x3 + 1) ...
in jump j3 x2
in jump j2 x1
in jump j1 x
(Assume x1 and x2 do *not* occur free in j3.)
Here j1 and j2 are wholly superfluous---each of them merely forwards its
argument to j3. Since j3 only refers to x3, we can float j2 and j3 to make
everything one big mutual recursion:
joinrec j1 x1 = jump j2 x1
j2 x2 = jump j3 x2
j3 x3 = ... jump j1 (x3 + 1) ... jump j2 (x3 + 1) ...
in jump j1 x
Now the simplifier will happily inline the trivial j1 and j2, leaving only j3.
Without floating, we're stuck with three loops instead of one.
************************************************************************
* *
\subsection[floatOutwards]{@floatOutwards@: let-floating interface function}
* *
************************************************************************
-}
floatOutwards :: Logger
-> FloatOutSwitches
-> UniqSupply
-> CoreProgram -> IO CoreProgram
floatOutwards logger float_sws us pgm
= do {
let { annotated_w_levels = setLevels float_sws pgm us ;
(fss, binds_s') = unzip (map floatTopBind annotated_w_levels)
} ;
putDumpFileMaybe logger Opt_D_verbose_core2core "Levels added:"
FormatCore
(vcat (map ppr annotated_w_levels));
let { (tlets, ntlets, lams) = get_stats (sum_stats fss) };
putDumpFileMaybe logger Opt_D_dump_simpl_stats "FloatOut stats:"
FormatText
(hcat [ int tlets, text " Lets floated to top level; ",
int ntlets, text " Lets floated elsewhere; from ",
int lams, text " Lambda groups"]);
return (bagToList (unionManyBags binds_s'))
}
floatTopBind :: LevelledBind -> (FloatStats, Bag CoreBind)
floatTopBind bind
= case (floatBind bind) of { (fs, floats, bind') ->
let float_bag = flattenTopFloats floats
in case bind' of
-- bind' can't have unlifted values or join points, so can only be one
-- value bind, rec or non-rec (see comment on floatBind)
[Rec prs] -> (fs, unitBag (Rec (addTopFloatPairs float_bag prs)))
[NonRec b e] -> (fs, float_bag `snocBag` NonRec b e)
_ -> pprPanic "floatTopBind" (ppr bind') }
{-
************************************************************************
* *
\subsection[FloatOut-Bind]{Floating in a binding (the business end)}
* *
************************************************************************
-}
floatBind :: LevelledBind -> (FloatStats, FloatBinds, [CoreBind])
-- Returns a list with either
-- * A single non-recursive binding (value or join point), or
-- * The following, in order:
-- * Zero or more non-rec unlifted bindings
-- * One or both of:
-- * A recursive group of join binds
-- * A recursive group of value binds
-- See Note [Floating out of Rec rhss] for why things get arranged this way.
floatBind (NonRec (TB var _) rhs)
= case (floatRhs var rhs) of { (fs, rhs_floats, rhs') ->
(fs, rhs_floats, [NonRec var rhs']) }
floatBind (Rec pairs)
= case floatList do_pair pairs of { (fs, rhs_floats, new_pairs) ->
let (new_ul_pairss, new_other_pairss) = unzip new_pairs
(new_join_pairs, new_l_pairs) = partition (isJoinId . fst)
(concat new_other_pairss)
-- Can't put the join points and the values in the same rec group
new_rec_binds | null new_join_pairs = [ Rec new_l_pairs ]
| null new_l_pairs = [ Rec new_join_pairs ]
| otherwise = [ Rec new_l_pairs
, Rec new_join_pairs ]
new_non_rec_binds = [ NonRec b e | (b, e) <- concat new_ul_pairss ]
in
(fs, rhs_floats, new_non_rec_binds ++ new_rec_binds) }
where
do_pair :: (LevelledBndr, LevelledExpr)
-> (FloatStats, FloatBinds,
([(Id,CoreExpr)], -- Non-recursive unlifted value bindings
[(Id,CoreExpr)])) -- Join points and lifted value bindings
do_pair (TB name spec, rhs)
| isTopLvl dest_lvl -- See Note [floatBind for top level]
= case (floatRhs name rhs) of { (fs, rhs_floats, rhs') ->
(fs, emptyFloats, ([], addTopFloatPairs (flattenTopFloats rhs_floats)
[(name, rhs')]))}
| otherwise -- Note [Floating out of Rec rhss]
= case (floatRhs name rhs) of { (fs, rhs_floats, rhs') ->
case (partitionByLevel dest_lvl rhs_floats) of { (rhs_floats', heres) ->
case (splitRecFloats heres) of { (ul_pairs, pairs, case_heres) ->
let pairs' = (name, installUnderLambdas case_heres rhs') : pairs in
(fs, rhs_floats', (ul_pairs, pairs')) }}}
where
dest_lvl = floatSpecLevel spec
splitRecFloats :: Bag FloatBind
-> ([(Id,CoreExpr)], -- Non-recursive unlifted value bindings
[(Id,CoreExpr)], -- Join points and lifted value bindings
Bag FloatBind) -- A tail of further bindings
-- The "tail" begins with a case
-- See Note [Floating out of Rec rhss]
splitRecFloats fs
= go [] [] (bagToList fs)
where
go ul_prs prs (FloatLet (NonRec b r) : fs) | isUnliftedType (idType b)
-- NB: isUnliftedType is OK here as binders always
-- have a fixed RuntimeRep.
, not (isJoinId b)
= go ((b,r):ul_prs) prs fs
| otherwise
= go ul_prs ((b,r):prs) fs
go ul_prs prs (FloatLet (Rec prs') : fs) = go ul_prs (prs' ++ prs) fs
go ul_prs prs fs = (reverse ul_prs, prs,
listToBag fs)
-- Order only matters for
-- non-rec
installUnderLambdas :: Bag FloatBind -> CoreExpr -> CoreExpr
-- See Note [Floating out of Rec rhss]
installUnderLambdas floats e
| isEmptyBag floats = e
| otherwise = go e
where
go (Lam b e) = Lam b (go e)
go e = install floats e
---------------
floatList :: (a -> (FloatStats, FloatBinds, b)) -> [a] -> (FloatStats, FloatBinds, [b])
floatList _ [] = (zeroStats, emptyFloats, [])
floatList f (a:as) = case f a of { (fs_a, binds_a, b) ->
case floatList f as of { (fs_as, binds_as, bs) ->
(fs_a `add_stats` fs_as, binds_a `plusFloats` binds_as, b:bs) }}
{-
Note [Floating out of Rec rhss]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider Rec { f<1,0> = \xy. body }
From the body we may get some floats. The ones with level <1,0> must
stay here, since they may mention f. Ideally we'd like to make them
part of the Rec block pairs -- but we can't if there are any
FloatCases involved.
Nor is it a good idea to dump them in the rhs, but outside the lambda
f = case x of I# y -> \xy. body
because now f's arity might get worse, which is Not Good. (And if
there's an SCC around the RHS it might not get better again.
See #5342.)
So, gruesomely, we split the floats into
* the outer FloatLets, which can join the Rec, and
* an inner batch starting in a FloatCase, which are then
pushed *inside* the lambdas.
This loses full-laziness the rare situation where there is a
FloatCase and a Rec interacting.
If there are unlifted FloatLets (that *aren't* join points) among the floats,
we can't add them to the recursive group without angering Core Lint, but since
they must be ok-for-speculation, they can't actually be making any recursive
calls, so we can safely pull them out and keep them non-recursive.
(Why is something getting floated to <1,0> that doesn't make a recursive call?
The case that came up in testing was that f *and* the unlifted binding were
getting floated *to the same place*:
\x<2,0> ->
... <3,0>
letrec { f<F<2,0>> =
... let x'<F<2,0>> = x +# 1# in ...
} in ...
Everything gets labeled "float to <2,0>" because it all depends on x, but this
makes f and x' look mutually recursive when they're not.
The test was shootout/k-nucleotide, as compiled using commit 47d5dd68 on the
wip/join-points branch.
TODO: This can probably be solved somehow in GHC.Core.Opt.SetLevels. The difference between
"this *is at* level <2,0>" and "this *depends on* level <2,0>" is very
important.)
Note [floatBind for top level]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We may have a *nested* binding whose destination level is (FloatMe tOP_LEVEL), thus
letrec { foo <0,0> = .... (let bar<0,0> = .. in ..) .... }
The binding for bar will be in the "tops" part of the floating binds,
and thus not partitioned by floatBody.
We could perhaps get rid of the 'tops' component of the floating binds,
but this case works just as well.
************************************************************************
\subsection[FloatOut-Expr]{Floating in expressions}
* *
************************************************************************
-}
floatBody :: Level
-> LevelledExpr
-> (FloatStats, FloatBinds, CoreExpr)
floatBody lvl arg -- Used rec rhss, and case-alternative rhss
= case (floatExpr arg) of { (fsa, floats, arg') ->
case (partitionByLevel lvl floats) of { (floats', heres) ->
-- Dump bindings are bound here
(fsa, floats', install heres arg') }}
-----------------
{- Note [Floating past breakpoints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to disallow floating out of breakpoint ticks (see #10052). However, I
think this is too restrictive.
Consider the case of an expression scoped over by a breakpoint tick,
tick<...> (let x = ... in f x)
In this case it is completely legal to float out x, despite the fact that
breakpoint ticks are scoped,
let x = ... in (tick<...> f x)
The reason here is that we know that the breakpoint will still be hit when the
expression is entered since the tick still scopes over the RHS.
-}
floatExpr :: LevelledExpr
-> (FloatStats, FloatBinds, CoreExpr)
floatExpr (Var v) = (zeroStats, emptyFloats, Var v)
floatExpr (Type ty) = (zeroStats, emptyFloats, Type ty)
floatExpr (Coercion co) = (zeroStats, emptyFloats, Coercion co)
floatExpr (Lit lit) = (zeroStats, emptyFloats, Lit lit)
floatExpr (App e a)
= case (atJoinCeiling $ floatExpr e) of { (fse, floats_e, e') ->
case (atJoinCeiling $ floatExpr a) of { (fsa, floats_a, a') ->
(fse `add_stats` fsa, floats_e `plusFloats` floats_a, App e' a') }}
floatExpr lam@(Lam (TB _ lam_spec) _)
= let (bndrs_w_lvls, body) = collectBinders lam
bndrs = [b | TB b _ <- bndrs_w_lvls]
bndr_lvl = asJoinCeilLvl (floatSpecLevel lam_spec)
-- All the binders have the same level
-- See GHC.Core.Opt.SetLevels.lvlLamBndrs
-- Use asJoinCeilLvl to make this the join ceiling
in
case (floatBody bndr_lvl body) of { (fs, floats, body') ->
(add_to_stats fs floats, floats, mkLams bndrs body') }
floatExpr (Tick tickish expr)
| tickish `tickishScopesLike` SoftScope -- not scoped, can just float
= case (atJoinCeiling $ floatExpr expr) of { (fs, floating_defns, expr') ->
(fs, floating_defns, Tick tickish expr') }
| not (tickishCounts tickish) || tickishCanSplit tickish
= case (atJoinCeiling $ floatExpr expr) of { (fs, floating_defns, expr') ->
let -- Annotate bindings floated outwards past an scc expression
-- with the cc. We mark that cc as "duplicated", though.
annotated_defns = wrapTick (mkNoCount tickish) floating_defns
in
(fs, annotated_defns, Tick tickish expr') }
-- See Note [Floating past breakpoints]
| Breakpoint{} <- tickish
= case (floatExpr expr) of { (fs, floating_defns, expr') ->
(fs, floating_defns, Tick tickish expr') }
| otherwise
= pprPanic "floatExpr tick" (ppr tickish)
floatExpr (Cast expr co)
= case (atJoinCeiling $ floatExpr expr) of { (fs, floating_defns, expr') ->
(fs, floating_defns, Cast expr' co) }
floatExpr (Let bind body)
= case bind_spec of
FloatMe dest_lvl
-> case (floatBind bind) of { (fsb, bind_floats, binds') ->
case (floatExpr body) of { (fse, body_floats, body') ->
let new_bind_floats = foldr plusFloats emptyFloats
(map (unitLetFloat dest_lvl) binds') in
( add_stats fsb fse
, bind_floats `plusFloats` new_bind_floats
`plusFloats` body_floats
, body') }}
StayPut bind_lvl -- See Note [Avoiding unnecessary floating]
-> case (floatBind bind) of { (fsb, bind_floats, binds') ->
case (floatBody bind_lvl body) of { (fse, body_floats, body') ->
( add_stats fsb fse
, bind_floats `plusFloats` body_floats
, foldr Let body' binds' ) }}
where
bind_spec = case bind of
NonRec (TB _ s) _ -> s
Rec ((TB _ s, _) : _) -> s
Rec [] -> panic "floatExpr:rec"
floatExpr (Case scrut (TB case_bndr case_spec) ty alts)
= case case_spec of
FloatMe dest_lvl -- Case expression moves
| [Alt con@(DataAlt {}) bndrs rhs] <- alts
-> case atJoinCeiling $ floatExpr scrut of { (fse, fde, scrut') ->
case floatExpr rhs of { (fsb, fdb, rhs') ->
let
float = unitCaseFloat dest_lvl scrut'
case_bndr con [b | TB b _ <- bndrs]
in
(add_stats fse fsb, fde `plusFloats` float `plusFloats` fdb, rhs') }}
| otherwise
-> pprPanic "Floating multi-case" (ppr alts)
StayPut bind_lvl -- Case expression stays put
-> case atJoinCeiling $ floatExpr scrut of { (fse, fde, scrut') ->
case floatList (float_alt bind_lvl) alts of { (fsa, fda, alts') ->
(add_stats fse fsa, fda `plusFloats` fde, Case scrut' case_bndr ty alts')
}}
where
float_alt bind_lvl (Alt con bs rhs)
= case (floatBody bind_lvl rhs) of { (fs, rhs_floats, rhs') ->
(fs, rhs_floats, Alt con [b | TB b _ <- bs] rhs') }
floatRhs :: CoreBndr
-> LevelledExpr
-> (FloatStats, FloatBinds, CoreExpr)
floatRhs bndr rhs
| JoinPoint join_arity <- idJoinPointHood bndr
, Just (bndrs, body) <- try_collect join_arity rhs []
= case bndrs of
[] -> floatExpr rhs
(TB _ lam_spec):_ ->
let lvl = floatSpecLevel lam_spec in
case floatBody lvl body of { (fs, floats, body') ->
(fs, floats, mkLams [b | TB b _ <- bndrs] body') }
| otherwise
= atJoinCeiling $ floatExpr rhs
where
try_collect 0 expr acc = Just (reverse acc, expr)
try_collect n (Lam b e) acc = try_collect (n-1) e (b:acc)
try_collect _ _ _ = Nothing
{-
Note [Avoiding unnecessary floating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we want to avoid floating a let unnecessarily, because
it might worsen strictness:
let
x = ...(let y = e in y+y)....
Here y is demanded. If we float it outside the lazy 'x=..' then
we'd have to zap its demand info, and it may never be restored.
So at a 'let' we leave the binding right where the are unless
the binding will escape a value lambda, e.g.
(\x -> let y = fac 100 in y)
That's what the partitionByMajorLevel does in the floatExpr (Let ...)
case.
Notice, though, that we must take care to drop any bindings
from the body of the let that depend on the staying-put bindings.
We used instead to do the partitionByMajorLevel on the RHS of an '=',
in floatRhs. But that was quite tiresome. We needed to test for
values or trivial rhss, because (in particular) we don't want to insert
new bindings between the "=" and the "\". E.g.
f = \x -> let <bind> in <body>
We do not want
f = let <bind> in \x -> <body>
(a) The simplifier will immediately float it further out, so we may
as well do so right now; in general, keeping rhss as manifest
values is good
(b) If a float-in pass follows immediately, it might add yet more
bindings just after the '='. And some of them might (correctly)
be strict even though the 'let f' is lazy, because f, being a value,
gets its demand-info zapped by the simplifier.
And even all that turned out to be very fragile, and broke
altogether when profiling got in the way.
So now we do the partition right at the (Let..) itself.
************************************************************************
* *
\subsection{Utility bits for floating stats}
* *
************************************************************************
I didn't implement this with unboxed numbers. I don't want to be too
strict in this stuff, as it is rarely turned on. (WDP 95/09)
-}
data FloatStats
= FlS Int -- Number of top-floats * lambda groups they've been past
Int -- Number of non-top-floats * lambda groups they've been past
Int -- Number of lambda (groups) seen
get_stats :: FloatStats -> (Int, Int, Int)
get_stats (FlS a b c) = (a, b, c)
zeroStats :: FloatStats
zeroStats = FlS 0 0 0
sum_stats :: [FloatStats] -> FloatStats
sum_stats xs = foldr add_stats zeroStats xs
add_stats :: FloatStats -> FloatStats -> FloatStats
add_stats (FlS a1 b1 c1) (FlS a2 b2 c2)
= FlS (a1 + a2) (b1 + b2) (c1 + c2)
add_to_stats :: FloatStats -> FloatBinds -> FloatStats
add_to_stats (FlS a b c) (FB tops ceils others)
= FlS (a + lengthBag tops)
(b + lengthBag ceils + lengthBag (flattenMajor others))
(c + 1)
{-
************************************************************************
* *
\subsection{Utility bits for floating}
* *
************************************************************************
Note [Representation of FloatBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The FloatBinds types is somewhat important. We can get very large numbers
of floating bindings, often all destined for the top level. A typical example
is x = [4,2,5,2,5, .... ]
Then we get lots of small expressions like (fromInteger 4), which all get
lifted to top level.
The trouble is that
(a) we partition these floating bindings *at every binding site*
(b) GHC.Core.Opt.SetLevels introduces a new bindings site for every float
So we had better not look at each binding at each binding site!
That is why MajorEnv is represented as a finite map.
We keep the bindings destined for the *top* level separate, because
we float them out even if they don't escape a *value* lambda; see
partitionByMajorLevel.
-}
type FloatLet = CoreBind -- INVARIANT: a FloatLet is always lifted
type MajorEnv = M.IntMap MinorEnv -- Keyed by major level
type MinorEnv = M.IntMap (Bag FloatBind) -- Keyed by minor level
data FloatBinds = FB !(Bag FloatLet) -- Destined for top level
!(Bag FloatBind) -- Destined for join ceiling
!MajorEnv -- Other levels
-- See Note [Representation of FloatBinds]
instance Outputable FloatBinds where
ppr (FB fbs ceils defs)
= text "FB" <+> (braces $ vcat
[ text "tops =" <+> ppr fbs
, text "ceils =" <+> ppr ceils
, text "non-tops =" <+> ppr defs ])
flattenTopFloats :: FloatBinds -> Bag CoreBind
flattenTopFloats (FB tops ceils defs)
= assertPpr (isEmptyBag (flattenMajor defs)) (ppr defs) $
assertPpr (isEmptyBag ceils) (ppr ceils)
tops
addTopFloatPairs :: Bag CoreBind -> [(Id,CoreExpr)] -> [(Id,CoreExpr)]
addTopFloatPairs float_bag prs
= foldr add prs float_bag
where
add (NonRec b r) prs = (b,r):prs
add (Rec prs1) prs2 = prs1 ++ prs2
flattenMajor :: MajorEnv -> Bag FloatBind
flattenMajor = M.foldr (unionBags . flattenMinor) emptyBag
flattenMinor :: MinorEnv -> Bag FloatBind
flattenMinor = M.foldr unionBags emptyBag
emptyFloats :: FloatBinds
emptyFloats = FB emptyBag emptyBag M.empty
unitCaseFloat :: Level -> CoreExpr -> Id -> AltCon -> [Var] -> FloatBinds
unitCaseFloat (Level major minor t) e b con bs
| t == JoinCeilLvl
= FB emptyBag floats M.empty
| otherwise
= FB emptyBag emptyBag (M.singleton major (M.singleton minor floats))
where
floats = unitBag (FloatCase e b con bs)
unitLetFloat :: Level -> FloatLet -> FloatBinds
unitLetFloat lvl@(Level major minor t) b
| isTopLvl lvl = FB (unitBag b) emptyBag M.empty
| t == JoinCeilLvl = FB emptyBag floats M.empty
| otherwise = FB emptyBag emptyBag (M.singleton major
(M.singleton minor floats))
where
floats = unitBag (FloatLet b)
plusFloats :: FloatBinds -> FloatBinds -> FloatBinds
plusFloats (FB t1 c1 l1) (FB t2 c2 l2)
= FB (t1 `unionBags` t2) (c1 `unionBags` c2) (l1 `plusMajor` l2)
plusMajor :: MajorEnv -> MajorEnv -> MajorEnv
plusMajor = M.unionWith plusMinor
plusMinor :: MinorEnv -> MinorEnv -> MinorEnv
plusMinor = M.unionWith unionBags
install :: Bag FloatBind -> CoreExpr -> CoreExpr
install defn_groups expr
= foldr wrapFloat expr defn_groups
partitionByLevel
:: Level -- Partitioning level
-> FloatBinds -- Defns to be divided into 2 piles...
-> (FloatBinds, -- Defns with level strictly < partition level,
Bag FloatBind) -- The rest
{-
-- ---- partitionByMajorLevel ----
-- Float it if we escape a value lambda,
-- *or* if we get to the top level
-- *or* if it's a case-float and its minor level is < current
--
-- If we can get to the top level, say "yes" anyway. This means that
-- x = f e
-- transforms to
-- lvl = e
-- x = f lvl
-- which is as it should be
partitionByMajorLevel (Level major _) (FB tops defns)
= (FB tops outer, heres `unionBags` flattenMajor inner)
where
(outer, mb_heres, inner) = M.splitLookup major defns
heres = case mb_heres of
Nothing -> emptyBag
Just h -> flattenMinor h
-}
partitionByLevel (Level major minor typ) (FB tops ceils defns)
= (FB tops ceils' (outer_maj `plusMajor` M.singleton major outer_min),
here_min `unionBags` here_ceil
`unionBags` flattenMinor inner_min
`unionBags` flattenMajor inner_maj)
where
(outer_maj, mb_here_maj, inner_maj) = M.splitLookup major defns
(outer_min, mb_here_min, inner_min) = case mb_here_maj of
Nothing -> (M.empty, Nothing, M.empty)
Just min_defns -> M.splitLookup minor min_defns
here_min = mb_here_min `orElse` emptyBag
(here_ceil, ceils') | typ == JoinCeilLvl = (ceils, emptyBag)
| otherwise = (emptyBag, ceils)
-- Like partitionByLevel, but instead split out the bindings that are marked
-- to float to the nearest join ceiling (see Note [Join points])
partitionAtJoinCeiling :: FloatBinds -> (FloatBinds, Bag FloatBind)
partitionAtJoinCeiling (FB tops ceils defs)
= (FB tops emptyBag defs, ceils)
-- Perform some action at a join ceiling, i.e., don't let join points float out
-- (see Note [Join points])
atJoinCeiling :: (FloatStats, FloatBinds, CoreExpr)
-> (FloatStats, FloatBinds, CoreExpr)
atJoinCeiling (fs, floats, expr')
= (fs, floats', install ceils expr')
where
(floats', ceils) = partitionAtJoinCeiling floats
wrapTick :: CoreTickish -> FloatBinds -> FloatBinds
wrapTick t (FB tops ceils defns)
= FB (mapBag wrap_bind tops) (wrap_defns ceils)
(M.map (M.map wrap_defns) defns)
where
wrap_defns = mapBag wrap_one
wrap_bind (NonRec binder rhs) = NonRec binder (maybe_tick rhs)
wrap_bind (Rec pairs) = Rec (mapSnd maybe_tick pairs)
wrap_one (FloatLet bind) = FloatLet (wrap_bind bind)
wrap_one (FloatCase e b c bs) = FloatCase (maybe_tick e) b c bs
maybe_tick e | exprIsHNF e = tickHNFArgs t e
| otherwise = mkTick t e
-- we don't need to wrap a tick around an HNF when we float it
-- outside a tick: that is an invariant of the tick semantics
-- Conversely, inlining of HNFs inside an SCC is allowed, and
-- indeed the HNF we're floating here might well be inlined back
-- again, and we don't want to end up with duplicate ticks.
|