1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
|
{-# LANGUAGE PatternSynonyms #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section{GHC.Core.Opt.SetLevels}
***************************
Overview
***************************
1. We attach binding levels to Core bindings, in preparation for floating
outwards (@FloatOut@).
2. We also let-ify many expressions (notably case scrutinees), so they
will have a fighting chance of being floated sensibly.
3. Note [Need for cloning during float-out]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We clone the binders of any floatable let-binding, so that when it is
floated out it will be unique. Example
(let x=2 in x) + (let x=3 in x)
we must clone before floating so we get
let x1=2 in
let x2=3 in
x1+x2
NOTE: this can't be done using the uniqAway idea, because the variable
must be unique in the whole program, not just its current scope,
because two variables in different scopes may float out to the
same top level place
NOTE: Very tiresomely, we must apply this substitution to
the rules stored inside a variable too.
We do *not* clone top-level bindings, because some of them must not change,
but we *do* clone bindings that are heading for the top level
4. Note [Binder-swap during float-out]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the expression
case x of wild { p -> ...wild... }
we substitute x for wild in the RHS of the case alternatives:
case x of wild { p -> ...x... }
This means that a sub-expression involving x is not "trapped" inside the RHS
(i.e. it can now be floated out, whereas if it mentioned wild it could not).
And it's not inconvenient because we already have a substitution.
For example, consider:
f x = letrec go y = case x of z { (a,b) -> ...(expensive z)... }
in ...
If we do the reverse binder-swap we get
f x = letrec go y = case x of z { (a,b) -> ...(expensive x)... }
in ...
and now we can float out:
f x = let t = expensive x
in letrec go y = case x of z { (a,b) -> ...(t)... }
in ...
Now (expensive x) is computed once, rather than once each time around the 'go' loop.
Note that this is EXACTLY BACKWARDS from the what the simplifier does.
The simplifier tries to get rid of occurrences of x, in favour of wild,
in the hope that there will only be one remaining occurrence of x, namely
the scrutinee of the case, and we can inline it.
-}
module GHC.Core.Opt.SetLevels (
setLevels,
Level(..), LevelType(..), tOP_LEVEL, isJoinCeilLvl, asJoinCeilLvl,
LevelledBind, LevelledExpr, LevelledBndr,
FloatSpec(..), floatSpecLevel,
incMinorLvl, ltMajLvl, ltLvl, isTopLvl
) where
import GHC.Prelude
import GHC.Core
import GHC.Core.Opt.Monad ( FloatOutSwitches(..) )
import GHC.Core.Utils
import GHC.Core.Opt.Arity ( exprBotStrictness_maybe, isOneShotBndr )
import GHC.Core.FVs -- all of it
import GHC.Core.Subst
import GHC.Core.Make ( sortQuantVars )
import GHC.Core.Type ( Type, tyCoVarsOfType
, mightBeUnliftedType, closeOverKindsDSet
, typeHasFixedRuntimeRep
)
import GHC.Core.Multiplicity ( pattern ManyTy )
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.Var
import GHC.Types.Var.Set
import GHC.Types.Unique.Set ( nonDetStrictFoldUniqSet )
import GHC.Types.Unique.DSet ( getUniqDSet )
import GHC.Types.Var.Env
import GHC.Types.Literal ( litIsTrivial )
import GHC.Types.Demand ( DmdSig, prependArgsDmdSig )
import GHC.Types.Cpr ( CprSig, prependArgsCprSig )
import GHC.Types.Name ( getOccName, mkSystemVarName )
import GHC.Types.Name.Occurrence ( occNameFS )
import GHC.Types.Unique ( hasKey )
import GHC.Types.Tickish ( tickishIsCode )
import GHC.Types.Unique.Supply
import GHC.Types.Unique.DFM
import GHC.Types.Basic ( Arity, RecFlag(..), isRec )
import GHC.Builtin.Types
import GHC.Builtin.Names ( runRWKey )
import GHC.Data.FastString
import GHC.Utils.FV
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import Data.Maybe
{-
************************************************************************
* *
\subsection{Level numbers}
* *
************************************************************************
-}
type LevelledExpr = TaggedExpr FloatSpec
type LevelledBind = TaggedBind FloatSpec
type LevelledBndr = TaggedBndr FloatSpec
data Level = Level Int -- Level number of enclosing lambdas
Int -- Number of big-lambda and/or case expressions and/or
-- context boundaries between
-- here and the nearest enclosing lambda
LevelType -- Binder or join ceiling?
data LevelType = BndrLvl | JoinCeilLvl deriving (Eq)
data FloatSpec
= FloatMe Level -- Float to just inside the binding
-- tagged with this level
| StayPut Level -- Stay where it is; binding is
-- tagged with this level
floatSpecLevel :: FloatSpec -> Level
floatSpecLevel (FloatMe l) = l
floatSpecLevel (StayPut l) = l
{-
The {\em level number} on a (type-)lambda-bound variable is the
nesting depth of the (type-)lambda which binds it. The outermost lambda
has level 1, so (Level 0 0) means that the variable is bound outside any lambda.
On an expression, it's the maximum level number of its free
(type-)variables. On a let(rec)-bound variable, it's the level of its
RHS. On a case-bound variable, it's the number of enclosing lambdas.
Top-level variables: level~0. Those bound on the RHS of a top-level
definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown
as ``subscripts'')...
\begin{verbatim}
a_0 = let b_? = ... in
x_1 = ... b ... in ...
\end{verbatim}
The main function @lvlExpr@ carries a ``context level'' (@le_ctxt_lvl@).
That's meant to be the level number of the enclosing binder in the
final (floated) program. If the level number of a sub-expression is
less than that of the context, then it might be worth let-binding the
sub-expression so that it will indeed float.
If you can float to level @Level 0 0@ worth doing so because then your
allocation becomes static instead of dynamic. We always start with
context @Level 0 0@.
Note [FloatOut inside INLINE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@InlineCtxt@ very similar to @Level 0 0@, but is used for one purpose:
to say "don't float anything out of here". That's exactly what we
want for the body of an INLINE, where we don't want to float anything
out at all. See notes with lvlMFE below.
But, check this out:
-- At one time I tried the effect of not floating anything out of an InlineMe,
-- but it sometimes works badly. For example, consider PrelArr.done. It
-- has the form __inline (\d. e)
-- where e doesn't mention d. If we float this to
-- __inline (let x = e in \d. x)
-- things are bad. The inliner doesn't even inline it because it doesn't look
-- like a head-normal form. So it seems a lesser evil to let things float.
-- In GHC.Core.Opt.SetLevels we do set the context to (Level 0 0) when we get to an InlineMe
-- which discourages floating out.
So the conclusion is: don't do any floating at all inside an InlineMe.
(In the above example, don't float the {x=e} out of the \d.)
One particular case is that of workers: we don't want to float the
call to the worker outside the wrapper, otherwise the worker might get
inlined into the floated expression, and an importing module won't see
the worker at all.
Note [Join ceiling]
~~~~~~~~~~~~~~~~~~~
Join points can't float very far; too far, and they can't remain join points
So, suppose we have:
f x = (joinrec j y = ... x ... in jump j x) + 1
One may be tempted to float j out to the top of f's RHS, but then the jump
would not be a tail call. Thus we keep track of a level called the *join
ceiling* past which join points are not allowed to float.
The troublesome thing is that, unlike most levels to which something might
float, there is not necessarily an identifier to which the join ceiling is
attached. Fortunately, if something is to be floated to a join ceiling, it must
be dropped at the *nearest* join ceiling. Thus each level is marked as to
whether it is a join ceiling, so that FloatOut can tell which binders are being
floated to the nearest join ceiling and which to a particular binder (or set of
binders).
-}
instance Outputable FloatSpec where
ppr (FloatMe l) = char 'F' <> ppr l
ppr (StayPut l) = ppr l
tOP_LEVEL :: Level
tOP_LEVEL = Level 0 0 BndrLvl
incMajorLvl :: Level -> Level
incMajorLvl (Level major _ _) = Level (major + 1) 0 BndrLvl
incMinorLvl :: Level -> Level
incMinorLvl (Level major minor _) = Level major (minor+1) BndrLvl
asJoinCeilLvl :: Level -> Level
asJoinCeilLvl (Level major minor _) = Level major minor JoinCeilLvl
maxLvl :: Level -> Level -> Level
maxLvl l1@(Level maj1 min1 _) l2@(Level maj2 min2 _)
| (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1
| otherwise = l2
ltLvl :: Level -> Level -> Bool
ltLvl (Level maj1 min1 _) (Level maj2 min2 _)
= (maj1 < maj2) || (maj1 == maj2 && min1 < min2)
ltMajLvl :: Level -> Level -> Bool
-- Tells if one level belongs to a difft *lambda* level to another
ltMajLvl (Level maj1 _ _) (Level maj2 _ _) = maj1 < maj2
isTopLvl :: Level -> Bool
isTopLvl (Level 0 0 _) = True
isTopLvl _ = False
isJoinCeilLvl :: Level -> Bool
isJoinCeilLvl (Level _ _ t) = t == JoinCeilLvl
instance Outputable Level where
ppr (Level maj min typ)
= hcat [ char '<', int maj, char ',', int min, char '>'
, ppWhen (typ == JoinCeilLvl) (char 'C') ]
instance Eq Level where
(Level maj1 min1 _) == (Level maj2 min2 _) = maj1 == maj2 && min1 == min2
{-
************************************************************************
* *
\subsection{Main level-setting code}
* *
************************************************************************
-}
setLevels :: FloatOutSwitches
-> CoreProgram
-> UniqSupply
-> [LevelledBind]
setLevels float_lams binds us
= initLvl us (do_them binds)
where
env = initialEnv float_lams binds
do_them :: [CoreBind] -> LvlM [LevelledBind]
do_them [] = return []
do_them (b:bs)
= do { lvld_bind <- lvlTopBind env b
; lvld_binds <- do_them bs
; return (lvld_bind : lvld_binds) }
lvlTopBind :: LevelEnv -> Bind Id -> LvlM LevelledBind
lvlTopBind env (NonRec bndr rhs)
= do { (bndr', rhs') <- lvl_top env NonRecursive bndr rhs
; return (NonRec bndr' rhs') }
lvlTopBind env (Rec pairs)
= do { prs' <- mapM (\(b,r) -> lvl_top env Recursive b r) pairs
; return (Rec prs') }
lvl_top :: LevelEnv -> RecFlag -> Id -> CoreExpr
-> LvlM (LevelledBndr, LevelledExpr)
-- NB: 'env' has all the top-level binders in scope, so
-- there is no need call substAndLvlBndrs here
lvl_top env is_rec bndr rhs
= do { rhs' <- lvlRhs env is_rec (isDeadEndId bndr)
NotJoinPoint
(freeVars rhs)
; return (stayPut tOP_LEVEL bndr, rhs') }
{-
************************************************************************
* *
\subsection{Setting expression levels}
* *
************************************************************************
Note [Floating over-saturated applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see (f x y), and (f x) is a redex (ie f's arity is 1),
we call (f x) an "over-saturated application"
Should we float out an over-sat app, if can escape a value lambda?
It is sometimes very beneficial (-7% runtime -4% alloc over nofib -O2).
But we don't want to do it for class selectors, because the work saved
is minimal, and the extra local thunks allocated cost money.
Arguably we could float even class-op applications if they were going to
top level -- but then they must be applied to a constant dictionary and
will almost certainly be optimised away anyway.
-}
lvlExpr :: LevelEnv -- Context
-> CoreExprWithFVs -- Input expression
-> LvlM LevelledExpr -- Result expression
{-
The @le_ctxt_lvl@ is, roughly, the level of the innermost enclosing
binder. Here's an example
v = \x -> ...\y -> let r = case (..x..) of
..x..
in ..
When looking at the rhs of @r@, @le_ctxt_lvl@ will be 1 because that's
the level of @r@, even though it's inside a level-2 @\y@. It's
important that @le_ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we
don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE
--- because it isn't a *maximal* free expression.
If there were another lambda in @r@'s rhs, it would get level-2 as well.
-}
lvlExpr env (_, AnnType ty) = return (Type (substTyUnchecked (le_subst env) ty))
lvlExpr env (_, AnnCoercion co) = return (Coercion (substCo (le_subst env) co))
lvlExpr env (_, AnnVar v) = return (lookupVar env v)
lvlExpr _ (_, AnnLit lit) = return (Lit lit)
lvlExpr env (_, AnnCast expr (_, co)) = do
expr' <- lvlNonTailExpr env expr
return (Cast expr' (substCo (le_subst env) co))
lvlExpr env (_, AnnTick tickish expr) = do
expr' <- lvlNonTailExpr env expr
let tickish' = substTickish (le_subst env) tickish
return (Tick tickish' expr')
lvlExpr env expr@(_, AnnApp _ _) = lvlApp env expr (collectAnnArgs expr)
-- We don't split adjacent lambdas. That is, given
-- \x y -> (x+1,y)
-- we don't float to give
-- \x -> let v = x+1 in \y -> (v,y)
-- Why not? Because partial applications are fairly rare, and splitting
-- lambdas makes them more expensive.
lvlExpr env expr@(_, AnnLam {})
= do { new_body <- lvlNonTailMFE new_env True body
; return (mkLams new_bndrs new_body) }
where
(bndrs, body) = collectAnnBndrs expr
(env1, bndrs1) = substBndrsSL NonRecursive env bndrs
(new_env, new_bndrs) = lvlLamBndrs env1 (le_ctxt_lvl env) bndrs1
-- At one time we called a special version of collectBinders,
-- which ignored coercions, because we don't want to split
-- a lambda like this (\x -> coerce t (\s -> ...))
-- This used to happen quite a bit in state-transformer programs,
-- but not nearly so much now non-recursive newtypes are transparent.
-- [See GHC.Core.Opt.SetLevels rev 1.50 for a version with this approach.]
lvlExpr env (_, AnnLet bind body)
= do { (bind', new_env) <- lvlBind env bind
; body' <- lvlExpr new_env body
-- No point in going via lvlMFE here. If the binding is alive
-- (mentioned in body), and the whole let-expression doesn't
-- float, then neither will the body
; return (Let bind' body') }
lvlExpr env (_, AnnCase scrut case_bndr ty alts)
= do { scrut' <- lvlNonTailMFE env True scrut
; lvlCase env (freeVarsOf scrut) scrut' case_bndr ty alts }
lvlNonTailExpr :: LevelEnv -- Context
-> CoreExprWithFVs -- Input expression
-> LvlM LevelledExpr -- Result expression
lvlNonTailExpr env expr
= lvlExpr (placeJoinCeiling env) expr
-------------------------------------------
lvlApp :: LevelEnv
-> CoreExprWithFVs
-> (CoreExprWithFVs, [CoreExprWithFVs]) -- Input application
-> LvlM LevelledExpr -- Result expression
lvlApp env orig_expr ((_,AnnVar fn), args)
-- Try to ensure that runRW#'s continuation isn't floated out.
-- See Note [Simplification of runRW#].
| fn `hasKey` runRWKey
= do { args' <- mapM (lvlExpr env) args
; return (foldl' App (lookupVar env fn) args') }
| floatOverSat env -- See Note [Floating over-saturated applications]
, arity > 0
, arity < n_val_args
, Nothing <- isClassOpId_maybe fn
= do { rargs' <- mapM (lvlNonTailMFE env False) rargs
; lapp' <- lvlNonTailMFE env False lapp
; return (foldl' App lapp' rargs') }
| otherwise
= do { args' <- mapM (lvlMFE env False) args
-- False: see "Arguments" in Note [Floating to the top]
; return (foldl' App (lookupVar env fn) args') }
where
n_val_args = count (isValArg . deAnnotate) args
arity = idArity fn
-- Separate out the PAP that we are floating from the extra
-- arguments, by traversing the spine until we have collected
-- (n_val_args - arity) value arguments.
(lapp, rargs) = left (n_val_args - arity) orig_expr []
left 0 e rargs = (e, rargs)
left n (_, AnnApp f a) rargs
| isValArg (deAnnotate a) = left (n-1) f (a:rargs)
| otherwise = left n f (a:rargs)
left _ _ _ = panic "GHC.Core.Opt.SetLevels.lvlExpr.left"
lvlApp env _ (fun, args)
= -- No PAPs that we can float: just carry on with the
-- arguments and the function.
do { args' <- mapM (lvlNonTailMFE env False) args
; fun' <- lvlNonTailExpr env fun
; return (foldl' App fun' args') }
-------------------------------------------
lvlCase :: LevelEnv -- Level of in-scope names/tyvars
-> DVarSet -- Free vars of input scrutinee
-> LevelledExpr -- Processed scrutinee
-> Id -> Type -- Case binder and result type
-> [CoreAltWithFVs] -- Input alternatives
-> LvlM LevelledExpr -- Result expression
lvlCase env scrut_fvs scrut' case_bndr ty alts
-- See Note [Floating single-alternative cases]
| [AnnAlt con@(DataAlt {}) bs body] <- alts
, exprIsHNF (deTagExpr scrut') -- See Note [Check the output scrutinee for exprIsHNF]
, not (isTopLvl dest_lvl) -- Can't have top-level cases
, not (floatTopLvlOnly env) -- Can float anywhere
, ManyTy <- idMult case_bndr -- See Note [Floating linear case]
= -- Always float the case if possible
-- Unlike lets we don't insist that it escapes a value lambda
do { (env1, (case_bndr' : bs')) <- cloneCaseBndrs env dest_lvl (case_bndr : bs)
; let rhs_env = extendCaseBndrEnv env1 case_bndr scrut'
; body' <- lvlMFE rhs_env True body
; let alt' = Alt con (map (stayPut dest_lvl) bs') body'
; return (Case scrut' (TB case_bndr' (FloatMe dest_lvl)) ty' [alt']) }
| otherwise -- Stays put
= do { let (alts_env1, [case_bndr']) = substAndLvlBndrs NonRecursive env incd_lvl [case_bndr]
alts_env = extendCaseBndrEnv alts_env1 case_bndr scrut'
; alts' <- mapM (lvl_alt alts_env) alts
; return (Case scrut' case_bndr' ty' alts') }
where
ty' = substTyUnchecked (le_subst env) ty
incd_lvl = incMinorLvl (le_ctxt_lvl env)
dest_lvl = maxFvLevel (const True) env scrut_fvs
-- Don't abstract over type variables, hence const True
lvl_alt alts_env (AnnAlt con bs rhs)
= do { rhs' <- lvlMFE new_env True rhs
; return (Alt con bs' rhs') }
where
(new_env, bs') = substAndLvlBndrs NonRecursive alts_env incd_lvl bs
{- Note [Floating single-alternative cases]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
data T a = MkT !a
f :: T Int -> blah
f x vs = case x of { MkT y ->
let f vs = ...(case y of I# w -> e)...f..
in f vs
Here we can float the (case y ...) out, because y is sure
to be evaluated, to give
f x vs = case x of { MkT y ->
case y of I# w ->
let f vs = ...(e)...f..
in f vs
That saves unboxing it every time round the loop. It's important in
some DPH stuff where we really want to avoid that repeated unboxing in
the inner loop.
Things to note:
* The test we perform is exprIsHNF, and /not/ exprOkForSpeculation.
- exprIsHNF catches the key case of an evaluated variable
- exprOkForSpeculation is /false/ of an evaluated variable;
See Note [exprOkForSpeculation and evaluated variables] in GHC.Core.Utils
So we'd actually miss the key case!
- Nothing is gained from the extra generality of exprOkForSpeculation
since we only consider floating a case whose single alternative
is a DataAlt K a b -> rhs
* We can't float a case to top level
* It's worth doing this float even if we don't float
the case outside a value lambda. Example
case x of {
MkT y -> (case y of I# w2 -> ..., case y of I# w2 -> ...)
If we floated the cases out we could eliminate one of them.
* We only do this with a single-alternative case
Note [Floating linear case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Linear case can't be floated past case branches:
case u of { p1 -> case[1] v of { C x -> ...x...}; p2 -> ... }
Is well typed, but
case[1] v of { C x -> case u of { p1 -> ...x...; p2 -> ... }}
Will not be, because of how `x` is used in one alternative but not the other.
It is not easy to float this linear cases precisely, so, instead, we elect, for
the moment, to simply not float linear case.
Note [Setting levels when floating single-alternative cases]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Handling level-setting when floating a single-alternative case binding
is a bit subtle, as evidenced by #16978. In particular, we must keep
in mind that we are merely moving the case and its binders, not the
body. For example, suppose 'a' is known to be evaluated and we have
\z -> case a of
(x,_) -> <body involving x and z>
After floating we may have:
case a of
(x,_) -> \z -> <body involving x and z>
{- some expression involving x and z -}
When analysing <body involving...> we want to use the /ambient/ level,
and /not/ the destination level of the 'case a of (x,-) ->' binding.
#16978 was caused by us setting the context level to the destination
level of `x` when analysing <body>. This led us to conclude that we
needed to quantify over some of its free variables (e.g. z), resulting
in shadowing and very confusing Core Lint failures.
Note [Check the output scrutinee for exprIsHNF]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
case x of y {
A -> ....(case y of alts)....
}
Because of the binder-swap, the inner case will get substituted to
(case x of ..). So when testing whether the scrutinee is in HNF we
must be careful to test the *result* scrutinee ('x' in this case), not
the *input* one 'y'. The latter *is* in HNF here (because y is
evaluated), but the former is not -- and indeed we can't float the
inner case out, at least not unless x is also evaluated at its binding
site. See #5453.
That's why we apply exprIsHNF to scrut' and not to scrut.
See Note [Floating single-alternative cases] for why
we use exprIsHNF in the first place.
-}
lvlNonTailMFE :: LevelEnv -- Level of in-scope names/tyvars
-> Bool -- True <=> strict context [body of case
-- or let]
-> CoreExprWithFVs -- input expression
-> LvlM LevelledExpr -- Result expression
lvlNonTailMFE env strict_ctxt ann_expr
= lvlMFE (placeJoinCeiling env) strict_ctxt ann_expr
lvlMFE :: LevelEnv -- Level of in-scope names/tyvars
-> Bool -- True <=> strict context [body of case or let]
-> CoreExprWithFVs -- input expression
-> LvlM LevelledExpr -- Result expression
-- lvlMFE is just like lvlExpr, except that it might let-bind
-- the expression, so that it can itself be floated.
lvlMFE env _ (_, AnnType ty)
= return (Type (substTyUnchecked (le_subst env) ty))
-- No point in floating out an expression wrapped in a coercion or note
-- If we do we'll transform lvl = e |> co
-- to lvl' = e; lvl = lvl' |> co
-- and then inline lvl. Better just to float out the payload.
lvlMFE env strict_ctxt (_, AnnTick t e)
= do { e' <- lvlMFE env strict_ctxt e
; let t' = substTickish (le_subst env) t
; return (Tick t' e') }
lvlMFE env strict_ctxt (_, AnnCast e (_, co))
= do { e' <- lvlMFE env strict_ctxt e
; return (Cast e' (substCo (le_subst env) co)) }
lvlMFE env strict_ctxt e@(_, AnnCase {})
| strict_ctxt -- Don't share cases in a strict context
= lvlExpr env e -- See Note [Case MFEs]
lvlMFE env strict_ctxt ann_expr
| not float_me
|| floatTopLvlOnly env && not (isTopLvl dest_lvl)
-- Only floating to the top level is allowed.
|| hasFreeJoin env fvs -- If there is a free join, don't float
-- See Note [Free join points]
|| not (typeHasFixedRuntimeRep (exprType expr))
-- We can't let-bind an expression if we don't know
-- how it will be represented at runtime.
-- See Note [Representation polymorphism invariants] in GHC.Core
|| notWorthFloating expr abs_vars
-- Test notWorhtFloating last;
-- See Note [Large free-variable sets]
= -- Don't float it out
lvlExpr env ann_expr
| float_is_new_lam || exprIsTopLevelBindable expr expr_ty
-- No wrapping needed if the type is lifted, or is a literal string
-- or if we are wrapping it in one or more value lambdas
= do { expr1 <- lvlFloatRhs abs_vars dest_lvl rhs_env NonRecursive
is_bot_lam NotJoinPoint ann_expr
-- Treat the expr just like a right-hand side
; var <- newLvlVar expr1 NotJoinPoint is_mk_static
; let var2 = annotateBotStr var float_n_lams mb_bot_str
; return (Let (NonRec (TB var2 (FloatMe dest_lvl)) expr1)
(mkVarApps (Var var2) abs_vars)) }
-- OK, so the float has an unlifted type (not top-level bindable)
-- and no new value lambdas (float_is_new_lam is False)
-- Try for the boxing strategy
-- See Note [Floating MFEs of unlifted type]
| escapes_value_lam
, not expr_ok_for_spec -- Boxing/unboxing isn't worth it for cheap expressions
-- See Note [Test cheapness with exprOkForSpeculation]
, BI_Box { bi_data_con = box_dc, bi_inst_con = boxing_expr
, bi_boxed_type = box_ty } <- boxingDataCon expr_ty
, let [bx_bndr, ubx_bndr] = mkTemplateLocals [box_ty, expr_ty]
= do { expr1 <- lvlExpr rhs_env ann_expr
; let l1r = incMinorLvlFrom rhs_env
float_rhs = mkLams abs_vars_w_lvls $
Case expr1 (stayPut l1r ubx_bndr) box_ty
[Alt DEFAULT [] (App boxing_expr (Var ubx_bndr))]
; var <- newLvlVar float_rhs NotJoinPoint is_mk_static
; let l1u = incMinorLvlFrom env
use_expr = Case (mkVarApps (Var var) abs_vars)
(stayPut l1u bx_bndr) expr_ty
[Alt (DataAlt box_dc) [stayPut l1u ubx_bndr] (Var ubx_bndr)]
; return (Let (NonRec (TB var (FloatMe dest_lvl)) float_rhs)
use_expr) }
| otherwise -- e.g. do not float unboxed tuples
= lvlExpr env ann_expr
where
expr = deAnnotate ann_expr
expr_ty = exprType expr
fvs = freeVarsOf ann_expr
fvs_ty = tyCoVarsOfType expr_ty
is_bot_lam = isJust mb_bot_str -- True of bottoming thunks too!
is_function = isFunction ann_expr
mb_bot_str = exprBotStrictness_maybe expr
-- See Note [Bottoming floats]
-- esp Bottoming floats (2)
expr_ok_for_spec = exprOkForSpeculation expr
abs_vars = abstractVars dest_lvl env fvs
dest_lvl = destLevel env fvs fvs_ty is_function is_bot_lam False
-- NB: is_bot_lam not is_bot; see (3) in
-- Note [Bottoming floats]
-- float_is_new_lam: the floated thing will be a new value lambda
-- replacing, say (g (x+4)) by (lvl x). No work is saved, nor is
-- allocation saved. The benefit is to get it to the top level
-- and hence out of the body of this function altogether, making
-- it smaller and more inlinable
float_is_new_lam = float_n_lams > 0
float_n_lams = count isId abs_vars
(rhs_env, abs_vars_w_lvls) = lvlLamBndrs env dest_lvl abs_vars
is_mk_static = isJust (collectMakeStaticArgs expr)
-- Yuk: See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable
-- A decision to float entails let-binding this thing, and we only do
-- that if we'll escape a value lambda, or will go to the top level.
float_me = saves_work || saves_alloc || is_mk_static
-- We can save work if we can move a redex outside a value lambda
-- But if float_is_new_lam is True, then the redex is wrapped in a
-- a new lambda, so no work is saved
saves_work = escapes_value_lam && not float_is_new_lam
escapes_value_lam = dest_lvl `ltMajLvl` (le_ctxt_lvl env)
-- See Note [Escaping a value lambda]
-- See Note [Floating to the top]
saves_alloc = isTopLvl dest_lvl
&& floatConsts env
&& ( not strict_ctxt -- (a)
|| exprIsHNF expr -- (b)
|| (is_bot_lam && escapes_value_lam)) -- (c)
hasFreeJoin :: LevelEnv -> DVarSet -> Bool
-- Has a free join point which is not being floated to top level.
-- (In the latter case it won't be a join point any more.)
-- Not treating top-level ones specially had a massive effect
-- on nofib/minimax/Prog.prog
hasFreeJoin env fvs
= not (maxFvLevel isJoinId env fvs == tOP_LEVEL)
{- Note [Floating to the top]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose saves_work is False, i.e.
- 'e' does not escape a value lambda (escapes_value_lam), or
- 'e' would have added value lambdas if floated (float_is_new_lam)
Then we may still be keen to float a sub-expression 'e' to the top level,
for two reasons:
(i) Doing so makes the function smaller, by floating out
bottoming expressions, or integer or string literals. That in
turn makes it easier to inline, with less duplication.
This only matters if the floated sub-expression is inside a
value-lambda, which in turn may be easier to inline.
(ii) (Minor) Doing so may turn a dynamic allocation (done by machine
instructions) into a static one. Minor because we are assuming
we are not escaping a value lambda.
But only do so if (saves_alloc):
(a) the context is lazy (so we get allocation), or
(b) the expression is a HNF (so we get allocation), or
(c) the expression is bottoming and (i) applies
(NB: if the expression is a lambda, (b) will apply;
so this case only catches bottoming thunks)
Examples:
* (a) Strict. Case scrutinee
f = case g True of ....
Don't float (g True) to top level; then we have the admin of a
top-level thunk to worry about, with zero gain.
* (a) Strict. Case alternative
h = case y of
True -> g True
False -> False
Don't float (g True) to the top level
* (b) HNF
f = case y of
True -> p:q
False -> blah
We may as well float the (p:q) so it becomes a static data structure.
* (c) Bottoming expressions; see also Note [Bottoming floats]
f x = case x of
0 -> error <big thing>
_ -> x+1
Here we want to float (error <big thing>) to top level, abstracting
over 'x', so as to make f's RHS smaller.
But (#22494) if it's more like
foo = case error <thing> of { ... }
then there is no point in floating; we are never going to inline
'foo' anyway. So float bottoming things only if they escape
a lambda.
* Arguments
t = f (g True)
Prior to Apr 22 we didn't float (g True) to the top if f was strict.
But (a) this only affected CAFs, because if it escapes a value lambda
we'll definitely float it; so the complication of working out
argument strictness doesn't seem worth it.
(b) floating to the top helps SpecContr; see GHC.Core.Opt.SpecConstr
Note [Specialising on dictionaries].
So now we don't use strictness to affect argument floating.
It's controlled by a flag (floatConsts), because doing this too
early loses opportunities for RULES which (needless to say) are
important in some nofib programs (gcd is an example). [SPJ note:
I think this is obsolete; the flag seems always on.]
Note [Large free-variable sets]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In #24471 we had something like
x1 = I# 1
...
x1000 = I# 1000
foo = f x1 (f x2 (f x3 ....))
So every sub-expression in `foo` has lots and lots of free variables. But
none of these sub-expressions float anywhere; the entire float-out pass is a
no-op.
In lvlMFE, we want to find out quickly if the MFE is not-floatable; that is
the common case. In #24471 it turned out that we were testing `abs_vars` (a
relatively complicated calculation that takes at least O(n-free-vars) time to
compute) for every sub-expression.
Better instead to test `float_me` early. That still involves looking at
dest_lvl, which means looking at every free variable, but the constant factor
is a lot better.
ToDo: find a way to fix the bad asymptotic complexity.
Note [Floating join point bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mostly we only float a join point if it can /stay/ a join point. But
there is one exception: if it can go to the top level (#13286).
Consider
f x = joinrec j y n = <...j y' n'...>
in jump j x 0
Here we may just as well produce
j y n = <....j y' n'...>
f x = j x 0
and now there is a chance that 'f' will be inlined at its call sites.
It shouldn't make a lot of difference, but these tests
perf/should_run/MethSharing
simplCore/should_compile/spec-inline
and one nofib program, all improve if you do float to top, because
of the resulting inlining of f. So ok, let's do it.
Note [Free join points]
~~~~~~~~~~~~~~~~~~~~~~~
We never float a MFE that has a free join-point variable. You might think
this can never occur. After all, consider
join j x = ...
in ....(jump j x)....
How might we ever want to float that (jump j x)?
* If it would escape a value lambda, thus
join j x = ... in (\y. ...(jump j x)... )
then 'j' isn't a valid join point in the first place.
But consider
join j x = .... in
joinrec j2 y = ...(jump j x)...(a+b)....
Since j2 is recursive, it /is/ worth floating (a+b) out of the joinrec.
But it is emphatically /not/ good to float the (jump j x) out:
(a) 'j' will stop being a join point
(b) In any case, jumping to 'j' must be an exit of the j2 loop, so no
work would be saved by floating it out of the \y.
Even if we floated 'j' to top level, (b) would still hold.
Bottom line: never float a MFE that has a free JoinId.
Note [Floating MFEs of unlifted type]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
case f x of (r::Int#) -> blah
we'd like to float (f x). But it's not trivial because it has type
Int#, and we don't want to evaluate it too early. But we can instead
float a boxed version
y = case f x of r -> I# r
and replace the original (f x) with
case (case y of I# r -> r) of r -> blah
Being able to float unboxed expressions is sometimes important; see #12603.
I'm not sure how /often/ it is important, but it's not hard to achieve.
We only do it for a fixed collection of types for which we have a
convenient boxing constructor (see boxingDataCon_maybe). In
particular we /don't/ do it for unboxed tuples; it's better to float
the components of the tuple individually.
I did experiment with a form of boxing that works for any type, namely
wrapping in a function. In our example
let y = case f x of r -> \v. f x
in case y void of r -> blah
It works fine, but it's 50% slower (based on some crude benchmarking).
I suppose we could do it for types not covered by boxingDataCon_maybe,
but it's more code and I'll wait to see if anyone wants it.
Note [Test cheapness with exprOkForSpeculation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don't want to float very cheap expressions by boxing and unboxing.
But we use exprOkForSpeculation for the test, not exprIsCheap.
Why? Because it's important /not/ to transform
let x = a /# 3
to
let x = case bx of I# a -> a /# 3
because the let binding no
longer obeys the let-can-float invariant. But (a /# 3) is ok-for-spec
due to a special hack that says division operators can't fail
when the denominator is definitely non-zero. And yet that
same expression says False to exprIsCheap. Simplest way to
guarantee the let-can-float invariant is to use the same function!
If an expression is okay for speculation, we could also float it out
*without* boxing and unboxing, since evaluating it early is okay.
However, it turned out to usually be better not to float such expressions,
since they tend to be extremely cheap things like (x +# 1#). Even the
cost of spilling the let-bound variable to the stack across a call may
exceed the cost of recomputing such an expression. (And we can't float
unlifted bindings to top-level.)
We could try to do something smarter here, and float out expensive yet
okay-for-speculation things, such as division by non-zero constants.
But I suspect it's a narrow target.
Note [Bottoming floats]
~~~~~~~~~~~~~~~~~~~~~~~
If we see
f = \x. g (error "urk")
we'd like to float the call to error, to get
lvl = error "urk"
f = \x. g lvl
But, as ever, we need to be careful:
(1) We want to float a bottoming
expression even if it has free variables:
f = \x. g (let v = h x in error ("urk" ++ v))
Then we'd like to abstract over 'x', and float the whole arg of g:
lvl = \x. let v = h x in error ("urk" ++ v)
f = \x. g (lvl x)
To achieve this we pass is_bot to destLevel
(2) We do not do this for lambdas that return
bottom. Instead we treat the /body/ of such a function specially,
via point (1). For example:
f = \x. ....(\y z. if x then error y else error z)....
If we float the whole lambda thus
lvl = \x. \y z. if x then error y else error z
f = \x. ...(lvl x)...
we may well end up eta-expanding that PAP to
f = \x. ...(\y z. lvl x y z)...
===>
lvl = \x z y. if b then error y else error z
f = \x. ...(\y z. lvl x z y)...
(There is no guarantee that we'll choose the perfect argument order.)
(3) If we have a /binding/ that returns bottom, we want to float it to top
level, even if it has free vars (point (1)), and even it has lambdas.
Example:
... let { v = \y. error (show x ++ show y) } in ...
We want to abstract over x and float the whole thing to top:
lvl = \xy. error (show x ++ show y)
...let {v = lvl x} in ...
Then of course we don't want to separately float the body (error ...)
as /another/ MFE, so we tell lvlFloatRhs not to do that, via the is_bot
argument.
Do /not/ do this for bottoming /join-point/ bindings. They may call other
join points (#24768), and floating to the top would abstract over those join
points, which we should never do.
See Maessen's paper 1999 "Bottom extraction: factoring error handling out
of functional programs" (unpublished I think).
When we do this, we set the strictness and arity of the new bottoming
Id, *immediately*, for three reasons:
* To prevent the abstracted thing being immediately inlined back in again
via preInlineUnconditionally. The latter has a test for bottoming Ids
to stop inlining them, so we'd better make sure it *is* a bottoming Id!
* So that it's properly exposed as such in the interface file, even if
this is all happening after strictness analysis.
* In case we do CSE with the same expression that *is* marked bottom
lvl = error "urk"
x{str=bot) = error "urk"
Here we don't want to replace 'x' with 'lvl', else we may get Lint
errors, e.g. via a case with empty alternatives: (case x of {})
Lint complains unless the scrutinee of such a case is clearly bottom.
This was reported in #11290. But since the whole bottoming-float
thing is based on the cheap-and-cheerful exprIsDeadEnd, I'm not sure
that it'll nail all such cases.
Note [Case MFEs]
~~~~~~~~~~~~~~~~
We don't float a case expression as an MFE from a strict context. Why not?
Because in doing so we share a tiny bit of computation (the switch) but
in exchange we build a thunk, which is bad. This case reduces allocation
by 7% in spectral/puzzle (a rather strange benchmark) and 1.2% in real/fem.
Doesn't change any other allocation at all.
We will make a separate decision for the scrutinee and alternatives.
However this can have a knock-on effect for fusion: consider
\v -> foldr k z (case x of I# y -> build ..y..)
Perhaps we can float the entire (case x of ...) out of the \v. Then
fusion will not happen, but we will get more sharing. But if we don't
float the case (as advocated here) we won't float the (build ...y..)
either, so fusion will happen. It can be a big effect, esp in some
artificial benchmarks (e.g. integer, queens), but there is no perfect
answer.
-}
annotateBotStr :: Id -> Arity -> Maybe (Arity, DmdSig, CprSig) -> Id
-- See Note [Bottoming floats] for why we want to add
-- bottoming information right now
--
-- n_extra are the number of extra value arguments added during floating
annotateBotStr id n_extra mb_bot_str
| Just (arity, str_sig, cpr_sig) <- mb_bot_str
= id `setIdArity` (arity + n_extra)
`setIdDmdSig` prependArgsDmdSig n_extra str_sig
`setIdCprSig` prependArgsCprSig n_extra cpr_sig
| otherwise
= id
notWorthFloating :: CoreExpr -> [Var] -> Bool
-- Returns True if the expression would be replaced by
-- something bigger than it is now. For example:
-- abs_vars = tvars only: return True if e is trivial,
-- but False for anything bigger
-- abs_vars = [x] (an Id): return True for trivial, or an application (f x)
-- but False for (f x x)
--
-- One big goal is that floating should be idempotent. Eg if
-- we replace e with (lvl79 x y) and then run FloatOut again, don't want
-- to replace (lvl79 x y) with (lvl83 x y)!
notWorthFloating e abs_vars
= go e (count isId abs_vars)
where
go (Var {}) n = n >= 0
go (Lit lit) n = assert (n==0) $
litIsTrivial lit -- Note [Floating literals]
go (Type {}) _ = True
go (Coercion {}) _ = True
go (App e arg) n
-- See Note [Floating applications to coercions]
| not (isRuntimeArg arg) = go e n
| n==0 = False
| exprIsTrivial arg = go e (n-1) -- NB: exprIsTrivial arg = go arg 0
| otherwise = False
go (Tick t e) n = not (tickishIsCode t) && go e n
go (Cast e _) n = go e n
go (Case e b _ as) n
| null as
= go e n -- See Note [Empty case is trivial]
| Just rhs <- isUnsafeEqualityCase e b as
= go rhs n -- See (U2) of Note [Implementing unsafeCoerce] in base:Unsafe.Coerce
go _ _ = False
{-
Note [Floating literals]
~~~~~~~~~~~~~~~~~~~~~~~~
It's important to float Integer literals, so that they get shared,
rather than being allocated every time round the loop.
Hence the litIsTrivial.
Ditto literal strings (LitString), which we'd like to float to top
level, which is now possible.
Note [Floating applications to coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don’t float out variables applied only to type arguments, since the
extra binding would be pointless: type arguments are completely erased.
But *coercion* arguments aren’t (see Note [Coercion tokens] in
"GHC.CoreToStg" and Note [Count coercion arguments in boring contexts] in
"GHC.Core.Unfold"), so we still want to float out variables applied only to
coercion arguments.
Note [Escaping a value lambda]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to float even cheap expressions out of value lambdas,
because that saves allocation. Consider
f = \x. .. (\y.e) ...
Then we'd like to avoid allocating the (\y.e) every time we call f,
(assuming e does not mention x). An example where this really makes a
difference is simplrun009.
Another reason it's good is because it makes SpecContr fire on functions.
Consider
f = \x. ....(f (\y.e))....
After floating we get
lvl = \y.e
f = \x. ....(f lvl)...
and that is much easier for SpecConstr to generate a robust
specialisation for.
However, if we are wrapping the thing in extra value lambdas (in
abs_vars), then nothing is saved. E.g.
f = \xyz. ...(e1[y],e2)....
If we float
lvl = \y. (e1[y],e2)
f = \xyz. ...(lvl y)...
we have saved nothing: one pair will still be allocated for each
call of 'f'. Hence the (not float_is_lam) in float_me.
************************************************************************
* *
\subsection{Bindings}
* *
************************************************************************
The binding stuff works for top level too.
-}
lvlBind :: LevelEnv
-> CoreBindWithFVs
-> LvlM (LevelledBind, LevelEnv)
lvlBind env (AnnNonRec bndr rhs)
| isTyVar bndr -- Don't do anything for TyVar binders
-- (simplifier gets rid of them pronto)
|| isCoVar bndr -- Difficult to fix up CoVar occurrences (see extendPolyLvlEnv)
-- so we will ignore this case for now
|| not (profitableFloat env dest_lvl)
|| (isTopLvl dest_lvl && not (exprIsTopLevelBindable deann_rhs bndr_ty))
-- We can't float an unlifted binding to top level (except
-- literal strings), so we don't float it at all. It's a
-- bit brutal, but unlifted bindings aren't expensive either
= -- No float
do { rhs' <- lvlRhs env NonRecursive is_bot_lam mb_join_arity rhs
; let bind_lvl = incMinorLvl (le_ctxt_lvl env)
(env', [bndr']) = substAndLvlBndrs NonRecursive env bind_lvl [bndr]
; return (NonRec bndr' rhs', env') }
-- Otherwise we are going to float
| null abs_vars
= do { -- No type abstraction; clone existing binder
rhs' <- lvlFloatRhs [] dest_lvl env NonRecursive
is_bot_lam mb_join_arity rhs
; (env', [bndr']) <- cloneLetVars NonRecursive env dest_lvl [bndr]
; let bndr2 = annotateBotStr bndr' 0 mb_bot_str
; return (NonRec (TB bndr2 (FloatMe dest_lvl)) rhs', env') }
| otherwise
= do { -- Yes, type abstraction; create a new binder, extend substitution, etc
rhs' <- lvlFloatRhs abs_vars dest_lvl env NonRecursive
is_bot_lam mb_join_arity rhs
; (env', [bndr']) <- newPolyBndrs dest_lvl env abs_vars [bndr]
; let bndr2 = annotateBotStr bndr' n_extra mb_bot_str
; return (NonRec (TB bndr2 (FloatMe dest_lvl)) rhs', env') }
where
bndr_ty = idType bndr
ty_fvs = tyCoVarsOfType bndr_ty
rhs_fvs = freeVarsOf rhs
bind_fvs = rhs_fvs `unionDVarSet` dIdFreeVars bndr
abs_vars = abstractVars dest_lvl env bind_fvs
dest_lvl = destLevel env bind_fvs ty_fvs (isFunction rhs) is_bot_lam is_join
deann_rhs = deAnnotate rhs
mb_bot_str = exprBotStrictness_maybe deann_rhs
is_bot_lam = not is_join && isJust mb_bot_str
-- is_bot_lam: looks like (\xy. bot), maybe zero lams
-- NB: not isBottomThunk!
-- NB: not is_join: don't send bottoming join points to the top.
-- See Note [Bottoming floats] point (3)
n_extra = count isId abs_vars
mb_join_arity = idJoinPointHood bndr
is_join = isJoinPoint mb_join_arity
lvlBind env (AnnRec pairs)
| floatTopLvlOnly env && not (isTopLvl dest_lvl)
-- Only floating to the top level is allowed.
|| not (profitableFloat env dest_lvl)
|| (isTopLvl dest_lvl && any (mightBeUnliftedType . idType) bndrs)
-- This mightBeUnliftedType stuff is the same test as in the non-rec case
-- You might wonder whether we can have a recursive binding for
-- an unlifted value -- but we can if it's a /join binding/ (#16978)
-- (Ultimately I think we should not use GHC.Core.Opt.SetLevels to
-- float join bindings at all, but that's another story.)
= -- No float
do { let bind_lvl = incMinorLvl (le_ctxt_lvl env)
(env', bndrs') = substAndLvlBndrs Recursive env bind_lvl bndrs
lvl_rhs (b,r) = lvlRhs env' Recursive is_bot (idJoinPointHood b) r
; rhss' <- mapM lvl_rhs pairs
; return (Rec (bndrs' `zip` rhss'), env') }
-- Otherwise we are going to float
| null abs_vars
= do { (new_env, new_bndrs) <- cloneLetVars Recursive env dest_lvl bndrs
; new_rhss <- mapM (do_rhs new_env) pairs
; return ( Rec ([TB b (FloatMe dest_lvl) | b <- new_bndrs] `zip` new_rhss)
, new_env) }
-- ToDo: when enabling the floatLambda stuff,
-- I think we want to stop doing this
| [(bndr,rhs)] <- pairs
, count isId abs_vars > 1
= do -- Special case for self recursion where there are
-- several variables carried around: build a local loop:
-- poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars
-- This just makes the closures a bit smaller. If we don't do
-- this, allocation rises significantly on some programs
--
-- We could elaborate it for the case where there are several
-- mutually recursive functions, but it's quite a bit more complicated
--
-- This all seems a bit ad hoc -- sigh
let (rhs_env, abs_vars_w_lvls) = lvlLamBndrs env dest_lvl abs_vars
rhs_lvl = le_ctxt_lvl rhs_env
(rhs_env', [new_bndr]) <- cloneLetVars Recursive rhs_env rhs_lvl [bndr]
let
(lam_bndrs, rhs_body) = collectAnnBndrs rhs
(body_env1, lam_bndrs1) = substBndrsSL NonRecursive rhs_env' lam_bndrs
(body_env2, lam_bndrs2) = lvlLamBndrs body_env1 rhs_lvl lam_bndrs1
new_rhs_body <- lvlRhs body_env2 Recursive is_bot (get_join bndr) rhs_body
(poly_env, [poly_bndr]) <- newPolyBndrs dest_lvl env abs_vars [bndr]
return (Rec [(TB poly_bndr (FloatMe dest_lvl)
, mkLams abs_vars_w_lvls $
mkLams lam_bndrs2 $
Let (Rec [( TB new_bndr (StayPut rhs_lvl)
, mkLams lam_bndrs2 new_rhs_body)])
(mkVarApps (Var new_bndr) lam_bndrs1))]
, poly_env)
| otherwise -- Non-null abs_vars
= do { (new_env, new_bndrs) <- newPolyBndrs dest_lvl env abs_vars bndrs
; new_rhss <- mapM (do_rhs new_env) pairs
; return ( Rec ([TB b (FloatMe dest_lvl) | b <- new_bndrs] `zip` new_rhss)
, new_env) }
where
(bndrs,rhss) = unzip pairs
is_join = isJoinId (head bndrs)
-- bndrs is always non-empty and if one is a join they all are
-- Both are checked by Lint
is_fun = all isFunction rhss
is_bot = False -- It's odd to have an unconditionally divergent
-- function in a Rec, and we don't much care what
-- happens to it. False is simple!
do_rhs env (bndr,rhs) = lvlFloatRhs abs_vars dest_lvl env Recursive
is_bot (get_join bndr)
rhs
get_join bndr | need_zap = NotJoinPoint
| otherwise = idJoinPointHood bndr
need_zap = dest_lvl `ltLvl` joinCeilingLevel env
-- Finding the free vars of the binding group is annoying
bind_fvs = ((unionDVarSets [ freeVarsOf rhs | (_, rhs) <- pairs])
`unionDVarSet`
(fvDVarSet $ unionsFV [ idFVs bndr
| (bndr, (_,_)) <- pairs]))
`delDVarSetList`
bndrs
ty_fvs = foldr (unionVarSet . tyCoVarsOfType . idType) emptyVarSet bndrs
dest_lvl = destLevel env bind_fvs ty_fvs is_fun is_bot is_join
abs_vars = abstractVars dest_lvl env bind_fvs
profitableFloat :: LevelEnv -> Level -> Bool
profitableFloat env dest_lvl
= (dest_lvl `ltMajLvl` le_ctxt_lvl env) -- Escapes a value lambda
|| (isTopLvl dest_lvl && floatConsts env) -- Going all the way to top level
----------------------------------------------------
-- Three help functions for the type-abstraction case
lvlRhs :: LevelEnv
-> RecFlag
-> Bool -- Is this a bottoming function
-> JoinPointHood
-> CoreExprWithFVs
-> LvlM LevelledExpr
lvlRhs env rec_flag is_bot mb_join_arity expr
= lvlFloatRhs [] (le_ctxt_lvl env) env
rec_flag is_bot mb_join_arity expr
lvlFloatRhs :: [OutVar] -> Level -> LevelEnv -> RecFlag
-> Bool -- Binding is for a bottoming function
-> JoinPointHood
-> CoreExprWithFVs
-> LvlM (Expr LevelledBndr)
-- Ignores the le_ctxt_lvl in env; treats dest_lvl as the baseline
lvlFloatRhs abs_vars dest_lvl env rec is_bot mb_join_arity rhs
= do { body' <- if not is_bot -- See Note [Floating from a RHS]
&& any isId bndrs
then lvlMFE body_env True body
else lvlExpr body_env body
; return (mkLams bndrs' body') }
where
(bndrs, body) | JoinPoint join_arity <- mb_join_arity
= collectNAnnBndrs join_arity rhs
| otherwise
= collectAnnBndrs rhs
(env1, bndrs1) = substBndrsSL NonRecursive env bndrs
all_bndrs = abs_vars ++ bndrs1
(body_env, bndrs') | JoinPoint {} <- mb_join_arity
= lvlJoinBndrs env1 dest_lvl rec all_bndrs
| otherwise
= case lvlLamBndrs env1 dest_lvl all_bndrs of
(env2, bndrs') -> (placeJoinCeiling env2, bndrs')
-- The important thing here is that we call lvlLamBndrs on
-- all these binders at once (abs_vars and bndrs), so they
-- all get the same major level. Otherwise we create stupid
-- let-bindings inside, joyfully thinking they can float; but
-- in the end they don't because we never float bindings in
-- between lambdas
{- Note [Floating from a RHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When floating the RHS of a let-binding, we don't always want to apply
lvlMFE to the body of a lambda, as we usually do, because the entire
binding body is already going to the right place (dest_lvl).
A particular example is the top level. Consider
concat = /\ a -> foldr ..a.. (++) []
We don't want to float the body of the lambda to get
lvl = /\ a -> foldr ..a.. (++) []
concat = /\ a -> lvl a
That would be stupid.
Previously this was avoided in a much nastier way, by testing strict_ctxt
in float_me in lvlMFE. But that wasn't even right because it would fail
to float out the error sub-expression in
f = \x. case x of
True -> error ("blah" ++ show x)
False -> ...
But we must be careful:
* If we had
f = \x -> factorial 20
we /would/ want to float that (factorial 20) out! Functions are treated
differently: see the use of isFunction in the calls to destLevel. If
there are only type lambdas, then destLevel will say "go to top, and
abstract over the free tyvars" and we don't want that here.
* But if we had
f = \x -> error (...x....)
we would NOT want to float the bottoming expression out to give
lvl = \x -> error (...x...)
f = \x -> lvl x
Conclusion: use lvlMFE if there are
* any value lambdas in the original function, and
* this is not a bottoming function (the is_bot argument)
Use lvlExpr otherwise. A little subtle, and I got it wrong at least twice
(e.g. #13369).
-}
{-
************************************************************************
* *
\subsection{Deciding floatability}
* *
************************************************************************
-}
substAndLvlBndrs :: RecFlag -> LevelEnv -> Level -> [InVar] -> (LevelEnv, [LevelledBndr])
substAndLvlBndrs is_rec env lvl bndrs
= lvlBndrs subst_env lvl subst_bndrs
where
(subst_env, subst_bndrs) = substBndrsSL is_rec env bndrs
substBndrsSL :: RecFlag -> LevelEnv -> [InVar] -> (LevelEnv, [OutVar])
-- So named only to avoid the name clash with GHC.Core.Subst.substBndrs
substBndrsSL is_rec env@(LE { le_subst = subst, le_env = id_env }) bndrs
= ( env { le_subst = subst'
, le_env = foldl' add_id id_env (bndrs `zip` bndrs') }
, bndrs')
where
(subst', bndrs') = case is_rec of
NonRecursive -> substBndrs subst bndrs
Recursive -> substRecBndrs subst bndrs
lvlLamBndrs :: LevelEnv -> Level -> [OutVar] -> (LevelEnv, [LevelledBndr])
-- Compute the levels for the binders of a lambda group
lvlLamBndrs env lvl bndrs
= lvlBndrs env new_lvl bndrs
where
new_lvl | any is_major bndrs = incMajorLvl lvl
| otherwise = incMinorLvl lvl
is_major bndr = not (isOneShotBndr bndr)
-- Only non-one-shot lambdas bump a major level, which in
-- turn triggers floating. NB: isOneShotBndr is always
-- true of a type variable -- there is no point in floating
-- out of a big lambda.
-- See Note [Computing one-shot info] in GHC.Types.Demand
lvlJoinBndrs :: LevelEnv -> Level -> RecFlag -> [OutVar]
-> (LevelEnv, [LevelledBndr])
lvlJoinBndrs env lvl rec bndrs
= lvlBndrs env new_lvl bndrs
where
new_lvl | isRec rec = incMajorLvl lvl
| otherwise = incMinorLvl lvl
-- Non-recursive join points are one-shot; recursive ones are not
lvlBndrs :: LevelEnv -> Level -> [CoreBndr] -> (LevelEnv, [LevelledBndr])
-- The binders returned are exactly the same as the ones passed,
-- apart from applying the substitution, but they are now paired
-- with a (StayPut level)
--
-- The returned envt has le_ctxt_lvl updated to the new_lvl
--
-- All the new binders get the same level, because
-- any floating binding is either going to float past
-- all or none. We never separate binders.
lvlBndrs env@(LE { le_lvl_env = lvl_env }) new_lvl bndrs
= ( env { le_ctxt_lvl = new_lvl
, le_join_ceil = new_lvl
, le_lvl_env = addLvls new_lvl lvl_env bndrs }
, map (stayPut new_lvl) bndrs)
stayPut :: Level -> OutVar -> LevelledBndr
stayPut new_lvl bndr = TB bndr (StayPut new_lvl)
-- Destination level is the max Id level of the expression
-- (We'll abstract the type variables, if any.)
destLevel :: LevelEnv
-> DVarSet -- Free vars of the term
-> TyCoVarSet -- Free in the /type/ of the term
-- (a subset of the previous argument)
-> Bool -- True <=> is function
-> Bool -- True <=> looks like \x1..xn.bottom (n>=0)
-> Bool -- True <=> is a join point
-> Level
-- INVARIANT: if is_join=True then result >= join_ceiling
destLevel env fvs fvs_ty is_function is_bot is_join
| isTopLvl max_fv_id_level -- Float even joins if they get to top level
-- See Note [Floating join point bindings]
= tOP_LEVEL
| is_join -- Never float a join point past the join ceiling
-- See Note [Join points] in GHC.Core.Opt.FloatOut
= if max_fv_id_level `ltLvl` join_ceiling
then join_ceiling
else max_fv_id_level
| is_bot -- Send bottoming bindings to the top
= as_far_as_poss -- regardless; see Note [Bottoming floats]
-- Esp Bottoming floats (1) and (3)
| Just n_args <- floatLams env
, n_args > 0 -- n=0 case handled uniformly by the 'otherwise' case
, is_function
, countFreeIds fvs <= n_args
= as_far_as_poss -- Send functions to top level; see
-- the comments with isFunction
| otherwise = max_fv_id_level
where
join_ceiling = joinCeilingLevel env
max_fv_id_level = maxFvLevel isId env fvs -- Max over Ids only; the
-- tyvars will be abstracted
as_far_as_poss = maxFvLevel' isId env fvs_ty
-- See Note [Floating and kind casts]
{- Note [Floating and kind casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
case x of
K (co :: * ~# k) -> let v :: Int |> co
v = e
in blah
Then, even if we are abstracting over Ids, or if e is bottom, we can't
float v outside the 'co' binding. Reason: if we did we'd get
v' :: forall k. (Int ~# Age) => Int |> co
and now 'co' isn't in scope in that type. The underlying reason is
that 'co' is a value-level thing and we can't abstract over that in a
type (else we'd get a dependent type). So if v's /type/ mentions 'co'
we can't float it out beyond the binding site of 'co'.
That's why we have this as_far_as_poss stuff. Usually as_far_as_poss
is just tOP_LEVEL; but occasionally a coercion variable (which is an
Id) mentioned in type prevents this.
Example #14270 comment:15.
-}
isFunction :: CoreExprWithFVs -> Bool
-- The idea here is that we want to float *functions* to
-- the top level. This saves no work, but
-- (a) it can make the host function body a lot smaller,
-- and hence inlinable.
-- (b) it can also save allocation when the function is recursive:
-- h = \x -> letrec f = \y -> ...f...y...x...
-- in f x
-- becomes
-- f = \x y -> ...(f x)...y...x...
-- h = \x -> f x x
-- No allocation for f now.
-- We may only want to do this if there are sufficiently few free
-- variables. We certainly only want to do it for values, and not for
-- constructors. So the simple thing is just to look for lambdas
isFunction (_, AnnLam b e) | isId b = True
| otherwise = isFunction e
-- isFunction (_, AnnTick _ e) = isFunction e -- dubious
isFunction _ = False
countFreeIds :: DVarSet -> Int
countFreeIds = nonDetStrictFoldUDFM add 0 . getUniqDSet
-- It's OK to use nonDetStrictFoldUDFM here because we're just counting things.
where
add :: Var -> Int -> Int
add v n | isId v = n+1
| otherwise = n
{-
************************************************************************
* *
\subsection{Free-To-Level Monad}
* *
************************************************************************
-}
data LevelEnv
= LE { le_switches :: FloatOutSwitches
, le_ctxt_lvl :: Level -- The current level
, le_lvl_env :: VarEnv Level -- Domain is *post-cloned* TyVars and Ids
, le_join_ceil:: Level -- Highest level to which joins float
-- Invariant: always >= le_ctxt_lvl
-- See Note [le_subst and le_env]
, le_subst :: Subst -- Domain is pre-cloned TyVars and Ids
-- The Id -> CoreExpr in the Subst is ignored
-- (since we want to substitute a LevelledExpr for
-- an Id via le_env) but we do use the Co/TyVar substs
, le_env :: IdEnv ([OutVar], LevelledExpr) -- Domain is pre-cloned Ids
}
{- Note [le_subst and le_env]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We clone nested let- and case-bound variables so that they are still
distinct when floated out; hence the le_subst/le_env. (see point 3 of
the module overview comment). We also use these envs when making a
variable polymorphic because we want to float it out past a big
lambda.
The le_subst and le_env always implement the same mapping,
in_x :-> out_x a b
where out_x is an OutVar, and a,b are its arguments (when
we perform abstraction at the same time as floating).
le_subst maps to CoreExpr
le_env maps to LevelledExpr
Since the range is always a variable or application, there is never
any difference between the two, but sadly the types differ. The
le_subst is used when substituting in a variable's IdInfo; the le_env
when we find a Var.
In addition the le_env records a [OutVar] of variables free in the
OutExpr/LevelledExpr, just so we don't have to call freeVars
repeatedly. This list is always non-empty, and the first element is
out_x
The domain of the both envs is *pre-cloned* Ids, though
The domain of the le_lvl_env is the *post-cloned* Ids
-}
initialEnv :: FloatOutSwitches -> CoreProgram -> LevelEnv
initialEnv float_lams binds
= LE { le_switches = float_lams
, le_ctxt_lvl = tOP_LEVEL
, le_join_ceil = panic "initialEnv"
, le_lvl_env = emptyVarEnv
, le_subst = mkEmptySubst in_scope_toplvl
, le_env = emptyVarEnv }
where
in_scope_toplvl = emptyInScopeSet `extendInScopeSetBndrs` binds
-- The Simplifier (see Note [Glomming] in GHC.Core.Opt.OccurAnal) and
-- the specialiser (see Note [Top level scope] in GHC.Core.Opt.Specialise)
-- may both produce top-level bindings where an early binding refers
-- to a later one. So here we put all the top-level binders in scope before
-- we start, to satisfy the lookupIdSubst invariants (#20200 and #20294)
addLvl :: Level -> VarEnv Level -> OutVar -> VarEnv Level
addLvl dest_lvl env v' = extendVarEnv env v' dest_lvl
addLvls :: Level -> VarEnv Level -> [OutVar] -> VarEnv Level
addLvls dest_lvl env vs = foldl' (addLvl dest_lvl) env vs
floatLams :: LevelEnv -> Maybe Int
floatLams le = floatOutLambdas (le_switches le)
floatConsts :: LevelEnv -> Bool
floatConsts le = floatOutConstants (le_switches le)
floatOverSat :: LevelEnv -> Bool
floatOverSat le = floatOutOverSatApps (le_switches le)
floatTopLvlOnly :: LevelEnv -> Bool
floatTopLvlOnly le = floatToTopLevelOnly (le_switches le)
incMinorLvlFrom :: LevelEnv -> Level
incMinorLvlFrom env = incMinorLvl (le_ctxt_lvl env)
-- extendCaseBndrEnv adds the mapping case-bndr->scrut-var if it can
-- See Note [Binder-swap during float-out]
extendCaseBndrEnv :: LevelEnv
-> Id -- Pre-cloned case binder
-> Expr LevelledBndr -- Post-cloned scrutinee
-> LevelEnv
extendCaseBndrEnv le@(LE { le_subst = subst, le_env = id_env })
case_bndr (Var scrut_var)
-- We could use OccurAnal. scrutBinderSwap_maybe here, and perhaps
-- get a bit more floating. But we didn't in the past and it's
-- an unforced change, so I'm leaving it.
= le { le_subst = extendSubstWithVar subst case_bndr scrut_var
, le_env = add_id id_env (case_bndr, scrut_var) }
extendCaseBndrEnv env _ _ = env
-- See Note [Join ceiling]
placeJoinCeiling :: LevelEnv -> LevelEnv
placeJoinCeiling le@(LE { le_ctxt_lvl = lvl })
= le { le_ctxt_lvl = lvl', le_join_ceil = lvl' }
where
lvl' = asJoinCeilLvl (incMinorLvl lvl)
maxFvLevel :: (Var -> Bool) -> LevelEnv -> DVarSet -> Level
maxFvLevel max_me env var_set
= nonDetStrictFoldDVarSet (maxIn max_me env) tOP_LEVEL var_set
-- It's OK to use a non-deterministic fold here because maxIn commutes.
maxFvLevel' :: (Var -> Bool) -> LevelEnv -> TyCoVarSet -> Level
-- Same but for TyCoVarSet
maxFvLevel' max_me env var_set
= nonDetStrictFoldUniqSet (maxIn max_me env) tOP_LEVEL var_set
-- It's OK to use a non-deterministic fold here because maxIn commutes.
maxIn :: (Var -> Bool) -> LevelEnv -> InVar -> Level -> Level
maxIn max_me (LE { le_lvl_env = lvl_env, le_env = id_env }) in_var lvl
= case lookupVarEnv id_env in_var of
Just (abs_vars, _) -> foldr max_out lvl abs_vars
Nothing -> max_out in_var lvl
where
max_out out_var lvl
| max_me out_var = case lookupVarEnv lvl_env out_var of
Just lvl' -> maxLvl lvl' lvl
Nothing -> lvl
| otherwise = lvl -- Ignore some vars depending on max_me
lookupVar :: LevelEnv -> Id -> LevelledExpr
lookupVar le v = case lookupVarEnv (le_env le) v of
Just (_, expr) -> expr
_ -> Var v
-- Level to which join points are allowed to float (boundary of current tail
-- context). See Note [Join ceiling]
joinCeilingLevel :: LevelEnv -> Level
joinCeilingLevel = le_join_ceil
abstractVars :: Level -> LevelEnv -> DVarSet -> [OutVar]
-- Find the variables in fvs, free vars of the target expression,
-- whose level is greater than the destination level
-- These are the ones we are going to abstract out
--
-- Note that to get reproducible builds, the variables need to be
-- abstracted in deterministic order, not dependent on the values of
-- Uniques. This is achieved by using DVarSets, deterministic free
-- variable computation and deterministic sort.
-- See Note [Unique Determinism] in GHC.Types.Unique for explanation of why
-- Uniques are not deterministic.
abstractVars dest_lvl (LE { le_subst = subst, le_lvl_env = lvl_env }) in_fvs
= -- NB: sortQuantVars might not put duplicates next to each other
map zap $ sortQuantVars $
filter abstract_me $
dVarSetElems $
closeOverKindsDSet $
substDVarSet subst in_fvs
-- NB: it's important to call abstract_me only on the OutIds the
-- come from substDVarSet (not on fv, which is an InId)
where
abstract_me v = case lookupVarEnv lvl_env v of
Just lvl -> dest_lvl `ltLvl` lvl
Nothing -> False
-- We are going to lambda-abstract, so nuke any IdInfo,
-- and add the tyvars of the Id (if necessary)
zap v | isId v = warnPprTrace (isStableUnfolding (idUnfolding v) ||
not (isEmptyRuleInfo (idSpecialisation v)))
"absVarsOf: discarding info on" (ppr v) $
setIdInfo v vanillaIdInfo
| otherwise = v
type LvlM result = UniqSM result
initLvl :: UniqSupply -> UniqSM a -> a
initLvl = initUs_
newPolyBndrs :: Level -> LevelEnv -> [OutVar] -> [InId]
-> LvlM (LevelEnv, [OutId])
-- The envt is extended to bind the new bndrs to dest_lvl, but
-- the le_ctxt_lvl is unaffected
newPolyBndrs dest_lvl
env@(LE { le_lvl_env = lvl_env, le_subst = subst, le_env = id_env })
abs_vars bndrs
= assert (all (not . isCoVar) bndrs) $ -- What would we add to the CoSubst in this case. No easy answer.
do { uniqs <- getUniquesM
; let new_bndrs = zipWith mk_poly_bndr bndrs uniqs
bndr_prs = bndrs `zip` new_bndrs
env' = env { le_lvl_env = addLvls dest_lvl lvl_env new_bndrs
, le_subst = foldl' add_subst subst bndr_prs
, le_env = foldl' add_id id_env bndr_prs }
; return (env', new_bndrs) }
where
add_subst env (v, v') = extendIdSubst env v (mkVarApps (Var v') abs_vars)
add_id env (v, v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars)
mk_poly_bndr bndr uniq = transferPolyIdInfo bndr abs_vars $ -- Note [transferPolyIdInfo] in GHC.Types.Id
transfer_join_info bndr $
mkSysLocal str uniq (idMult bndr) poly_ty
where
str = fsLit "poly_" `appendFS` occNameFS (getOccName bndr)
poly_ty = mkLamTypes abs_vars (substTyUnchecked subst (idType bndr))
-- If we are floating a join point to top level, it stops being
-- a join point. Otherwise it continues to be a join point,
-- but we may need to adjust its arity
dest_is_top = isTopLvl dest_lvl
transfer_join_info bndr new_bndr
| JoinPoint join_arity <- idJoinPointHood bndr
, not dest_is_top
= new_bndr `asJoinId` join_arity + length abs_vars
| otherwise
= new_bndr
newLvlVar :: LevelledExpr -- The RHS of the new binding
-> JoinPointHood -- Its join arity, if it is a join point
-> Bool -- True <=> the RHS looks like (makeStatic ...)
-> LvlM Id
newLvlVar lvld_rhs join_arity_maybe is_mk_static
= do { uniq <- getUniqueM
; return (add_join_info (mk_id uniq rhs_ty))
}
where
add_join_info var = var `asJoinId_maybe` join_arity_maybe
de_tagged_rhs = deTagExpr lvld_rhs
rhs_ty = exprType de_tagged_rhs
mk_id uniq rhs_ty
-- See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable.
| is_mk_static
= mkExportedVanillaId (mkSystemVarName uniq (mkFastString "static_ptr"))
rhs_ty
| otherwise
= mkSysLocal (mkFastString "lvl") uniq ManyTy rhs_ty
-- | Clone the binders bound by a single-alternative case.
cloneCaseBndrs :: LevelEnv -> Level -> [Var] -> LvlM (LevelEnv, [Var])
cloneCaseBndrs env@(LE { le_subst = subst, le_lvl_env = lvl_env, le_env = id_env })
new_lvl vs
= do { (subst', vs') <- cloneBndrs subst vs
-- N.B. We are not moving the body of the case, merely its case
-- binders. Consequently we should *not* set le_ctxt_lvl and
-- le_join_ceil. See Note [Setting levels when floating
-- single-alternative cases].
; let env' = env { le_lvl_env = addLvls new_lvl lvl_env vs'
, le_subst = subst'
, le_env = foldl' add_id id_env (vs `zip` vs') }
; return (env', vs') }
cloneLetVars :: RecFlag -> LevelEnv -> Level -> [InVar]
-> LvlM (LevelEnv, [OutVar])
-- See Note [Need for cloning during float-out]
-- Works for Ids bound by let(rec)
-- The dest_lvl is attributed to the binders in the new env,
-- but cloneVars doesn't affect the le_ctxt_lvl of the incoming env
cloneLetVars is_rec
env@(LE { le_subst = subst, le_lvl_env = lvl_env, le_env = id_env })
dest_lvl vs
= do { let vs1 = map zap vs
; (subst', vs2) <- case is_rec of
NonRecursive -> cloneBndrs subst vs1
Recursive -> cloneRecIdBndrs subst vs1
; let prs = vs `zip` vs2
env' = env { le_lvl_env = addLvls dest_lvl lvl_env vs2
, le_subst = subst'
, le_env = foldl' add_id id_env prs }
; return (env', vs2) }
where
zap :: Var -> Var
-- See Note [Floatifying demand info when floating]
-- and Note [Zapping JoinId when floating]
zap v | isId v = zap_join (floatifyIdDemandInfo v)
| otherwise = v
-- See Note [Zapping JoinId when floating]
zap_join | isTopLvl dest_lvl = zapJoinId
| otherwise = id
add_id :: IdEnv ([Var], LevelledExpr) -> (Var, Var) -> IdEnv ([Var], LevelledExpr)
add_id id_env (v, v1)
| isTyVar v = delVarEnv id_env v
| otherwise = extendVarEnv id_env v ([v1], assert (not (isCoVar v1)) $ Var v1)
{- Note [Zapping JoinId when floating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we are floating a join point, it won't be one anymore, so we zap
the join point information.
Note [Floatifying demand info when floating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When floating we must lazify the outer demand info on the Id
because it may be less demanded than at its original binding site.
For example:
f :: Int -> Int
f x = let v = 3*4 in v+x
Here v is strict and used at most once; but if we float v to top level,
that isn't true any more. Specifically, we lose track of v's cardinality info:
* if `f` is called multiple times, then `v` is used more than once
* if `f` is never called, then `v` is never evaluated.
But NOTE that we only need to adjust the /top-level/ cardinality info.
For example
let x = (e1,e2)
in ...(case x of (a,b) -> a+b)...
If we float x outwards, it may no longer be strict, but IF it is ever
evaluated THEN its components will be evaluated. So we to lazify and
many-ify its demand-info, not discard it entirely.
Same if we have
let f = \x y . blah
in ...(f a b)...(f c d)...
Here `f` will get a demand like SC(S,C(1,L)). If we float it out, we can
keep that `1C` called-once inner demand. It's only the outer strictness
that we kill.
Conclusion: to floatify a demand, just do `multDmd C_0N` to reflect the
fact that `v` may be used any number of times, from zero upwards.
-}
|