1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
{-# LANGUAGE TypeFamilies #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Desugaring list comprehensions, monad comprehensions and array comprehensions
-}
module GHC.HsToCore.ListComp ( dsListComp, dsMonadComp ) where
import GHC.Prelude
import {-# SOURCE #-} GHC.HsToCore.Expr ( dsExpr, dsLExpr, dsLocalBinds, dsSyntaxExpr )
import GHC.Hs
import GHC.Hs.Syn.Type
import GHC.Core
import GHC.Core.Make
import GHC.HsToCore.Monad -- the monadery used in the desugarer
import GHC.HsToCore.Utils
import GHC.Driver.DynFlags
import GHC.Core.Utils
import GHC.Types.Id
import GHC.Core.Type
import GHC.Builtin.Types
import GHC.HsToCore.Match
import GHC.Builtin.Names
import GHC.Types.SrcLoc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Tc.Utils.TcType
import GHC.Data.List.SetOps( getNth )
{-
List comprehensions may be desugared in one of two ways: ``ordinary''
(as you would expect if you read SLPJ's book) and ``with foldr/build
turned on'' (if you read Gill {\em et al.}'s paper on the subject).
There will be at least one ``qualifier'' in the input.
-}
dsListComp :: [ExprLStmt GhcTc]
-> Type -- Type of entire list
-> DsM CoreExpr
dsListComp lquals res_ty = do
dflags <- getDynFlags
let quals = map unLoc lquals
elt_ty = case tcTyConAppArgs res_ty of
[elt_ty] -> elt_ty
_ -> pprPanic "dsListComp" (ppr res_ty $$ ppr lquals)
if not (gopt Opt_EnableRewriteRules dflags) || gopt Opt_IgnoreInterfacePragmas dflags
-- Either rules are switched off, or we are ignoring what there are;
-- Either way foldr/build won't happen, so use the more efficient
-- Wadler-style desugaring
|| isParallelComp quals
-- Foldr-style desugaring can't handle parallel list comprehensions
then deListComp quals (mkNilExpr elt_ty)
else mkBuildExpr elt_ty (\(c, _) (n, _) -> dfListComp c n quals)
-- Foldr/build should be enabled, so desugar
-- into foldrs and builds
where
-- We must test for ParStmt anywhere, not just at the head, because an extension
-- to list comprehensions would be to add brackets to specify the associativity
-- of qualifier lists. This is really easy to do by adding extra ParStmts into the
-- mix of possibly a single element in length, so we do this to leave the possibility open
isParallelComp = any isParallelStmt
isParallelStmt (ParStmt {}) = True
isParallelStmt _ = False
-- This function lets you desugar a inner list comprehension and a list of the binders
-- of that comprehension that we need in the outer comprehension into such an expression
-- and the type of the elements that it outputs (tuples of binders)
dsInnerListComp :: (ParStmtBlock GhcTc GhcTc) -> DsM (CoreExpr, Type)
dsInnerListComp (ParStmtBlock _ stmts bndrs _)
= do { let bndrs_tuple_type = mkBigCoreVarTupTy bndrs
list_ty = mkListTy bndrs_tuple_type
-- really use original bndrs below!
; expr <- dsListComp (stmts ++ [noLocA $ mkLastStmt (mkBigLHsVarTupId bndrs)]) list_ty
; return (expr, bndrs_tuple_type) }
-- This function factors out commonality between the desugaring strategies for GroupStmt.
-- Given such a statement it gives you back an expression representing how to compute the transformed
-- list and the tuple that you need to bind from that list in order to proceed with your desugaring
dsTransStmt :: ExprStmt GhcTc -> DsM (CoreExpr, LPat GhcTc)
dsTransStmt (TransStmt { trS_form = form, trS_stmts = stmts, trS_bndrs = binderMap
, trS_by = by, trS_using = using }) = do
let (from_bndrs, to_bndrs) = unzip binderMap
let from_bndrs_tys = map idType from_bndrs
to_bndrs_tys = map idType to_bndrs
to_bndrs_tup_ty = mkBigCoreTupTy to_bndrs_tys
-- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
(expr', from_tup_ty) <- dsInnerListComp (ParStmtBlock noExtField stmts
from_bndrs noSyntaxExpr)
-- Work out what arguments should be supplied to that expression: i.e. is an extraction
-- function required? If so, create that desugared function and add to arguments
usingExpr' <- dsLExpr using
usingArgs' <- case by of
Nothing -> return [expr']
Just by_e -> do { by_e' <- dsLExpr by_e
; lam' <- matchTuple from_bndrs by_e'
; return [lam', expr'] }
-- Create an unzip function for the appropriate arity and element types and find "map"
unzip_stuff' <- mkUnzipBind form from_bndrs_tys
map_id <- dsLookupGlobalId mapName
-- Generate the expressions to build the grouped list
let -- First we apply the grouping function to the inner list
inner_list_expr' = mkApps usingExpr' usingArgs'
-- Then we map our "unzip" across it to turn the lists of tuples into tuples of lists
-- We make sure we instantiate the type variable "a" to be a list of "from" tuples and
-- the "b" to be a tuple of "to" lists!
-- Then finally we bind the unzip function around that expression
bound_unzipped_inner_list_expr'
= case unzip_stuff' of
Nothing -> inner_list_expr'
Just (unzip_fn', unzip_rhs') ->
Let (Rec [(unzip_fn', unzip_rhs')]) $
mkApps (Var map_id) $
[ Type (mkListTy from_tup_ty)
, Type to_bndrs_tup_ty
, Var unzip_fn'
, inner_list_expr' ]
-- Build a pattern that ensures the consumer binds into the NEW binders,
-- which hold lists rather than single values
let pat = mkBigLHsVarPatTupId to_bndrs -- NB: no '!
return (bound_unzipped_inner_list_expr', pat)
dsTransStmt _ = panic "dsTransStmt: Not given a TransStmt"
{-
************************************************************************
* *
* Ordinary desugaring of list comprehensions *
* *
************************************************************************
Just as in Phil's chapter~7 in SLPJ, using the rules for
optimally-compiled list comprehensions. This is what Kevin followed
as well, and I quite happily do the same. The TQ translation scheme
transforms a list of qualifiers (either boolean expressions or
generators) into a single expression which implements the list
comprehension. Because we are generating 2nd-order polymorphic
lambda-calculus, calls to NIL and CONS must be applied to a type
argument, as well as their usual value arguments.
\begin{verbatim}
TE << [ e | qs ] >> = TQ << [ e | qs ] ++ Nil (typeOf e) >>
(Rule C)
TQ << [ e | ] ++ L >> = Cons (typeOf e) TE <<e>> TE <<L>>
(Rule B)
TQ << [ e | b , qs ] ++ L >> =
if TE << b >> then TQ << [ e | qs ] ++ L >> else TE << L >>
(Rule A')
TQ << [ e | p <- L1, qs ] ++ L2 >> =
letrec
h = \ u1 ->
case u1 of
[] -> TE << L2 >>
(u2 : u3) ->
(( \ TE << p >> -> ( TQ << [e | qs] ++ (h u3) >> )) u2)
[] (h u3)
in
h ( TE << L1 >> )
"h", "u1", "u2", and "u3" are new variables.
\end{verbatim}
@deListComp@ is the TQ translation scheme. Roughly speaking, @dsExpr@
is the TE translation scheme. Note that we carry around the @L@ list
already desugared. @dsListComp@ does the top TE rule mentioned above.
To the above, we add an additional rule to deal with parallel list
comprehensions. The translation goes roughly as follows:
[ e | p1 <- e11, let v1 = e12, p2 <- e13
| q1 <- e21, let v2 = e22, q2 <- e23]
=>
[ e | ((x1, .., xn), (y1, ..., ym)) <-
zip [(x1,..,xn) | p1 <- e11, let v1 = e12, p2 <- e13]
[(y1,..,ym) | q1 <- e21, let v2 = e22, q2 <- e23]]
where (x1, .., xn) are the variables bound in p1, v1, p2
(y1, .., ym) are the variables bound in q1, v2, q2
In the translation below, the ParStmt branch translates each parallel branch
into a sub-comprehension, and desugars each independently. The resulting lists
are fed to a zip function, we create a binding for all the variables bound in all
the comprehensions, and then we hand things off the desugarer for bindings.
The zip function is generated here a) because it's small, and b) because then we
don't have to deal with arbitrary limits on the number of zip functions in the
prelude, nor which library the zip function came from.
The introduced tuples are Boxed, but only because I couldn't get it to work
with the Unboxed variety.
-}
deListComp :: [ExprStmt GhcTc] -> CoreExpr -> DsM CoreExpr
deListComp [] _ = panic "deListComp"
deListComp (LastStmt _ body _ _ : quals) list
= -- Figure 7.4, SLPJ, p 135, rule C above
assert (null quals) $
do { core_body <- dsLExpr body
; return (mkConsExpr (exprType core_body) core_body list) }
-- Non-last: must be a guard
deListComp (BodyStmt _ guard _ _ : quals) list = do -- rule B above
core_guard <- dsLExpr guard
core_rest <- deListComp quals list
return (mkIfThenElse core_guard core_rest list)
-- [e | let B, qs] = let B in [e | qs]
deListComp (LetStmt _ binds : quals) list = do
core_rest <- deListComp quals list
dsLocalBinds binds core_rest
deListComp (stmt@(TransStmt {}) : quals) list = do
(inner_list_expr, pat) <- dsTransStmt stmt
deBindComp pat inner_list_expr quals list
deListComp (BindStmt _ pat list1 : quals) core_list2 = do -- rule A' above
core_list1 <- dsLExpr list1
deBindComp pat core_list1 quals core_list2
deListComp (ParStmt _ stmtss_w_bndrs _ _ : quals) list
= do { exps_and_qual_tys <- mapM dsInnerListComp stmtss_w_bndrs
; let (exps, qual_tys) = unzip exps_and_qual_tys
; (zip_fn, zip_rhs) <- mkZipBind qual_tys
-- Deal with [e | pat <- zip l1 .. ln] in example above
; deBindComp pat (Let (Rec [(zip_fn, zip_rhs)]) (mkApps (Var zip_fn) exps))
quals list }
where
bndrs_s = [bs | ParStmtBlock _ _ bs _ <- stmtss_w_bndrs]
-- pat is the pattern ((x1,..,xn), (y1,..,ym)) in the example above
pat = mkBigLHsPatTupId pats
pats = map mkBigLHsVarPatTupId bndrs_s
deListComp (RecStmt {} : _) _ = panic "deListComp RecStmt"
deListComp (ApplicativeStmt {} : _) _ =
panic "deListComp ApplicativeStmt"
deBindComp :: LPat GhcTc
-> CoreExpr
-> [ExprStmt GhcTc]
-> CoreExpr
-> DsM (Expr Id)
deBindComp pat core_list1 quals core_list2 = do
let u3_ty@u1_ty = exprType core_list1 -- two names, same thing
-- u1_ty is a [alpha] type, and u2_ty = alpha
let u2_ty = hsLPatType pat
let res_ty = exprType core_list2
h_ty = u1_ty `mkVisFunTyMany` res_ty
-- no representation polymorphism here, as list comprehensions
-- don't work with RebindableSyntax. NB: These are *not* monad comps.
[h, u1, u2, u3] <- newSysLocalsDs $ map unrestricted [h_ty, u1_ty, u2_ty, u3_ty]
-- the "fail" value ...
let
core_fail = App (Var h) (Var u3)
letrec_body = App (Var h) core_list1
rest_expr <- deListComp quals core_fail
core_match <- matchSimply (Var u2) (StmtCtxt (HsDoStmt ListComp)) ManyTy pat rest_expr core_fail
let
rhs = Lam u1 $
Case (Var u1) u1 res_ty
[Alt (DataAlt nilDataCon) [] core_list2
,Alt (DataAlt consDataCon) [u2, u3] core_match]
-- Increasing order of tag
return (Let (Rec [(h, rhs)]) letrec_body)
{-
************************************************************************
* *
* Foldr/Build desugaring of list comprehensions *
* *
************************************************************************
@dfListComp@ are the rules used with foldr/build turned on:
\begin{verbatim}
TE[ e | ] c n = c e n
TE[ e | b , q ] c n = if b then TE[ e | q ] c n else n
TE[ e | p <- l , q ] c n = let
f = \ x b -> case x of
p -> TE[ e | q ] c b
_ -> b
in
foldr f n l
\end{verbatim}
-}
dfListComp :: Id -> Id -- 'c' and 'n'
-> [ExprStmt GhcTc] -- the rest of the qual's
-> DsM CoreExpr
dfListComp _ _ [] = panic "dfListComp"
dfListComp c_id n_id (LastStmt _ body _ _ : quals)
= assert (null quals) $
do { core_body <- dsLExpr body
; return (mkApps (Var c_id) [core_body, Var n_id]) }
-- Non-last: must be a guard
dfListComp c_id n_id (BodyStmt _ guard _ _ : quals) = do
core_guard <- dsLExpr guard
core_rest <- dfListComp c_id n_id quals
return (mkIfThenElse core_guard core_rest (Var n_id))
dfListComp c_id n_id (LetStmt _ binds : quals) = do
-- new in 1.3, local bindings
core_rest <- dfListComp c_id n_id quals
dsLocalBinds binds core_rest
dfListComp c_id n_id (stmt@(TransStmt {}) : quals) = do
(inner_list_expr, pat) <- dsTransStmt stmt
-- Anyway, we bind the newly grouped list via the generic binding function
dfBindComp c_id n_id (pat, inner_list_expr) quals
dfListComp c_id n_id (BindStmt _ pat list1 : quals) = do
-- evaluate the two lists
core_list1 <- dsLExpr list1
-- Do the rest of the work in the generic binding builder
dfBindComp c_id n_id (pat, core_list1) quals
dfListComp _ _ (ParStmt {} : _) = panic "dfListComp ParStmt"
dfListComp _ _ (RecStmt {} : _) = panic "dfListComp RecStmt"
dfListComp _ _ (ApplicativeStmt {} : _) =
panic "dfListComp ApplicativeStmt"
dfBindComp :: Id -> Id -- 'c' and 'n'
-> (LPat GhcTc, CoreExpr)
-> [ExprStmt GhcTc] -- the rest of the qual's
-> DsM CoreExpr
dfBindComp c_id n_id (pat, core_list1) quals = do
-- find the required type
let x_ty = hsLPatType pat
let b_ty = idType n_id
-- create some new local id's
b <- newSysLocalDs ManyTy b_ty
x <- newSysLocalDs ManyTy x_ty
-- build rest of the comprehension
core_rest <- dfListComp c_id b quals
-- build the pattern match
core_expr <- matchSimply (Var x) (StmtCtxt (HsDoStmt ListComp)) ManyTy
pat core_rest (Var b)
-- now build the outermost foldr, and return
mkFoldrExpr x_ty b_ty (mkLams [x, b] core_expr) (Var n_id) core_list1
{-
************************************************************************
* *
\subsection[DsFunGeneration]{Generation of zip/unzip functions for use in desugaring}
* *
************************************************************************
-}
mkZipBind :: [Type] -> DsM (Id, CoreExpr)
-- mkZipBind [t1, t2]
-- = (zip, \as1:[t1] as2:[t2]
-- -> case as1 of
-- [] -> []
-- (a1:as'1) -> case as2 of
-- [] -> []
-- (a2:as'2) -> (a1, a2) : zip as'1 as'2)]
mkZipBind elt_tys = do
ass <- mapM (newSysLocalDs ManyTy) elt_list_tys
as' <- mapM (newSysLocalDs ManyTy) elt_tys
as's <- mapM (newSysLocalDs ManyTy) elt_list_tys
zip_fn <- newSysLocalDs ManyTy zip_fn_ty
let inner_rhs = mkConsExpr elt_tuple_ty
(mkBigCoreVarTup as')
(mkVarApps (Var zip_fn) as's)
zip_body = foldr mk_case inner_rhs (zip3 ass as' as's)
return (zip_fn, mkLams ass zip_body)
where
elt_list_tys = map mkListTy elt_tys
elt_tuple_ty = mkBigCoreTupTy elt_tys
elt_tuple_list_ty = mkListTy elt_tuple_ty
zip_fn_ty = mkVisFunTysMany elt_list_tys elt_tuple_list_ty
mk_case (as, a', as') rest
= Case (Var as) as elt_tuple_list_ty
[ Alt (DataAlt nilDataCon) [] (mkNilExpr elt_tuple_ty)
, Alt (DataAlt consDataCon) [a', as'] rest]
-- Increasing order of tag
mkUnzipBind :: TransForm -> [Type] -> DsM (Maybe (Id, CoreExpr))
-- mkUnzipBind [t1, t2]
-- = (unzip, \ys :: [(t1, t2)] -> foldr (\ax :: (t1, t2) axs :: ([t1], [t2])
-- -> case ax of
-- (x1, x2) -> case axs of
-- (xs1, xs2) -> (x1 : xs1, x2 : xs2))
-- ([], [])
-- ys)
--
-- We use foldr here in all cases, even if rules are turned off, because we may as well!
mkUnzipBind ThenForm _
= return Nothing -- No unzipping for ThenForm
mkUnzipBind _ elt_tys
= do { ax <- newSysLocalDs ManyTy elt_tuple_ty
; axs <- newSysLocalDs ManyTy elt_list_tuple_ty
; ys <- newSysLocalDs ManyTy elt_tuple_list_ty
; xs <- mapM (newSysLocalDs ManyTy) elt_tys
; xss <- mapM (newSysLocalDs ManyTy) elt_list_tys
; unzip_fn <- newSysLocalDs ManyTy unzip_fn_ty
; let nil_tuple = mkBigCoreTup (map mkNilExpr elt_tys)
concat_expressions = map mkConcatExpression (zip3 elt_tys (map Var xs) (map Var xss))
tupled_concat_expression = mkBigCoreTup concat_expressions
; folder_body_inner_case <- mkBigTupleCase xss tupled_concat_expression (Var axs)
; folder_body_outer_case <- mkBigTupleCase xs folder_body_inner_case (Var ax)
; let folder_body = mkLams [ax, axs] folder_body_outer_case
; unzip_body <- mkFoldrExpr elt_tuple_ty elt_list_tuple_ty folder_body nil_tuple (Var ys)
; return (Just (unzip_fn, mkLams [ys] unzip_body)) }
where
elt_tuple_ty = mkBigCoreTupTy elt_tys
elt_tuple_list_ty = mkListTy elt_tuple_ty
elt_list_tys = map mkListTy elt_tys
elt_list_tuple_ty = mkBigCoreTupTy elt_list_tys
unzip_fn_ty = elt_tuple_list_ty `mkVisFunTyMany` elt_list_tuple_ty
mkConcatExpression (list_element_ty, head, tail) = mkConsExpr list_element_ty head tail
-- Translation for monad comprehensions
-- Entry point for monad comprehension desugaring
dsMonadComp :: [ExprLStmt GhcTc] -> DsM CoreExpr
dsMonadComp stmts = dsMcStmts stmts
dsMcStmts :: [ExprLStmt GhcTc] -> DsM CoreExpr
dsMcStmts [] = panic "dsMcStmts"
dsMcStmts ((L loc stmt) : lstmts) = putSrcSpanDsA loc (dsMcStmt stmt lstmts)
---------------
dsMcStmt :: ExprStmt GhcTc -> [ExprLStmt GhcTc] -> DsM CoreExpr
dsMcStmt (LastStmt _ body _ ret_op) stmts
= assert (null stmts) $
do { body' <- dsLExpr body
; dsSyntaxExpr ret_op [body'] }
-- [ .. | let binds, stmts ]
dsMcStmt (LetStmt _ binds) stmts
= do { rest <- dsMcStmts stmts
; dsLocalBinds binds rest }
-- [ .. | a <- m, stmts ]
dsMcStmt (BindStmt xbs pat rhs) stmts
= do { rhs' <- dsLExpr rhs
; dsMcBindStmt pat rhs' (xbstc_bindOp xbs) (xbstc_failOp xbs) (xbstc_boundResultType xbs) stmts }
-- Apply `guard` to the `exp` expression
--
-- [ .. | exp, stmts ]
--
dsMcStmt (BodyStmt _ exp then_exp guard_exp) stmts
= do { exp' <- dsLExpr exp
; rest <- dsMcStmts stmts
; guard_exp' <- dsSyntaxExpr guard_exp [exp']
; dsSyntaxExpr then_exp [guard_exp', rest] }
-- Group statements desugar like this:
--
-- [| (q, then group by e using f); rest |]
-- ---> f {qt} (\qv -> e) [| q; return qv |] >>= \ n_tup ->
-- case unzip n_tup of qv' -> [| rest |]
--
-- where variables (v1:t1, ..., vk:tk) are bound by q
-- qv = (v1, ..., vk)
-- qt = (t1, ..., tk)
-- (>>=) :: m2 a -> (a -> m3 b) -> m3 b
-- f :: forall a. (a -> t) -> m1 a -> m2 (n a)
-- n_tup :: n qt
-- unzip :: n qt -> (n t1, ..., n tk) (needs Functor n)
dsMcStmt (TransStmt { trS_stmts = stmts, trS_bndrs = bndrs
, trS_by = by, trS_using = using
, trS_ret = return_op, trS_bind = bind_op
, trS_ext = n_tup_ty' -- n (a,b,c)
, trS_fmap = fmap_op, trS_form = form }) stmts_rest
= do { let (from_bndrs, to_bndrs) = unzip bndrs
; let from_bndr_tys = map idType from_bndrs -- Types ty
-- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
; expr' <- dsInnerMonadComp stmts from_bndrs return_op
-- Work out what arguments should be supplied to that expression: i.e. is an extraction
-- function required? If so, create that desugared function and add to arguments
; usingExpr' <- dsLExpr using
; usingArgs' <- case by of
Nothing -> return [expr']
Just by_e -> do { by_e' <- dsLExpr by_e
; lam' <- matchTuple from_bndrs by_e'
; return [lam', expr'] }
-- Generate the expressions to build the grouped list
-- Build a pattern that ensures the consumer binds into the NEW binders,
-- which hold monads rather than single values
; body <- dsMcStmts stmts_rest
; n_tup_var' <- newSysLocalDs ManyTy n_tup_ty'
; tup_n_expr' <- mkMcUnzipM form fmap_op n_tup_var' from_bndr_tys
; let rhs' = mkApps usingExpr' usingArgs'
; body' <- mkBigTupleCase to_bndrs body tup_n_expr'
; dsSyntaxExpr bind_op [rhs', Lam n_tup_var' body'] }
-- Parallel statements. Use `Control.Monad.Zip.mzip` to zip parallel
-- statements, for example:
--
-- [ body | qs1 | qs2 | qs3 ]
-- -> [ body | (bndrs1, (bndrs2, bndrs3))
-- <- [bndrs1 | qs1] `mzip` ([bndrs2 | qs2] `mzip` [bndrs3 | qs3]) ]
--
-- where `mzip` has type
-- mzip :: forall a b. m a -> m b -> m (a,b)
-- NB: we need a polymorphic mzip because we call it several times
dsMcStmt (ParStmt bind_ty blocks mzip_op bind_op) stmts_rest
= do { exps_w_tys <- mapM ds_inner blocks -- Pairs (exp :: m ty, ty)
; mzip_op' <- dsExpr mzip_op
; let -- The pattern variables
pats = [ mkBigLHsVarPatTupId bs | ParStmtBlock _ _ bs _ <- blocks]
-- Pattern with tuples of variables
-- [v1,v2,v3] => (v1, (v2, v3))
pat = foldr1 (\p1 p2 -> mkLHsPatTup [p1, p2]) pats
(rhs, _) = foldr1 (\(e1,t1) (e2,t2) ->
(mkApps mzip_op' [Type t1, Type t2, e1, e2],
mkBoxedTupleTy [t1,t2]))
exps_w_tys
; dsMcBindStmt pat rhs bind_op Nothing bind_ty stmts_rest }
where
ds_inner :: ParStmtBlock GhcTc GhcTc -> DsM (CoreExpr, Type)
ds_inner (ParStmtBlock _ stmts bndrs return_op)
= do { exp <- dsInnerMonadComp stmts bndrs return_op
; return (exp, mkBigCoreVarTupTy bndrs) }
dsMcStmt stmt@(ApplicativeStmt {}) _ = pprPanic "dsMcStmt: unexpected stmt" (ppr stmt)
dsMcStmt stmt@(RecStmt {}) _ = pprPanic "dsMcStmt: unexpected stmt" (ppr stmt)
matchTuple :: [Id] -> CoreExpr -> DsM CoreExpr
-- (matchTuple [a,b,c] body)
-- returns the Core term
-- \x. case x of (a,b,c) -> body
matchTuple ids body
= do { tup_id <- newSysLocalDs ManyTy (mkBigCoreVarTupTy ids)
; tup_case <- mkBigTupleCase ids body (Var tup_id)
; return (Lam tup_id tup_case) }
-- general `rhs' >>= \pat -> stmts` desugaring where `rhs'` is already a
-- desugared `CoreExpr`
dsMcBindStmt :: LPat GhcTc
-> CoreExpr -- ^ the desugared rhs of the bind statement
-> SyntaxExpr GhcTc
-> Maybe (SyntaxExpr GhcTc)
-> Type -- ^ S in (>>=) :: Q -> (R -> S) -> T
-> [ExprLStmt GhcTc]
-> DsM CoreExpr
dsMcBindStmt pat rhs' bind_op fail_op res1_ty stmts
= do { var <- selectSimpleMatchVarL ManyTy pat
; match <- matchSinglePatVar var Nothing (StmtCtxt (HsDoStmt (DoExpr Nothing))) pat
res1_ty (MR_Infallible $ dsMcStmts stmts)
-- NB: dsMcStmts needs to happen inside matchSinglePatVar, and not
-- before it, so that long-distance information is properly threaded.
-- See Note [Long-distance information in do notation] in GHC.HsToCore.Expr.
; match_code <- dsHandleMonadicFailure MonadComp pat match fail_op
; dsSyntaxExpr bind_op [rhs', Lam var match_code] }
-- Desugar nested monad comprehensions, for example in `then..` constructs
-- dsInnerMonadComp quals [a,b,c] ret_op
-- returns the desugaring of
-- [ (a,b,c) | quals ]
dsInnerMonadComp :: [ExprLStmt GhcTc]
-> [Id] -- Return a tuple of these variables
-> SyntaxExpr GhcTc -- The monomorphic "return" operator
-> DsM CoreExpr
dsInnerMonadComp stmts bndrs ret_op
= dsMcStmts (stmts ++
[noLocA (LastStmt noExtField (mkBigLHsVarTupId bndrs) Nothing ret_op)])
-- The `unzip` function for `GroupStmt` in a monad comprehensions
--
-- unzip :: m (a,b,..) -> (m a,m b,..)
-- unzip m_tuple = ( liftM selN1 m_tuple
-- , liftM selN2 m_tuple
-- , .. )
--
-- mkMcUnzipM fmap ys [t1, t2]
-- = ( fmap (selN1 :: (t1, t2) -> t1) ys
-- , fmap (selN2 :: (t1, t2) -> t2) ys )
mkMcUnzipM :: TransForm
-> HsExpr GhcTc -- fmap
-> Id -- Of type n (a,b,c)
-> [Type] -- [a,b,c] (not representation-polymorphic)
-> DsM CoreExpr -- Of type (n a, n b, n c)
mkMcUnzipM ThenForm _ ys _
= return (Var ys) -- No unzipping to do
mkMcUnzipM _ fmap_op ys elt_tys
= do { fmap_op' <- dsExpr fmap_op
; xs <- mapM (newSysLocalDs ManyTy) elt_tys
; let tup_ty = mkBigCoreTupTy elt_tys
; tup_xs <- newSysLocalDs ManyTy tup_ty
; let mk_elt i = mkApps fmap_op' -- fmap :: forall a b. (a -> b) -> n a -> n b
[ Type tup_ty, Type (getNth elt_tys i)
, mk_sel i, Var ys]
mk_sel n = Lam tup_xs $
mkBigTupleSelector xs (getNth xs n) tup_xs (Var tup_xs)
; return (mkBigCoreTup (map mk_elt [0..length elt_tys - 1])) }
|