1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
|
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE DataKinds #-}
--
-- (c) The University of Glasgow 2002-2006
--
-- Functions over HsSyn specialised to RdrName.
module GHC.Parser.PostProcess (
mkRdrGetField, mkRdrProjection, Fbind, -- RecordDot
mkHsOpApp,
mkHsIntegral, mkHsFractional, mkHsIsString,
mkHsDo, mkSpliceDecl,
mkRoleAnnotDecl,
mkClassDecl,
mkTyData, mkDataFamInst,
mkTySynonym, mkTyFamInstEqn,
mkStandaloneKindSig,
mkTyFamInst,
mkFamDecl,
mkInlinePragma,
mkOpaquePragma,
mkPatSynMatchGroup,
mkRecConstrOrUpdate,
mkTyClD, mkInstD,
mkRdrRecordCon, mkRdrRecordUpd,
setRdrNameSpace,
fromSpecTyVarBndr, fromSpecTyVarBndrs,
annBinds,
fixValbindsAnn,
stmtsAnchor, stmtsLoc,
cvBindGroup,
cvBindsAndSigs,
cvTopDecls,
placeHolderPunRhs,
-- Stuff to do with Foreign declarations
mkImport,
parseCImport,
mkExport,
mkExtName, -- RdrName -> CLabelString
mkGadtDecl, -- [LocatedA RdrName] -> LHsType RdrName -> ConDecl RdrName
mkConDeclH98,
-- Bunch of functions in the parser monad for
-- checking and constructing values
checkImportDecl,
checkExpBlockArguments, checkCmdBlockArguments,
checkPrecP, -- Int -> P Int
checkContext, -- HsType -> P HsContext
checkPattern, -- HsExp -> P HsPat
checkPattern_details,
incompleteDoBlock,
ParseContext(..),
checkMonadComp,
checkValDef, -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
checkValSigLhs,
LRuleTyTmVar, RuleTyTmVar(..),
mkRuleBndrs, mkRuleTyVarBndrs,
checkRuleTyVarBndrNames,
checkRecordSyntax,
checkEmptyGADTs,
addFatalError, hintBangPat,
mkBangTy,
UnpackednessPragma(..),
mkMultTy,
mkMultAnn,
-- Token location
mkTokenLocation,
-- Help with processing exports
ImpExpSubSpec(..),
ImpExpQcSpec(..),
mkModuleImpExp,
mkTypeImpExp,
mkImpExpSubSpec,
checkImportSpec,
-- Token symbols
starSym,
-- Warnings and errors
warnStarIsType,
warnPrepositiveQualifiedModule,
failOpFewArgs,
failNotEnabledImportQualifiedPost,
failImportQualifiedTwice,
requireExplicitNamespaces,
SumOrTuple (..),
-- Expression/command/pattern ambiguity resolution
PV,
runPV,
ECP(ECP, unECP),
DisambInfixOp(..),
DisambECP(..),
ecpFromExp,
ecpFromCmd,
PatBuilder,
hsHoleExpr,
-- Type/datacon ambiguity resolution
DisambTD(..),
addUnpackednessP,
dataConBuilderCon,
dataConBuilderDetails,
mkUnboxedSumCon,
-- ListTuplePuns related parsers
mkTupleSyntaxTy,
mkTupleSyntaxTycon,
mkListSyntaxTy0,
mkListSyntaxTy1,
withCombinedComments,
requireLTPuns,
) where
import GHC.Prelude
import GHC.Hs -- Lots of it
import GHC.Core.TyCon ( TyCon, isTupleTyCon, tyConSingleDataCon_maybe )
import GHC.Core.DataCon ( DataCon, dataConTyCon )
import GHC.Core.ConLike ( ConLike(..) )
import GHC.Core.Coercion.Axiom ( Role, fsFromRole )
import GHC.Types.Name.Reader
import GHC.Types.Name
import GHC.Types.Basic
import GHC.Types.Error
import GHC.Types.Fixity
import GHC.Types.Hint
import GHC.Types.SourceText
import GHC.Parser.Types
import GHC.Parser.Lexer
import GHC.Parser.Errors.Types
import GHC.Utils.Lexeme ( okConOcc )
import GHC.Types.TyThing
import GHC.Core.Type ( Specificity(..) )
import GHC.Builtin.Types( cTupleTyConName, tupleTyCon, tupleDataCon,
nilDataConName, nilDataConKey,
listTyConName, listTyConKey, sumDataCon,
unrestrictedFunTyCon , listTyCon_RDR )
import GHC.Types.ForeignCall
import GHC.Types.SrcLoc
import GHC.Types.Unique ( hasKey )
import GHC.Data.OrdList
import GHC.Utils.Outputable as Outputable
import GHC.Data.FastString
import GHC.Data.Maybe
import GHC.Utils.Error
import GHC.Utils.Misc
import GHC.Utils.Monad (unlessM)
import Data.Either
import Data.List ( findIndex )
import Data.Foldable
import qualified Data.Semigroup as Semi
import GHC.Unit.Module.Warnings
import GHC.Utils.Panic
import qualified GHC.Data.Strict as Strict
import Language.Haskell.Syntax.Basic (FieldLabelString(..))
import Control.Monad
import Text.ParserCombinators.ReadP as ReadP
import Data.Char
import Data.Data ( dataTypeOf, fromConstr, dataTypeConstrs )
import Data.Kind ( Type )
import Data.List.NonEmpty (NonEmpty)
{- **********************************************************************
Construction functions for Rdr stuff
********************************************************************* -}
-- | mkClassDecl builds a RdrClassDecl, filling in the names for tycon and
-- datacon by deriving them from the name of the class. We fill in the names
-- for the tycon and datacon corresponding to the class, by deriving them
-- from the name of the class itself. This saves recording the names in the
-- interface file (which would be equally good).
-- Similarly for mkConDecl, mkClassOpSig and default-method names.
-- *** See Note [The Naming story] in GHC.Hs.Decls ****
mkTyClD :: LTyClDecl (GhcPass p) -> LHsDecl (GhcPass p)
mkTyClD (L loc d) = L loc (TyClD noExtField d)
mkInstD :: LInstDecl (GhcPass p) -> LHsDecl (GhcPass p)
mkInstD (L loc d) = L loc (InstD noExtField d)
mkClassDecl :: SrcSpan
-> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
-> Located (a,[LHsFunDep GhcPs])
-> OrdList (LHsDecl GhcPs)
-> EpLayout
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkClassDecl loc' (L _ (mcxt, tycl_hdr)) fds where_cls layout annsIn
= do { (binds, sigs, ats, at_defs, _, docs) <- cvBindsAndSigs where_cls
; (cls, tparams, fixity, ann, cs) <- checkTyClHdr True tycl_hdr
; tyvars <- checkTyVars (text "class") whereDots cls tparams
; let anns' = annsIn Semi.<> ann
; let loc = EpAnn (spanAsAnchor loc') noAnn cs
; return (L loc (ClassDecl { tcdCExt = (anns', layout, NoAnnSortKey)
, tcdCtxt = mcxt
, tcdLName = cls, tcdTyVars = tyvars
, tcdFixity = fixity
, tcdFDs = snd (unLoc fds)
, tcdSigs = mkClassOpSigs sigs
, tcdMeths = binds
, tcdATs = ats, tcdATDefs = at_defs
, tcdDocs = docs })) }
mkTyData :: SrcSpan
-> Bool
-> NewOrData
-> Maybe (LocatedP CType)
-> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
-> Maybe (LHsKind GhcPs)
-> [LConDecl GhcPs]
-> Located (HsDeriving GhcPs)
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkTyData loc' is_type_data new_or_data cType (L _ (mcxt, tycl_hdr))
ksig data_cons (L _ maybe_deriv) annsIn
= do { (tc, tparams, fixity, ann, cs) <- checkTyClHdr False tycl_hdr
; tyvars <- checkTyVars (ppr new_or_data) equalsDots tc tparams
; let anns' = annsIn Semi.<> ann
; data_cons <- checkNewOrData loc' (unLoc tc) is_type_data new_or_data data_cons
; defn <- mkDataDefn cType mcxt ksig data_cons maybe_deriv
; !cs' <- getCommentsFor loc'
; let loc = EpAnn (spanAsAnchor loc') noAnn (cs' Semi.<> cs)
; return (L loc (DataDecl { tcdDExt = anns',
tcdLName = tc, tcdTyVars = tyvars,
tcdFixity = fixity,
tcdDataDefn = defn })) }
mkDataDefn :: Maybe (LocatedP CType)
-> Maybe (LHsContext GhcPs)
-> Maybe (LHsKind GhcPs)
-> DataDefnCons (LConDecl GhcPs)
-> HsDeriving GhcPs
-> P (HsDataDefn GhcPs)
mkDataDefn cType mcxt ksig data_cons maybe_deriv
= do { checkDatatypeContext mcxt
; return (HsDataDefn { dd_ext = noExtField
, dd_cType = cType
, dd_ctxt = mcxt
, dd_cons = data_cons
, dd_kindSig = ksig
, dd_derivs = maybe_deriv }) }
mkTySynonym :: SrcSpan
-> LHsType GhcPs -- LHS
-> LHsType GhcPs -- RHS
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkTySynonym loc lhs rhs annsIn
= do { (tc, tparams, fixity, ann, cs) <- checkTyClHdr False lhs
; tyvars <- checkTyVars (text "type") equalsDots tc tparams
; let anns' = annsIn Semi.<> ann
; let loc' = EpAnn (spanAsAnchor loc) noAnn cs
; return (L loc' (SynDecl { tcdSExt = anns'
, tcdLName = tc, tcdTyVars = tyvars
, tcdFixity = fixity
, tcdRhs = rhs })) }
mkStandaloneKindSig
:: SrcSpan
-> Located [LocatedN RdrName] -- LHS
-> LHsSigType GhcPs -- RHS
-> [AddEpAnn]
-> P (LStandaloneKindSig GhcPs)
mkStandaloneKindSig loc lhs rhs anns =
do { vs <- mapM check_lhs_name (unLoc lhs)
; v <- check_singular_lhs (reverse vs)
; return $ L (noAnnSrcSpan loc)
$ StandaloneKindSig anns v rhs }
where
check_lhs_name v@(unLoc->name) =
if isUnqual name && isTcOcc (rdrNameOcc name)
then return v
else addFatalError $ mkPlainErrorMsgEnvelope (getLocA v) $
(PsErrUnexpectedQualifiedConstructor (unLoc v))
check_singular_lhs vs =
case vs of
[] -> panic "mkStandaloneKindSig: empty left-hand side"
[v] -> return v
_ -> addFatalError $ mkPlainErrorMsgEnvelope (getLoc lhs) $
(PsErrMultipleNamesInStandaloneKindSignature vs)
mkTyFamInstEqn :: SrcSpan
-> HsOuterFamEqnTyVarBndrs GhcPs
-> LHsType GhcPs
-> LHsType GhcPs
-> [AddEpAnn]
-> P (LTyFamInstEqn GhcPs)
mkTyFamInstEqn loc bndrs lhs rhs anns
= do { (tc, tparams, fixity, ann, cs) <- checkTyClHdr False lhs
; let loc' = EpAnn (spanAsAnchor loc) noAnn cs
; return (L loc' $ FamEqn
{ feqn_ext = anns `mappend` ann
, feqn_tycon = tc
, feqn_bndrs = bndrs
, feqn_pats = tparams
, feqn_fixity = fixity
, feqn_rhs = rhs })}
mkDataFamInst :: SrcSpan
-> NewOrData
-> Maybe (LocatedP CType)
-> (Maybe ( LHsContext GhcPs), HsOuterFamEqnTyVarBndrs GhcPs
, LHsType GhcPs)
-> Maybe (LHsKind GhcPs)
-> [LConDecl GhcPs]
-> Located (HsDeriving GhcPs)
-> [AddEpAnn]
-> P (LInstDecl GhcPs)
mkDataFamInst loc new_or_data cType (mcxt, bndrs, tycl_hdr)
ksig data_cons (L _ maybe_deriv) anns
= do { (tc, tparams, fixity, ann, cs) <- checkTyClHdr False tycl_hdr
; data_cons <- checkNewOrData loc (unLoc tc) False new_or_data data_cons
; defn <- mkDataDefn cType mcxt ksig data_cons maybe_deriv
; let loc' = EpAnn (spanAsAnchor loc) noAnn cs
; return (L loc' (DataFamInstD noExtField (DataFamInstDecl
(FamEqn { feqn_ext = ann Semi.<> anns
, feqn_tycon = tc
, feqn_bndrs = bndrs
, feqn_pats = tparams
, feqn_fixity = fixity
, feqn_rhs = defn })))) }
-- mkDataFamInst loc new_or_data cType (mcxt, bndrs, tycl_hdr)
-- ksig data_cons (L _ maybe_deriv) anns
-- = do { (tc, tparams, fixity, ann) <- checkTyClHdr False tycl_hdr
-- ; cs <- getCommentsFor loc -- Add any API Annotations to the top SrcSpan
-- ; let anns' = addAnns (EpAnn (spanAsAnchor loc) ann cs) anns emptyComments
-- ; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
-- ; return (L (noAnnSrcSpan loc) (DataFamInstD anns' (DataFamInstDecl
-- (FamEqn { feqn_ext = anns'
-- , feqn_tycon = tc
-- , feqn_bndrs = bndrs
-- , feqn_pats = tparams
-- , feqn_fixity = fixity
-- , feqn_rhs = defn })))) }
mkTyFamInst :: SrcSpan
-> TyFamInstEqn GhcPs
-> [AddEpAnn]
-> P (LInstDecl GhcPs)
mkTyFamInst loc eqn anns = do
return (L (noAnnSrcSpan loc) (TyFamInstD noExtField
(TyFamInstDecl anns eqn)))
mkFamDecl :: SrcSpan
-> FamilyInfo GhcPs
-> TopLevelFlag
-> LHsType GhcPs -- LHS
-> LFamilyResultSig GhcPs -- Optional result signature
-> Maybe (LInjectivityAnn GhcPs) -- Injectivity annotation
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkFamDecl loc info topLevel lhs ksig injAnn annsIn
= do { (tc, tparams, fixity, ann, cs) <- checkTyClHdr False lhs
; tyvars <- checkTyVars (ppr info) equals_or_where tc tparams
; let loc' = EpAnn (spanAsAnchor loc) noAnn cs
; return (L loc' (FamDecl noExtField (FamilyDecl
{ fdExt = annsIn Semi.<> ann
, fdTopLevel = topLevel
, fdInfo = info, fdLName = tc
, fdTyVars = tyvars
, fdFixity = fixity
, fdResultSig = ksig
, fdInjectivityAnn = injAnn }))) }
where
equals_or_where = case info of
DataFamily -> empty
OpenTypeFamily -> empty
ClosedTypeFamily {} -> whereDots
mkSpliceDecl :: LHsExpr GhcPs -> (LHsDecl GhcPs)
-- If the user wrote
-- [pads| ... ] then return a QuasiQuoteD
-- $(e) then return a SpliceD
-- but if they wrote, say,
-- f x then behave as if they'd written $(f x)
-- ie a SpliceD
--
-- Typed splices are not allowed at the top level, thus we do not represent them
-- as spliced declaration. See #10945
mkSpliceDecl lexpr@(L loc expr)
| HsUntypedSplice _ splice@(HsUntypedSpliceExpr {}) <- expr
= L loc $ SpliceD noExtField (SpliceDecl noExtField (L (l2l loc) splice) DollarSplice)
| HsUntypedSplice _ splice@(HsQuasiQuote {}) <- expr
= L loc $ SpliceD noExtField (SpliceDecl noExtField (L (l2l loc) splice) DollarSplice)
| otherwise
= L loc $ SpliceD noExtField (SpliceDecl noExtField
(L (l2l loc) (HsUntypedSpliceExpr noAnn (la2la lexpr)))
BareSplice)
mkRoleAnnotDecl :: SrcSpan
-> LocatedN RdrName -- type being annotated
-> [Located (Maybe FastString)] -- roles
-> [AddEpAnn]
-> P (LRoleAnnotDecl GhcPs)
mkRoleAnnotDecl loc tycon roles anns
= do { roles' <- mapM parse_role roles
; !cs <- getCommentsFor loc
; return $ L (EpAnn (spanAsAnchor loc) noAnn cs)
$ RoleAnnotDecl anns tycon roles' }
where
role_data_type = dataTypeOf (undefined :: Role)
all_roles = map fromConstr $ dataTypeConstrs role_data_type
possible_roles = [(fsFromRole role, role) | role <- all_roles]
parse_role (L loc_role Nothing) = return $ L (noAnnSrcSpan loc_role) Nothing
parse_role (L loc_role (Just role))
= case lookup role possible_roles of
Just found_role -> return $ L (noAnnSrcSpan loc_role) $ Just found_role
Nothing ->
let nearby = fuzzyLookup (unpackFS role)
(mapFst unpackFS possible_roles)
in
addFatalError $ mkPlainErrorMsgEnvelope loc_role $
(PsErrIllegalRoleName role nearby)
-- | Converts a list of 'LHsTyVarBndr's annotated with their 'Specificity' to
-- binders without annotations. Only accepts specified variables, and errors if
-- any of the provided binders has an 'InferredSpec' annotation.
fromSpecTyVarBndrs :: [LHsTyVarBndr Specificity GhcPs] -> P [LHsTyVarBndr () GhcPs]
fromSpecTyVarBndrs = mapM fromSpecTyVarBndr
-- | Converts 'LHsTyVarBndr' annotated with its 'Specificity' to one without
-- annotations. Only accepts specified variables, and errors if the provided
-- binder has an 'InferredSpec' annotation.
fromSpecTyVarBndr :: LHsTyVarBndr Specificity GhcPs -> P (LHsTyVarBndr () GhcPs)
fromSpecTyVarBndr bndr = case bndr of
(L loc (UserTyVar xtv flag idp)) -> (check_spec flag loc)
>> return (L loc $ UserTyVar xtv () idp)
(L loc (KindedTyVar xtv flag idp k)) -> (check_spec flag loc)
>> return (L loc $ KindedTyVar xtv () idp k)
where
check_spec :: Specificity -> SrcSpanAnnA -> P ()
check_spec SpecifiedSpec _ = return ()
check_spec InferredSpec loc = addFatalError $ mkPlainErrorMsgEnvelope (locA loc) $
PsErrInferredTypeVarNotAllowed
-- | Add the annotation for a 'where' keyword to existing @HsLocalBinds@
annBinds :: AddEpAnn -> EpAnnComments -> HsLocalBinds GhcPs
-> (HsLocalBinds GhcPs, Maybe EpAnnComments)
annBinds a cs (HsValBinds an bs) = (HsValBinds (add_where a an cs) bs, Nothing)
annBinds a cs (HsIPBinds an bs) = (HsIPBinds (add_where a an cs) bs, Nothing)
annBinds _ cs (EmptyLocalBinds x) = (EmptyLocalBinds x, Just cs)
add_where :: AddEpAnn -> EpAnn AnnList -> EpAnnComments -> EpAnn AnnList
add_where an@(AddEpAnn _ (EpaSpan (RealSrcSpan rs _))) (EpAnn a (AnnList anc o c r t) cs) cs2
| valid_anchor a
= EpAnn (widenAnchor a [an]) (AnnList anc o c (an:r) t) (cs Semi.<> cs2)
| otherwise
= EpAnn (patch_anchor rs a)
(AnnList (fmap (patch_anchor rs) anc) o c (an:r) t) (cs Semi.<> cs2)
add_where (AddEpAnn _ _) _ _ = panic "add_where"
-- EpaDelta should only be used for transformations
valid_anchor :: Anchor -> Bool
valid_anchor (EpaSpan (RealSrcSpan r _)) = srcSpanStartLine r >= 0
valid_anchor _ = False
-- If the decl list for where binds is empty, the anchor ends up
-- invalid. In this case, use the parent one
patch_anchor :: RealSrcSpan -> Anchor -> Anchor
patch_anchor r (EpaDelta _ _) = EpaSpan (RealSrcSpan r Strict.Nothing)
patch_anchor r1 (EpaSpan (RealSrcSpan r0 mb)) = EpaSpan (RealSrcSpan r mb)
where
r = if srcSpanStartLine r0 < 0 then r1 else r0
patch_anchor _ (EpaSpan ss) = EpaSpan ss
fixValbindsAnn :: EpAnn AnnList -> EpAnn AnnList
fixValbindsAnn (EpAnn anchor (AnnList ma o c r t) cs)
= (EpAnn (widenAnchor anchor (r ++ map trailingAnnToAddEpAnn t)) (AnnList ma o c r t) cs)
-- | The 'Anchor' for a stmtlist is based on either the location or
-- the first semicolon annotion.
stmtsAnchor :: Located (OrdList AddEpAnn,a) -> Maybe Anchor
stmtsAnchor (L (RealSrcSpan l mb) ((ConsOL (AddEpAnn _ (EpaSpan (RealSrcSpan r rb))) _), _))
= Just $ widenAnchorS (EpaSpan (RealSrcSpan l mb)) (RealSrcSpan r rb)
stmtsAnchor (L (RealSrcSpan l mb) _) = Just $ EpaSpan (RealSrcSpan l mb)
stmtsAnchor _ = Nothing
stmtsLoc :: Located (OrdList AddEpAnn,a) -> SrcSpan
stmtsLoc (L l ((ConsOL aa _), _))
= widenSpan l [aa]
stmtsLoc (L l _) = l
{- **********************************************************************
#cvBinds-etc# Converting to @HsBinds@, etc.
********************************************************************* -}
-- | Function definitions are restructured here. Each is assumed to be recursive
-- initially, and non recursive definitions are discovered by the dependency
-- analyser.
-- | Groups together bindings for a single function
cvTopDecls :: OrdList (LHsDecl GhcPs) -> [LHsDecl GhcPs]
cvTopDecls decls = getMonoBindAll (fromOL decls)
-- Declaration list may only contain value bindings and signatures.
cvBindGroup :: OrdList (LHsDecl GhcPs) -> P (HsValBinds GhcPs)
cvBindGroup binding
= do { (mbs, sigs, fam_ds, tfam_insts
, dfam_insts, _) <- cvBindsAndSigs binding
; massert (null fam_ds && null tfam_insts && null dfam_insts)
; return $ ValBinds NoAnnSortKey mbs sigs }
cvBindsAndSigs :: OrdList (LHsDecl GhcPs)
-> P (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs]
, [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl GhcPs])
-- Input decls contain just value bindings and signatures
-- and in case of class or instance declarations also
-- associated type declarations. They might also contain Haddock comments.
cvBindsAndSigs fb = do
fb' <- drop_bad_decls (fromOL fb)
return (partitionBindsAndSigs (getMonoBindAll fb'))
where
-- cvBindsAndSigs is called in several places in the parser,
-- and its items can be produced by various productions:
--
-- * decl (when parsing a where clause or a let-expression)
-- * decl_inst (when parsing an instance declaration)
-- * decl_cls (when parsing a class declaration)
--
-- partitionBindsAndSigs can handle almost all declaration forms produced
-- by the aforementioned productions, except for SpliceD, which we filter
-- out here (in drop_bad_decls).
--
-- We're not concerned with every declaration form possible, such as those
-- produced by the topdecl parser production, because cvBindsAndSigs is not
-- called on top-level declarations.
drop_bad_decls [] = return []
drop_bad_decls (L l (SpliceD _ d) : ds) = do
addError $ mkPlainErrorMsgEnvelope (locA l) $ PsErrDeclSpliceNotAtTopLevel d
drop_bad_decls ds
drop_bad_decls (d:ds) = (d:) <$> drop_bad_decls ds
-----------------------------------------------------------------------------
-- Group function bindings into equation groups
getMonoBind :: LHsBind GhcPs -> [LHsDecl GhcPs]
-> (LHsBind GhcPs, [LHsDecl GhcPs])
-- Suppose (b',ds') = getMonoBind b ds
-- ds is a list of parsed bindings
-- b is a MonoBinds that has just been read off the front
-- Then b' is the result of grouping more equations from ds that
-- belong with b into a single MonoBinds, and ds' is the depleted
-- list of parsed bindings.
--
-- All Haddock comments between equations inside the group are
-- discarded.
--
-- No AndMonoBinds or EmptyMonoBinds here; just single equations
getMonoBind (L loc1 (FunBind { fun_id = fun_id1@(L _ f1)
, fun_matches =
MG { mg_alts = (L _ m1@[L _ mtchs1]) } }))
binds
| has_args m1
= go [L loc1 mtchs1] (noAnnSrcSpan $ locA loc1) binds []
where
-- See Note [Exact Print Annotations for FunBind]
go :: [LMatch GhcPs (LHsExpr GhcPs)] -- accumulates matches for current fun
-> SrcSpanAnnA -- current top level loc
-> [LHsDecl GhcPs] -- Any docbinds seen
-> [LHsDecl GhcPs] -- rest of decls to be processed
-> (LHsBind GhcPs, [LHsDecl GhcPs]) -- FunBind, rest of decls
go mtchs loc
((L loc2 (ValD _ (FunBind { fun_id = (L _ f2)
, fun_matches =
MG { mg_alts = (L _ [L lm2 mtchs2]) } })))
: binds) _
| f1 == f2 =
let (loc2', lm2') = transferAnnsA loc2 lm2
in go (L lm2' mtchs2 : mtchs)
(combineSrcSpansA loc loc2') binds []
go mtchs loc (doc_decl@(L loc2 (DocD {})) : binds) doc_decls
= let doc_decls' = doc_decl : doc_decls
in go mtchs (combineSrcSpansA loc loc2) binds doc_decls'
go mtchs loc binds doc_decls
= let
L llm last_m = head mtchs -- Guaranteed at least one
(llm',loc') = transferAnnsOnlyA llm loc -- Keep comments, transfer trailing
matches' = reverse (L llm' last_m:tail mtchs)
L lfm first_m = head matches'
(lfm', loc'') = transferCommentsOnlyA lfm loc'
in
( L loc'' (makeFunBind fun_id1 (mkLocatedList $ (L lfm' first_m:tail matches')))
, (reverse doc_decls) ++ binds)
-- Reverse the final matches, to get it back in the right order
-- Do the same thing with the trailing doc comments
getMonoBind bind binds = (bind, binds)
{- Note [Exact Print Annotations for FunBind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An individual Match that ends up in a FunBind MatchGroup is initially
parsed as a LHsDecl. This takes the form
L loc (ValD NoExtField (FunBind ... [L lm (Match ..)]))
The loc contains the annotations, in particular comments, which are to
precede the declaration when printed, and [TrailingAnn] which are to
follow it. The [TrailingAnn] captures semicolons that may appear after
it when using the braces and semis style of coding.
The match location (lm) has only a location in it at this point, no
annotations. Its location is the same as the top level location in
loc.
What getMonoBind does it to take a sequence of FunBind LHsDecls that
belong to the same function and group them into a single function with
the component declarations all combined into the single MatchGroup as
[LMatch GhcPs].
Given that when exact printing a FunBind the exact printer simply
iterates over all the matches and prints each in turn, the simplest
behaviour would be to simply take the top level annotations (loc) for
each declaration, and use them for the individual component matches
(lm).
The problem is the exact printer first has to deal with the top level
LHsDecl, which means annotations for the loc. This needs to be able to
be exact printed in the context of surrounding declarations, and if
some refactor decides to move the declaration elsewhere, the leading
comments and trailing semicolons need to be handled at that level.
So the solution is to combine all the matches into one, pushing the
annotations into the LMatch's, and then at the end extract the
comments from the first match and [TrailingAnn] from the last to go in
the top level LHsDecl.
-}
-- Group together adjacent FunBinds for every function.
getMonoBindAll :: [LHsDecl GhcPs] -> [LHsDecl GhcPs]
getMonoBindAll [] = []
getMonoBindAll (L l (ValD _ b) : ds) =
let (L l' b', ds') = getMonoBind (L l b) ds
in L l' (ValD noExtField b') : getMonoBindAll ds'
getMonoBindAll (d : ds) = d : getMonoBindAll ds
has_args :: [LMatch GhcPs (LHsExpr GhcPs)] -> Bool
has_args [] = panic "GHC.Parser.PostProcess.has_args"
has_args (L _ (Match { m_pats = args }) : _) = not (null args)
-- Don't group together FunBinds if they have
-- no arguments. This is necessary now that variable bindings
-- with no arguments are now treated as FunBinds rather
-- than pattern bindings (tests/rename/should_fail/rnfail002).
{- **********************************************************************
#PrefixToHS-utils# Utilities for conversion
********************************************************************* -}
{- Note [Parsing data constructors is hard]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The problem with parsing data constructors is that they look a lot like types.
Compare:
(s1) data T = C t1 t2
(s2) type T = C t1 t2
Syntactically, there's little difference between these declarations, except in
(s1) 'C' is a data constructor, but in (s2) 'C' is a type constructor.
This similarity would pose no problem if we knew ahead of time if we are
parsing a type or a constructor declaration. Looking at (s1) and (s2), a simple
(but wrong!) rule comes to mind: in 'data' declarations assume we are parsing
data constructors, and in other contexts (e.g. 'type' declarations) assume we
are parsing type constructors.
This simple rule does not work because of two problematic cases:
(p1) data T = C t1 t2 :+ t3
(p2) data T = C t1 t2 => t3
In (p1) we encounter (:+) and it turns out we are parsing an infix data
declaration, so (C t1 t2) is a type and 'C' is a type constructor.
In (p2) we encounter (=>) and it turns out we are parsing an existential
context, so (C t1 t2) is a constraint and 'C' is a type constructor.
As the result, in order to determine whether (C t1 t2) declares a data
constructor, a type, or a context, we would need unlimited lookahead which
'happy' is not so happy with.
-}
-- | Reinterpret a type constructor, including type operators, as a data
-- constructor.
-- See Note [Parsing data constructors is hard]
tyConToDataCon :: LocatedN RdrName -> Either (MsgEnvelope PsMessage) (LocatedN RdrName)
tyConToDataCon (L loc tc)
| okConOcc (occNameString occ)
= return (L loc (setRdrNameSpace tc srcDataName))
| otherwise
= Left $ mkPlainErrorMsgEnvelope (locA loc) $ (PsErrNotADataCon tc)
where
occ = rdrNameOcc tc
mkPatSynMatchGroup :: LocatedN RdrName
-> LocatedL (OrdList (LHsDecl GhcPs))
-> P (MatchGroup GhcPs (LHsExpr GhcPs))
mkPatSynMatchGroup (L loc patsyn_name) (L ld decls) =
do { matches <- mapM fromDecl (fromOL decls)
; when (null matches) (wrongNumberErr (locA loc))
; return $ mkMatchGroup FromSource (L ld matches) }
where
fromDecl (L loc decl@(ValD _ (PatBind _
-- AZ: where should these anns come from?
pat@(L _ (ConPat noAnn ln@(L _ name) details))
_ rhs))) =
do { unless (name == patsyn_name) $
wrongNameBindingErr (locA loc) decl
; match <- case details of
PrefixCon _ pats -> return $ Match { m_ext = noAnn
, m_ctxt = ctxt, m_pats = pats
, m_grhss = rhs }
where
ctxt = FunRhs { mc_fun = ln
, mc_fixity = Prefix
, mc_strictness = NoSrcStrict }
InfixCon p1 p2 -> return $ Match { m_ext = noAnn
, m_ctxt = ctxt
, m_pats = [p1, p2]
, m_grhss = rhs }
where
ctxt = FunRhs { mc_fun = ln
, mc_fixity = Infix
, mc_strictness = NoSrcStrict }
RecCon{} -> recordPatSynErr (locA loc) pat
; return $ L loc match }
fromDecl (L loc decl) = extraDeclErr (locA loc) decl
extraDeclErr loc decl =
addFatalError $ mkPlainErrorMsgEnvelope loc $
(PsErrNoSingleWhereBindInPatSynDecl patsyn_name decl)
wrongNameBindingErr loc decl =
addFatalError $ mkPlainErrorMsgEnvelope loc $
(PsErrInvalidWhereBindInPatSynDecl patsyn_name decl)
wrongNumberErr loc =
addFatalError $ mkPlainErrorMsgEnvelope loc $
(PsErrEmptyWhereInPatSynDecl patsyn_name)
recordPatSynErr :: SrcSpan -> LPat GhcPs -> P a
recordPatSynErr loc pat =
addFatalError $ mkPlainErrorMsgEnvelope loc $
(PsErrRecordSyntaxInPatSynDecl pat)
mkConDeclH98 :: [AddEpAnn] -> LocatedN RdrName -> Maybe [LHsTyVarBndr Specificity GhcPs]
-> Maybe (LHsContext GhcPs) -> HsConDeclH98Details GhcPs
-> ConDecl GhcPs
mkConDeclH98 ann name mb_forall mb_cxt args
= ConDeclH98 { con_ext = ann
, con_name = name
, con_forall = isJust mb_forall
, con_ex_tvs = mb_forall `orElse` []
, con_mb_cxt = mb_cxt
, con_args = args
, con_doc = Nothing }
-- | Construct a GADT-style data constructor from the constructor names and
-- their type. Some interesting aspects of this function:
--
-- * This splits up the constructor type into its quantified type variables (if
-- provided), context (if provided), argument types, and result type, and
-- records whether this is a prefix or record GADT constructor. See
-- Note [GADT abstract syntax] in "GHC.Hs.Decls" for more details.
mkGadtDecl :: SrcSpan
-> NonEmpty (LocatedN RdrName)
-> EpUniToken "::" "∷"
-> LHsSigType GhcPs
-> P (LConDecl GhcPs)
mkGadtDecl loc names dcol ty = do
(args, res_ty, annsa, csa) <-
case body_ty of
L ll (HsFunTy _ hsArr (L (EpAnn anc _ cs) (HsRecTy an rf)) res_ty) -> do
arr <- case hsArr of
HsUnrestrictedArrow arr -> return arr
_ -> do addError $ mkPlainErrorMsgEnvelope (getLocA body_ty) $
(PsErrIllegalGadtRecordMultiplicity hsArr)
return noAnn
return ( RecConGADT arr (L (EpAnn anc an cs) rf), res_ty
, [], epAnnComments ll)
_ -> do
let (anns, cs, arg_types, res_type) = splitHsFunType body_ty
return (PrefixConGADT noExtField arg_types, res_type, anns, cs)
let bndrs_loc = case outer_bndrs of
HsOuterImplicit{} -> getLoc ty
HsOuterExplicit an _ -> EpAnn (entry an) noAnn emptyComments
let l = EpAnn (spanAsAnchor loc) noAnn csa
pure $ L l ConDeclGADT
{ con_g_ext = (dcol, annsa)
, con_names = names
, con_bndrs = L bndrs_loc outer_bndrs
, con_mb_cxt = mcxt
, con_g_args = args
, con_res_ty = res_ty
, con_doc = Nothing }
where
(outer_bndrs, mcxt, body_ty) = splitLHsGadtTy ty
setRdrNameSpace :: RdrName -> NameSpace -> RdrName
-- ^ This rather gruesome function is used mainly by the parser.
-- When parsing:
--
-- > data T a = T | T1 Int
--
-- we parse the data constructors as /types/ because of parser ambiguities,
-- so then we need to change the /type constr/ to a /data constr/
--
-- The exact-name case /can/ occur when parsing:
--
-- > data [] a = [] | a : [a]
--
-- For the exact-name case we return an original name.
setRdrNameSpace (Unqual occ) ns = Unqual (setOccNameSpace ns occ)
setRdrNameSpace (Qual m occ) ns = Qual m (setOccNameSpace ns occ)
setRdrNameSpace (Orig m occ) ns = Orig m (setOccNameSpace ns occ)
setRdrNameSpace (Exact n) ns
| Just thing <- wiredInNameTyThing_maybe n
= setWiredInNameSpace thing ns
-- Preserve Exact Names for wired-in things,
-- notably tuples and lists
| isExternalName n
= Orig (nameModule n) occ
| otherwise -- This can happen when quoting and then
-- splicing a fixity declaration for a type
= Exact (mkSystemNameAt (nameUnique n) occ (nameSrcSpan n))
where
occ = setOccNameSpace ns (nameOccName n)
setWiredInNameSpace :: TyThing -> NameSpace -> RdrName
setWiredInNameSpace (ATyCon tc) ns
| isDataConNameSpace ns
= ty_con_data_con tc
| isTcClsNameSpace ns
= Exact (getName tc) -- No-op
setWiredInNameSpace (AConLike (RealDataCon dc)) ns
| isTcClsNameSpace ns
= data_con_ty_con dc
| isDataConNameSpace ns
= Exact (getName dc) -- No-op
setWiredInNameSpace thing ns
= pprPanic "setWiredinNameSpace" (pprNameSpace ns <+> ppr thing)
ty_con_data_con :: TyCon -> RdrName
ty_con_data_con tc
| isTupleTyCon tc
, Just dc <- tyConSingleDataCon_maybe tc
= Exact (getName dc)
| tc `hasKey` listTyConKey
= Exact nilDataConName
| otherwise -- See Note [setRdrNameSpace for wired-in names]
= Unqual (setOccNameSpace srcDataName (getOccName tc))
data_con_ty_con :: DataCon -> RdrName
data_con_ty_con dc
| let tc = dataConTyCon dc
, isTupleTyCon tc
= Exact (getName tc)
| dc `hasKey` nilDataConKey
= Exact listTyConName
| otherwise -- See Note [setRdrNameSpace for wired-in names]
= Unqual (setOccNameSpace tcClsName (getOccName dc))
{- Note [setRdrNameSpace for wired-in names]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In GHC.Types, which declares (:), we have
infixr 5 :
The ambiguity about which ":" is meant is resolved by parsing it as a
data constructor, but then using dataTcOccs to try the type constructor too;
and that in turn calls setRdrNameSpace to change the name-space of ":" to
tcClsName. There isn't a corresponding ":" type constructor, but it's painful
to make setRdrNameSpace partial, so we just make an Unqual name instead. It
really doesn't matter!
-}
eitherToP :: MonadP m => Either (MsgEnvelope PsMessage) a -> m a
-- Adapts the Either monad to the P monad
eitherToP (Left err) = addFatalError err
eitherToP (Right thing) = return thing
checkTyVars :: SDoc -> SDoc -> LocatedN RdrName -> [LHsTypeArg GhcPs]
-> P (LHsQTyVars GhcPs) -- the synthesized type variables
-- ^ Check whether the given list of type parameters are all type variables
-- (possibly with a kind signature).
checkTyVars pp_what equals_or_where tc tparms
= do { tvs <- mapM check tparms
; return (mkHsQTvs tvs) }
where
check (HsTypeArg at ki) = chkParens [] [] (HsBndrInvisible at) ki
check (HsValArg _ ty) = chkParens [] [] (HsBndrRequired noExtField) ty
check (HsArgPar sp) = addFatalError $ mkPlainErrorMsgEnvelope sp $
(PsErrMalformedDecl pp_what (unLoc tc))
-- Keep around an action for adjusting the annotations of extra parens
chkParens :: [AddEpAnn] -> [AddEpAnn] -> HsBndrVis GhcPs -> LHsType GhcPs
-> P (LHsTyVarBndr (HsBndrVis GhcPs) GhcPs)
chkParens ops cps bvis (L l (HsParTy _ (L lt ty)))
= let
(o,c) = mkParensEpAnn (realSrcSpan $ locA l)
(_,lt') = transferCommentsOnlyA l lt
in
chkParens (o:ops) (c:cps) bvis (L lt' ty)
chkParens ops cps bvis ty = chk ops cps bvis ty
-- Check that the name space is correct!
chk :: [AddEpAnn] -> [AddEpAnn] -> HsBndrVis GhcPs -> LHsType GhcPs -> P (LHsTyVarBndr (HsBndrVis GhcPs) GhcPs)
chk ops cps bvis (L l (HsKindSig annk (L annt (HsTyVar ann _ (L lv tv))) k))
| isRdrTyVar tv
= let
an = (reverse ops) ++ cps
in
return (L (widenLocatedAn (l Semi.<> annt) (for_widening bvis:an))
(KindedTyVar (an ++ annk ++ ann) bvis (L lv tv) k))
chk ops cps bvis (L l (HsTyVar ann _ (L ltv tv)))
| isRdrTyVar tv
= let
an = (reverse ops) ++ cps
in
return (L (widenLocatedAn l (for_widening bvis:an))
(UserTyVar (an ++ ann) bvis (L ltv tv)))
chk _ _ _ t@(L loc _)
= addFatalError $ mkPlainErrorMsgEnvelope (locA loc) $
(PsErrUnexpectedTypeInDecl t pp_what (unLoc tc) tparms equals_or_where)
-- Return an AddEpAnn for use in widenLocatedAn. The AnnKeywordId is not used.
for_widening :: HsBndrVis GhcPs -> AddEpAnn
for_widening (HsBndrInvisible (EpTok loc)) = AddEpAnn AnnAnyclass loc
for_widening _ = AddEpAnn AnnAnyclass (EpaDelta (SameLine 0) [])
whereDots, equalsDots :: SDoc
-- Second argument to checkTyVars
whereDots = text "where ..."
equalsDots = text "= ..."
checkDatatypeContext :: Maybe (LHsContext GhcPs) -> P ()
checkDatatypeContext Nothing = return ()
checkDatatypeContext (Just c)
= do allowed <- getBit DatatypeContextsBit
unless allowed $ addError $ mkPlainErrorMsgEnvelope (getLocA c) $
(PsErrIllegalDataTypeContext c)
type LRuleTyTmVar = LocatedAn NoEpAnns RuleTyTmVar
data RuleTyTmVar = RuleTyTmVar [AddEpAnn] (LocatedN RdrName) (Maybe (LHsType GhcPs))
-- ^ Essentially a wrapper for a @RuleBndr GhcPs@
-- turns RuleTyTmVars into RuleBnrs - this is straightforward
mkRuleBndrs :: [LRuleTyTmVar] -> [LRuleBndr GhcPs]
mkRuleBndrs = fmap (fmap cvt_one)
where cvt_one (RuleTyTmVar ann v Nothing) = RuleBndr ann v
cvt_one (RuleTyTmVar ann v (Just sig)) =
RuleBndrSig ann v (mkHsPatSigType noAnn sig)
-- turns RuleTyTmVars into HsTyVarBndrs - this is more interesting
mkRuleTyVarBndrs :: [LRuleTyTmVar] -> [LHsTyVarBndr () GhcPs]
mkRuleTyVarBndrs = fmap cvt_one
where cvt_one (L l (RuleTyTmVar ann v Nothing))
= L (l2l l) (UserTyVar ann () (fmap tm_to_ty v))
cvt_one (L l (RuleTyTmVar ann v (Just sig)))
= L (l2l l) (KindedTyVar ann () (fmap tm_to_ty v) sig)
-- takes something in namespace 'varName' to something in namespace 'tvName'
tm_to_ty (Unqual occ) = Unqual (setOccNameSpace tvName occ)
tm_to_ty _ = panic "mkRuleTyVarBndrs"
-- See Note [Parsing explicit foralls in Rules] in Parser.y
checkRuleTyVarBndrNames :: [LHsTyVarBndr flag GhcPs] -> P ()
checkRuleTyVarBndrNames = mapM_ (check . fmap hsTyVarName)
where check (L loc (Unqual occ)) =
when (occNameFS occ `elem` [fsLit "family",fsLit "role"])
(addFatalError $ mkPlainErrorMsgEnvelope (locA loc) $
(PsErrParseErrorOnInput occ))
check _ = panic "checkRuleTyVarBndrNames"
checkRecordSyntax :: (MonadP m, Outputable a) => LocatedA a -> m (LocatedA a)
checkRecordSyntax lr@(L loc r)
= do allowed <- getBit TraditionalRecordSyntaxBit
unless allowed $ addError $ mkPlainErrorMsgEnvelope (locA loc) $
(PsErrIllegalTraditionalRecordSyntax (ppr r))
return lr
-- | Check if the gadt_constrlist is empty. Only raise parse error for
-- `data T where` to avoid affecting existing error message, see #8258.
checkEmptyGADTs :: Located ([AddEpAnn], [LConDecl GhcPs])
-> P (Located ([AddEpAnn], [LConDecl GhcPs]))
checkEmptyGADTs gadts@(L span (_, [])) -- Empty GADT declaration.
= do gadtSyntax <- getBit GadtSyntaxBit -- GADTs implies GADTSyntax
unless gadtSyntax $ addError $ mkPlainErrorMsgEnvelope span $
PsErrIllegalWhereInDataDecl
return gadts
checkEmptyGADTs gadts = return gadts -- Ordinary GADT declaration.
checkTyClHdr :: Bool -- True <=> class header
-- False <=> type header
-> LHsType GhcPs
-> P (LocatedN RdrName, -- the head symbol (type or class name)
[LHsTypeArg GhcPs], -- parameters of head symbol
LexicalFixity, -- the declaration is in infix format
[AddEpAnn], -- API Annotation for HsParTy
-- when stripping parens
EpAnnComments) -- Accumulated comments from re-arranging
-- Well-formedness check and decomposition of type and class heads.
-- Decomposes T ty1 .. tyn into (T, [ty1, ..., tyn])
-- Int :*: Bool into (:*:, [Int, Bool])
-- returning the pieces
checkTyClHdr is_cls ty
= goL emptyComments ty [] [] [] Prefix
where
goL cs (L l ty) acc ops cps fix = go cs l ty acc ops cps fix
-- workaround to define '*' despite StarIsType
go cs ll (HsParTy an (L l (HsStarTy _ isUni))) acc ops' cps' fix
= do { addPsMessage (locA l) PsWarnStarBinder
; let name = mkOccNameFS tcClsName (starSym isUni)
; let a' = newAnns ll l an
; return (L a' (Unqual name), acc, fix
, (reverse ops') ++ cps', cs) }
go cs l (HsTyVar _ _ ltc@(L _ tc)) acc ops cps fix
| isRdrTc tc = return (ltc, acc, fix, (reverse ops) ++ cps, cs Semi.<> comments l)
go cs l (HsOpTy _ _ t1 ltc@(L _ tc) t2) acc ops cps _fix
| isRdrTc tc = return (ltc, lhs:rhs:acc, Infix, (reverse ops) ++ cps, cs Semi.<> comments l)
where lhs = HsValArg noExtField t1
rhs = HsValArg noExtField t2
go cs l (HsParTy _ ty) acc ops cps fix = goL (cs Semi.<> comments l) ty acc (o:ops) (c:cps) fix
where
(o,c) = mkParensEpAnn (realSrcSpan (locA l))
go cs l (HsAppTy _ t1 t2) acc ops cps fix = goL (cs Semi.<> comments l) t1 (HsValArg noExtField t2:acc) ops cps fix
go cs l (HsAppKindTy at ty ki) acc ops cps fix = goL (cs Semi.<> comments l) ty (HsTypeArg at ki:acc) ops cps fix
go cs l (HsTupleTy _ HsBoxedOrConstraintTuple ts) [] ops cps fix
= return (L (l2l l) (nameRdrName tup_name)
, map (HsValArg noExtField) ts, fix, (reverse ops)++cps, cs Semi.<> comments l)
where
arity = length ts
tup_name | is_cls = cTupleTyConName arity
| otherwise = getName (tupleTyCon Boxed arity)
-- See Note [Unit tuples] in GHC.Hs.Type (TODO: is this still relevant?)
go _ l _ _ _ _ _
= addFatalError $ mkPlainErrorMsgEnvelope (locA l) $
(PsErrMalformedTyOrClDecl ty)
-- Combine the annotations from the HsParTy and HsStarTy into a
-- new one for the LocatedN RdrName
newAnns :: SrcSpanAnnA -> SrcSpanAnnA -> AnnParen -> SrcSpanAnnN
newAnns l@(EpAnn _ (AnnListItem _) csp0) l1@(EpAnn ap (AnnListItem ta) csp) (AnnParen _ o c) =
let
lr = combineSrcSpans (locA l1) (locA l)
in
EpAnn (EpaSpan lr) (NameAnn NameParens o ap c ta) (csp0 Semi.<> csp)
-- | Yield a parse error if we have a function applied directly to a do block
-- etc. and BlockArguments is not enabled.
checkExpBlockArguments :: LHsExpr GhcPs -> PV ()
checkCmdBlockArguments :: LHsCmd GhcPs -> PV ()
(checkExpBlockArguments, checkCmdBlockArguments) = (checkExpr, checkCmd)
where
checkExpr :: LHsExpr GhcPs -> PV ()
checkExpr expr = case unLoc expr of
HsDo _ (DoExpr m) _ -> check (PsErrDoInFunAppExpr m) expr
HsDo _ (MDoExpr m) _ -> check (PsErrMDoInFunAppExpr m) expr
HsCase {} -> check PsErrCaseInFunAppExpr expr
HsLam _ lam_variant _ -> check (PsErrLambdaInFunAppExpr lam_variant) expr
HsLet {} -> check PsErrLetInFunAppExpr expr
HsIf {} -> check PsErrIfInFunAppExpr expr
HsProc {} -> check PsErrProcInFunAppExpr expr
_ -> return ()
checkCmd :: LHsCmd GhcPs -> PV ()
checkCmd cmd = case unLoc cmd of
HsCmdLam _ lam_variant _ -> check (PsErrLambdaCmdInFunAppCmd lam_variant) cmd
HsCmdCase {} -> check PsErrCaseCmdInFunAppCmd cmd
HsCmdIf {} -> check PsErrIfCmdInFunAppCmd cmd
HsCmdLet {} -> check PsErrLetCmdInFunAppCmd cmd
HsCmdDo {} -> check PsErrDoCmdInFunAppCmd cmd
_ -> return ()
check err a = do
blockArguments <- getBit BlockArgumentsBit
unless blockArguments $
addError $ mkPlainErrorMsgEnvelope (getLocA a) $ (err a)
-- | Validate the context constraints and break up a context into a list
-- of predicates.
--
-- @
-- (Eq a, Ord b) --> [Eq a, Ord b]
-- Eq a --> [Eq a]
-- (Eq a) --> [Eq a]
-- (((Eq a))) --> [Eq a]
-- @
checkContext :: LHsType GhcPs -> P (LHsContext GhcPs)
checkContext orig_t@(L (EpAnn l _ cs) _orig_t) =
check ([],[],cs) orig_t
where
check :: ([EpaLocation],[EpaLocation],EpAnnComments)
-> LHsType GhcPs -> P (LHsContext GhcPs)
check (oparens,cparens,cs) (L _l (HsTupleTy ann' HsBoxedOrConstraintTuple ts))
-- (Eq a, Ord b) shows up as a tuple type. Only boxed tuples can
-- be used as context constraints.
-- Ditto ()
= mkCTuple (oparens ++ [ap_open ann'], ap_close ann' : cparens, cs) ts
-- With NoListTuplePuns, contexts are parsed as data constructors, which causes failure
-- downstream.
-- This converts them just like when they are parsed as types in the punned case.
check (oparens,cparens,cs) (L _l (HsExplicitTupleTy anns ts))
= punsAllowed >>= \case
True -> unprocessed
False -> do
let
(op, cp) = case anns of
[o, c] -> ([o], [c])
[q, _, c] -> ([q], [c])
_ -> ([], [])
mkCTuple (oparens ++ (addLoc <$> op), (addLoc <$> cp) ++ cparens, cs) ts
check (opi,cpi,csi) (L _lp1 (HsParTy ann' ty))
-- to be sure HsParTy doesn't get into the way
= check (ap_open ann':opi, ap_close ann':cpi, csi) ty
-- No need for anns, returning original
check (_opi,_cpi,_csi) _t = unprocessed
unprocessed =
return (L (EpAnn l (AnnContext Nothing [] []) emptyComments) [orig_t])
addLoc (AddEpAnn _ l) = l
mkCTuple (oparens, cparens, cs) ts =
-- Append parens so that the original order in the source is maintained
return (L (EpAnn l (AnnContext Nothing oparens cparens) cs) ts)
checkImportDecl :: Maybe EpaLocation
-> Maybe EpaLocation
-> P ()
checkImportDecl mPre mPost = do
let whenJust mg f = maybe (pure ()) f mg
importQualifiedPostEnabled <- getBit ImportQualifiedPostBit
-- Error if 'qualified' found in postpositive position and
-- 'ImportQualifiedPost' is not in effect.
whenJust mPost $ \post ->
when (not importQualifiedPostEnabled) $
failNotEnabledImportQualifiedPost (RealSrcSpan (epaLocationRealSrcSpan post) Strict.Nothing)
-- Error if 'qualified' occurs in both pre and postpositive
-- positions.
whenJust mPost $ \post ->
when (isJust mPre) $
failImportQualifiedTwice (RealSrcSpan (epaLocationRealSrcSpan post) Strict.Nothing)
-- Warn if 'qualified' found in prepositive position and
-- 'Opt_WarnPrepositiveQualifiedModule' is enabled.
whenJust mPre $ \pre ->
warnPrepositiveQualifiedModule (RealSrcSpan (epaLocationRealSrcSpan pre) Strict.Nothing)
-- -------------------------------------------------------------------------
-- Checking Patterns.
-- We parse patterns as expressions and check for valid patterns below,
-- converting the expression into a pattern at the same time.
checkPattern :: LocatedA (PatBuilder GhcPs) -> P (LPat GhcPs)
checkPattern = runPV . checkLPat
checkPattern_details :: ParseContext -> PV (LocatedA (PatBuilder GhcPs)) -> P (LPat GhcPs)
checkPattern_details extraDetails pp = runPV_details extraDetails (pp >>= checkLPat)
checkLArgPat :: LocatedA (ArgPatBuilder GhcPs) -> PV (LPat GhcPs)
checkLArgPat (L l (ArgPatBuilderVisPat p)) = checkLPat (L l p)
checkLArgPat (L l (ArgPatBuilderArgPat p)) = return (L l p)
checkLPat :: LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat (L l@(EpAnn anc an _) p) = do
(L l' p', cs) <- checkPat (EpAnn anc an emptyComments) emptyComments (L l p) [] []
return (L (addCommentsToEpAnn l' cs) p')
checkPat :: SrcSpanAnnA -> EpAnnComments -> LocatedA (PatBuilder GhcPs) -> [HsConPatTyArg GhcPs] -> [LPat GhcPs]
-> PV (LPat GhcPs, EpAnnComments)
checkPat loc cs (L l e@(PatBuilderVar (L ln c))) tyargs args
| isRdrDataCon c = return (L loc $ ConPat
{ pat_con_ext = noAnn -- AZ: where should this come from?
, pat_con = L ln c
, pat_args = PrefixCon tyargs args
}, comments l Semi.<> cs)
| (not (null args) && patIsRec c) = do
ctx <- askParseContext
patFail (locA l) . PsErrInPat e $ PEIP_RecPattern args YesPatIsRecursive ctx
checkPat loc cs (L la (PatBuilderAppType f at t)) tyargs args =
checkPat loc (cs Semi.<> comments la) f (HsConPatTyArg at t : tyargs) args
checkPat loc cs (L la (PatBuilderApp f e)) [] args = do
p <- checkLPat e
checkPat loc (cs Semi.<> comments la) f [] (p : args)
checkPat loc cs (L l e) [] [] = do
p <- checkAPat loc e
return (L l p, cs)
checkPat loc _ e _ _ = do
details <- fromParseContext <$> askParseContext
patFail (locA loc) (PsErrInPat (unLoc e) details)
checkAPat :: SrcSpanAnnA -> PatBuilder GhcPs -> PV (Pat GhcPs)
checkAPat loc e0 = do
nPlusKPatterns <- getBit NPlusKPatternsBit
case e0 of
PatBuilderPat p -> return p
PatBuilderVar x -> return (VarPat noExtField x)
-- Overloaded numeric patterns (e.g. f 0 x = x)
-- Negation is recorded separately, so that the literal is zero or +ve
-- NB. Negative *primitive* literals are already handled by the lexer
PatBuilderOverLit pos_lit -> return (mkNPat (L (l2l loc) pos_lit) Nothing noAnn)
-- n+k patterns
PatBuilderOpApp
(L _ (PatBuilderVar (L nloc n)))
(L l plus)
(L lloc (PatBuilderOverLit lit@(OverLit {ol_val = HsIntegral {}})))
_
| nPlusKPatterns && (plus == plus_RDR)
-> return (mkNPlusKPat (L nloc n) (L (l2l lloc) lit)
(entry l))
-- Improve error messages for the @-operator when the user meant an @-pattern
PatBuilderOpApp _ op _ _ | opIsAt (unLoc op) -> do
addError $ mkPlainErrorMsgEnvelope (getLocA op) PsErrAtInPatPos
return (WildPat noExtField)
PatBuilderOpApp l (L cl c) r anns
| isRdrDataCon c -> do
l <- checkLPat l
r <- checkLPat r
return $ ConPat
{ pat_con_ext = anns
, pat_con = L cl c
, pat_args = InfixCon l r
}
PatBuilderPar lpar e rpar -> do
p <- checkLPat e
return (ParPat (lpar, rpar) p)
_ -> do
details <- fromParseContext <$> askParseContext
patFail (locA loc) (PsErrInPat e0 details)
placeHolderPunRhs :: DisambECP b => PV (LocatedA b)
-- The RHS of a punned record field will be filled in by the renamer
-- It's better not to make it an error, in case we want to print it when
-- debugging
placeHolderPunRhs = mkHsVarPV (noLocA pun_RDR)
plus_RDR, pun_RDR :: RdrName
plus_RDR = mkUnqual varName (fsLit "+") -- Hack
pun_RDR = mkUnqual varName (fsLit "pun-right-hand-side")
checkPatField :: LHsRecField GhcPs (LocatedA (PatBuilder GhcPs))
-> PV (LHsRecField GhcPs (LPat GhcPs))
checkPatField (L l fld) = do p <- checkLPat (hfbRHS fld)
return (L l (fld { hfbRHS = p }))
patFail :: SrcSpan -> PsMessage -> PV a
patFail loc msg = addFatalError $ mkPlainErrorMsgEnvelope loc $ msg
patIsRec :: RdrName -> Bool
patIsRec e = e == mkUnqual varName (fsLit "rec")
---------------------------------------------------------------------------
-- Check Equation Syntax
checkValDef :: SrcSpan
-> LocatedA (PatBuilder GhcPs)
-> (HsMultAnn GhcPs, Maybe (AddEpAnn, LHsType GhcPs))
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBind GhcPs)
checkValDef loc lhs (mult, Just (sigAnn, sig)) grhss
-- x :: ty = rhs parses as a *pattern* binding
= do lhs' <- runPV $ mkHsTySigPV (combineLocsA lhs sig) lhs sig [sigAnn]
>>= checkLPat
checkPatBind loc lhs' grhss mult
checkValDef loc lhs (mult_ann, Nothing) grhss
| HsNoMultAnn{} <- mult_ann
= do { mb_fun <- isFunLhs lhs
; case mb_fun of
Just (fun, is_infix, pats, ann) ->
checkFunBind NoSrcStrict loc ann
fun is_infix pats grhss
Nothing -> do
lhs' <- checkPattern lhs
checkPatBind loc lhs' grhss mult_ann }
checkValDef loc lhs (mult_ann, Nothing) ghrss
-- %p x = rhs parses as a *pattern* binding
= do lhs' <- checkPattern lhs
checkPatBind loc lhs' ghrss mult_ann
checkFunBind :: SrcStrictness
-> SrcSpan
-> [AddEpAnn]
-> LocatedN RdrName
-> LexicalFixity
-> [LocatedA (ArgPatBuilder GhcPs)]
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBind GhcPs)
checkFunBind strictness locF ann (L lf fun) is_infix pats (L _ grhss)
= do ps <- runPV_details extraDetails (mapM checkLArgPat pats)
let match_span = noAnnSrcSpan $ locF
return (makeFunBind (L (l2l lf) fun) (L (noAnnSrcSpan $ locA match_span)
[L match_span (Match { m_ext = ann
, m_ctxt = FunRhs
{ mc_fun = L lf fun
, mc_fixity = is_infix
, mc_strictness = strictness }
, m_pats = ps
, m_grhss = grhss })]))
-- The span of the match covers the entire equation.
-- That isn't quite right, but it'll do for now.
where
extraDetails
| Infix <- is_infix = ParseContext (Just fun) NoIncompleteDoBlock
| otherwise = noParseContext
makeFunBind :: LocatedN RdrName -> LocatedL [LMatch GhcPs (LHsExpr GhcPs)]
-> HsBind GhcPs
-- Like GHC.Hs.Utils.mkFunBind, but we need to be able to set the fixity too
makeFunBind fn ms
= FunBind { fun_ext = noExtField,
fun_id = fn,
fun_matches = mkMatchGroup FromSource ms }
-- See Note [FunBind vs PatBind]
checkPatBind :: SrcSpan
-> LPat GhcPs
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> HsMultAnn GhcPs
-> P (HsBind GhcPs)
checkPatBind loc (L _ (BangPat ans (L _ (VarPat _ v))))
(L _match_span grhss) (HsNoMultAnn _)
= return (makeFunBind v (L (noAnnSrcSpan loc)
[L (noAnnSrcSpan loc) (m ans v)]))
where
m a v = Match { m_ext = a
, m_ctxt = FunRhs { mc_fun = v
, mc_fixity = Prefix
, mc_strictness = SrcStrict }
, m_pats = []
, m_grhss = grhss }
checkPatBind _loc lhs (L _ grhss) mult = do
return (PatBind noExtField lhs mult grhss)
checkValSigLhs :: LHsExpr GhcPs -> P (LocatedN RdrName)
checkValSigLhs lhs@(L l lhs_expr) =
case lhs_expr of
HsVar _ lrdr@(L _ v) -> check_var v lrdr
_ -> make_err PsErrInvalidTypeSig_Other
where
check_var v lrdr
| not (isUnqual v) = make_err PsErrInvalidTypeSig_Qualified
| isDataOcc occ_n = make_err PsErrInvalidTypeSig_DataCon
| otherwise = pure lrdr
where occ_n = rdrNameOcc v
make_err reason = addFatalError $
mkPlainErrorMsgEnvelope (locA l) (PsErrInvalidTypeSignature reason lhs)
checkDoAndIfThenElse
:: (Outputable a, Outputable b, Outputable c)
=> (a -> Bool -> b -> Bool -> c -> PsMessage)
-> LocatedA a -> Bool -> LocatedA b -> Bool -> LocatedA c -> PV ()
checkDoAndIfThenElse err guardExpr semiThen thenExpr semiElse elseExpr
| semiThen || semiElse = do
doAndIfThenElse <- getBit DoAndIfThenElseBit
let e = err (unLoc guardExpr)
semiThen (unLoc thenExpr)
semiElse (unLoc elseExpr)
loc = combineLocs (reLoc guardExpr) (reLoc elseExpr)
unless doAndIfThenElse $ addError (mkPlainErrorMsgEnvelope loc e)
| otherwise = return ()
isFunLhs :: LocatedA (PatBuilder GhcPs)
-> P (Maybe (LocatedN RdrName, LexicalFixity,
[LocatedA (ArgPatBuilder GhcPs)],[AddEpAnn]))
-- A variable binding is parsed as a FunBind.
-- Just (fun, is_infix, arg_pats) if e is a function LHS
isFunLhs e = go e [] [] []
where
mk = fmap ArgPatBuilderVisPat
go (L l (PatBuilderVar (L loc f))) es ops cps
| not (isRdrDataCon f) = do
let (_l, loc') = transferCommentsOnlyA l loc
return (Just (L loc' f, Prefix, es, (reverse ops) ++ cps))
go (L l (PatBuilderApp (L lf f) e)) es ops cps = do
let (_l, lf') = transferCommentsOnlyA l lf
go (L lf' f) (mk e:es) ops cps
go (L l (PatBuilderPar _ (L le e) _)) es@(_:_) ops cps = go (L le' e) es (o:ops) (c:cps)
-- NB: es@(_:_) means that there must be an arg after the parens for the
-- LHS to be a function LHS. This corresponds to the Haskell Report's definition
-- of funlhs.
where
(_l, le') = transferCommentsOnlyA l le
(o,c) = mkParensEpAnn (realSrcSpan $ locA l)
go (L loc (PatBuilderOpApp (L ll l) (L loc' op) r anns)) es ops cps
| not (isRdrDataCon op) -- We have found the function!
= do { let (_l, ll') = transferCommentsOnlyA loc ll
; return (Just (L loc' op, Infix, (mk (L ll' l):mk r:es), (anns ++ reverse ops ++ cps))) }
| otherwise -- Infix data con; keep going
= do { let (_l, ll') = transferCommentsOnlyA loc ll
; mb_l <- go (L ll' l) es ops cps
; return (reassociate =<< mb_l) }
where
reassociate (op', Infix, j : L k_loc (ArgPatBuilderVisPat k) : es', anns')
= Just (op', Infix, j : op_app : es', anns')
where
op_app = mk $ L loc (PatBuilderOpApp (L k_loc k)
(L loc' op) r (reverse ops ++ cps))
reassociate _other = Nothing
go (L l (PatBuilderAppType (L lp pat) tok ty_pat@(HsTP _ (L (EpAnn anc ann cs) _)))) es ops cps
= go (L lp' pat) (L (EpAnn anc' ann cs) (ArgPatBuilderArgPat invis_pat) : es) ops cps
where invis_pat = InvisPat tok ty_pat
anc' = case tok of
NoEpTok -> anc
EpTok l -> widenAnchor anc [AddEpAnn AnnAnyclass l]
(_l, lp') = transferCommentsOnlyA l lp
go _ _ _ _ = return Nothing
data ArgPatBuilder p
= ArgPatBuilderVisPat (PatBuilder p)
| ArgPatBuilderArgPat (Pat p)
instance Outputable (ArgPatBuilder GhcPs) where
ppr (ArgPatBuilderVisPat p) = ppr p
ppr (ArgPatBuilderArgPat p) = ppr p
mkBangTy :: [AddEpAnn] -> SrcStrictness -> LHsType GhcPs -> HsType GhcPs
mkBangTy anns strictness =
HsBangTy anns (HsSrcBang NoSourceText NoSrcUnpack strictness)
-- | Result of parsing @{-\# UNPACK \#-}@ or @{-\# NOUNPACK \#-}@.
data UnpackednessPragma =
UnpackednessPragma [AddEpAnn] SourceText SrcUnpackedness
-- | Annotate a type with either an @{-\# UNPACK \#-}@ or a @{-\# NOUNPACK \#-}@ pragma.
addUnpackednessP :: MonadP m => Located UnpackednessPragma -> LHsType GhcPs -> m (LHsType GhcPs)
addUnpackednessP (L lprag (UnpackednessPragma anns prag unpk)) ty = do
let l' = combineSrcSpans lprag (getLocA ty)
let t' = addUnpackedness anns ty
return (L (noAnnSrcSpan l') t')
where
-- If we have a HsBangTy that only has a strictness annotation,
-- such as ~T or !T, then add the pragma to the existing HsBangTy.
--
-- Otherwise, wrap the type in a new HsBangTy constructor.
addUnpackedness an (L _ (HsBangTy x bang t))
| HsSrcBang NoSourceText NoSrcUnpack strictness <- bang
= HsBangTy (an Semi.<> x) (HsSrcBang prag unpk strictness) t
addUnpackedness an t
= HsBangTy an (HsSrcBang prag unpk NoSrcStrict) t
---------------------------------------------------------------------------
-- | Check for monad comprehensions
--
-- If the flag MonadComprehensions is set, return a 'MonadComp' context,
-- otherwise use the usual 'ListComp' context
checkMonadComp :: PV HsDoFlavour
checkMonadComp = do
monadComprehensions <- getBit MonadComprehensionsBit
return $ if monadComprehensions
then MonadComp
else ListComp
-- -------------------------------------------------------------------------
-- Expression/command/pattern ambiguity.
-- See Note [Ambiguous syntactic categories]
--
-- See Note [Ambiguous syntactic categories]
--
-- This newtype is required to avoid impredicative types in monadic
-- productions. That is, in a production that looks like
--
-- | ... {% return (ECP ...) }
--
-- we are dealing with
-- P ECP
-- whereas without a newtype we would be dealing with
-- P (forall b. DisambECP b => PV (Located b))
--
newtype ECP =
ECP { unECP :: forall b. DisambECP b => PV (LocatedA b) }
ecpFromExp :: LHsExpr GhcPs -> ECP
ecpFromExp a = ECP (ecpFromExp' a)
ecpFromCmd :: LHsCmd GhcPs -> ECP
ecpFromCmd a = ECP (ecpFromCmd' a)
-- The 'fbinds' parser rule produces values of this type. See Note
-- [RecordDotSyntax field updates].
type Fbind b = Either (LHsRecField GhcPs (LocatedA b)) (LHsRecProj GhcPs (LocatedA b))
-- | Disambiguate infix operators.
-- See Note [Ambiguous syntactic categories]
class DisambInfixOp b where
mkHsVarOpPV :: LocatedN RdrName -> PV (LocatedN b)
mkHsConOpPV :: LocatedN RdrName -> PV (LocatedN b)
mkHsInfixHolePV :: LocatedN (HsExpr GhcPs) -> PV (LocatedN b)
instance DisambInfixOp (HsExpr GhcPs) where
mkHsVarOpPV v = return $ L (getLoc v) (HsVar noExtField v)
mkHsConOpPV v = return $ L (getLoc v) (HsVar noExtField v)
mkHsInfixHolePV h = return h
instance DisambInfixOp RdrName where
mkHsConOpPV (L l v) = return $ L l v
mkHsVarOpPV (L l v) = return $ L l v
mkHsInfixHolePV (L l _) = addFatalError $ mkPlainErrorMsgEnvelope (getHasLoc l) $ PsErrInvalidInfixHole
type AnnoBody b
= ( Anno (GRHS GhcPs (LocatedA (Body b GhcPs))) ~ EpAnnCO
, Anno [LocatedA (Match GhcPs (LocatedA (Body b GhcPs)))] ~ SrcSpanAnnL
, Anno (Match GhcPs (LocatedA (Body b GhcPs))) ~ SrcSpanAnnA
, Anno (StmtLR GhcPs GhcPs (LocatedA (Body (Body b GhcPs) GhcPs))) ~ SrcSpanAnnA
, Anno [LocatedA (StmtLR GhcPs GhcPs
(LocatedA (Body (Body (Body b GhcPs) GhcPs) GhcPs)))] ~ SrcSpanAnnL
)
-- | Disambiguate constructs that may appear when we do not know ahead of time whether we are
-- parsing an expression, a command, or a pattern.
-- See Note [Ambiguous syntactic categories]
class (b ~ (Body b) GhcPs, AnnoBody b) => DisambECP b where
-- | See Note [Body in DisambECP]
type Body b :: Type -> Type
-- | Return a command without ambiguity, or fail in a non-command context.
ecpFromCmd' :: LHsCmd GhcPs -> PV (LocatedA b)
-- | Return an expression without ambiguity, or fail in a non-expression context.
ecpFromExp' :: LHsExpr GhcPs -> PV (LocatedA b)
mkHsProjUpdatePV :: SrcSpan -> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
-> LocatedA b -> Bool -> [AddEpAnn] -> PV (LHsRecProj GhcPs (LocatedA b))
-- | Disambiguate "let ... in ..."
mkHsLetPV
:: SrcSpan
-> EpToken "let"
-> HsLocalBinds GhcPs
-> EpToken "in"
-> LocatedA b
-> PV (LocatedA b)
-- | Infix operator representation
type InfixOp b
-- | Bring superclass constraints on InfixOp into scope.
-- See Note [UndecidableSuperClasses for associated types]
superInfixOp
:: (DisambInfixOp (InfixOp b) => PV (LocatedA b )) -> PV (LocatedA b)
-- | Disambiguate "f # x" (infix operator)
mkHsOpAppPV :: SrcSpan -> LocatedA b -> LocatedN (InfixOp b) -> LocatedA b
-> PV (LocatedA b)
-- | Disambiguate "case ... of ..."
mkHsCasePV :: SrcSpan -> LHsExpr GhcPs -> (LocatedL [LMatch GhcPs (LocatedA b)])
-> EpAnnHsCase -> PV (LocatedA b)
-- | Disambiguate "\... -> ..." (lambda), "\case" and "\cases"
mkHsLamPV :: SrcSpan -> HsLamVariant
-> (LocatedL [LMatch GhcPs (LocatedA b)]) -> [AddEpAnn]
-> PV (LocatedA b)
-- | Function argument representation
type FunArg b
-- | Bring superclass constraints on FunArg into scope.
-- See Note [UndecidableSuperClasses for associated types]
superFunArg :: (DisambECP (FunArg b) => PV (LocatedA b)) -> PV (LocatedA b)
-- | Disambiguate "f x" (function application)
mkHsAppPV :: SrcSpanAnnA -> LocatedA b -> LocatedA (FunArg b) -> PV (LocatedA b)
-- | Disambiguate "f @t" (visible type application)
mkHsAppTypePV :: SrcSpanAnnA -> LocatedA b -> EpToken "@" -> LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate "if ... then ... else ..."
mkHsIfPV :: SrcSpan
-> LHsExpr GhcPs
-> Bool -- semicolon?
-> LocatedA b
-> Bool -- semicolon?
-> LocatedA b
-> AnnsIf
-> PV (LocatedA b)
-- | Disambiguate "do { ... }" (do notation)
mkHsDoPV ::
SrcSpan ->
Maybe ModuleName ->
LocatedL [LStmt GhcPs (LocatedA b)] ->
AnnList ->
PV (LocatedA b)
-- | Disambiguate "( ... )" (parentheses)
mkHsParPV :: SrcSpan -> EpToken "(" -> LocatedA b -> EpToken ")" -> PV (LocatedA b)
-- | Disambiguate a variable "f" or a data constructor "MkF".
mkHsVarPV :: LocatedN RdrName -> PV (LocatedA b)
-- | Disambiguate a monomorphic literal
mkHsLitPV :: Located (HsLit GhcPs) -> PV (LocatedA b)
-- | Disambiguate an overloaded literal
mkHsOverLitPV :: LocatedAn a (HsOverLit GhcPs) -> PV (LocatedAn a b)
-- | Disambiguate a wildcard
mkHsWildCardPV :: (NoAnn a) => SrcSpan -> PV (LocatedAn a b)
-- | Disambiguate "a :: t" (type annotation)
mkHsTySigPV
:: SrcSpanAnnA -> LocatedA b -> LHsType GhcPs -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "[a,b,c]" (list syntax)
mkHsExplicitListPV :: SrcSpan -> [LocatedA b] -> AnnList -> PV (LocatedA b)
-- | Disambiguate "$(...)" and "[quasi|...|]" (TH splices)
mkHsSplicePV :: Located (HsUntypedSplice GhcPs) -> PV (LocatedA b)
-- | Disambiguate "f { a = b, ... }" syntax (record construction and record updates)
mkHsRecordPV ::
Bool -> -- Is OverloadedRecordUpdate in effect?
SrcSpan ->
SrcSpan ->
LocatedA b ->
([Fbind b], Maybe SrcSpan) ->
[AddEpAnn] ->
PV (LocatedA b)
-- | Disambiguate "-a" (negation)
mkHsNegAppPV :: SrcSpan -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "(# a)" (right operator section)
mkHsSectionR_PV
:: SrcSpan -> LocatedA (InfixOp b) -> LocatedA b -> PV (LocatedA b)
-- | Disambiguate "(a -> b)" (view pattern)
mkHsViewPatPV
:: SrcSpan -> LHsExpr GhcPs -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "a@b" (as-pattern)
mkHsAsPatPV
:: SrcSpan -> LocatedN RdrName -> EpToken "@" -> LocatedA b -> PV (LocatedA b)
-- | Disambiguate "~a" (lazy pattern)
mkHsLazyPatPV :: SrcSpan -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "!a" (bang pattern)
mkHsBangPatPV :: SrcSpan -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate tuple sections and unboxed sums
mkSumOrTuplePV
:: SrcSpanAnnA -> Boxity -> SumOrTuple b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "type t" (embedded type)
mkHsEmbTyPV :: SrcSpan -> EpToken "type" -> LHsType GhcPs -> PV (LocatedA b)
-- | Validate infixexp LHS to reject unwanted {-# SCC ... #-} pragmas
rejectPragmaPV :: LocatedA b -> PV ()
{- Note [UndecidableSuperClasses for associated types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(This Note is about the code in GHC, not about the user code that we are parsing)
Assume we have a class C with an associated type T:
class C a where
type T a
...
If we want to add 'C (T a)' as a superclass, we need -XUndecidableSuperClasses:
{-# LANGUAGE UndecidableSuperClasses #-}
class C (T a) => C a where
type T a
...
Unfortunately, -XUndecidableSuperClasses don't work all that well, sometimes
making GHC loop. The workaround is to bring this constraint into scope
manually with a helper method:
class C a where
type T a
superT :: (C (T a) => r) -> r
In order to avoid ambiguous types, 'r' must mention 'a'.
For consistency, we use this approach for all constraints on associated types,
even when -XUndecidableSuperClasses are not required.
-}
{- Note [Body in DisambECP]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are helper functions (mkBodyStmt, mkBindStmt, unguardedRHS, etc) that
require their argument to take a form of (body GhcPs) for some (body :: Type ->
*). To satisfy this requirement, we say that (b ~ Body b GhcPs) in the
superclass constraints of DisambECP.
The alternative is to change mkBodyStmt, mkBindStmt, unguardedRHS, etc, to drop
this requirement. It is possible and would allow removing the type index of
PatBuilder, but leads to worse type inference, breaking some code in the
typechecker.
-}
instance DisambECP (HsCmd GhcPs) where
type Body (HsCmd GhcPs) = HsCmd
ecpFromCmd' = return
ecpFromExp' (L l e) = cmdFail (locA l) (ppr e)
mkHsProjUpdatePV l _ _ _ _ = addFatalError $ mkPlainErrorMsgEnvelope l $
PsErrOverloadedRecordDotInvalid
mkHsLamPV l lam_variant (L lm m) anns = do
!cs <- getCommentsFor l
let mg = mkLamCaseMatchGroup FromSource lam_variant (L lm m)
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsCmdLam anns lam_variant mg)
mkHsLetPV l tkLet bs tkIn e = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsCmdLet (tkLet, tkIn) bs e)
type InfixOp (HsCmd GhcPs) = HsExpr GhcPs
superInfixOp m = m
mkHsOpAppPV l c1 op c2 = do
let cmdArg c = L (l2l $ getLoc c) $ HsCmdTop noExtField c
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) $ HsCmdArrForm (AnnList Nothing Nothing Nothing [] []) (reLoc op) Infix Nothing [cmdArg c1, cmdArg c2]
mkHsCasePV l c (L lm m) anns = do
!cs <- getCommentsFor l
let mg = mkMatchGroup FromSource (L lm m)
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsCmdCase anns c mg)
type FunArg (HsCmd GhcPs) = HsExpr GhcPs
superFunArg m = m
mkHsAppPV l c e = do
checkCmdBlockArguments c
checkExpBlockArguments e
return $ L l (HsCmdApp noExtField c e)
mkHsAppTypePV l c _ t = cmdFail (locA l) (ppr c <+> text "@" <> ppr t)
mkHsIfPV l c semi1 a semi2 b anns = do
checkDoAndIfThenElse PsErrSemiColonsInCondCmd c semi1 a semi2 b
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (mkHsCmdIf c a b anns)
mkHsDoPV l Nothing stmts anns = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsCmdDo anns stmts)
mkHsDoPV l (Just m) _ _ = addFatalError $ mkPlainErrorMsgEnvelope l $ PsErrQualifiedDoInCmd m
mkHsParPV l lpar c rpar = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsCmdPar (lpar, rpar) c)
mkHsVarPV (L l v) = cmdFail (locA l) (ppr v)
mkHsLitPV (L l a) = cmdFail l (ppr a)
mkHsOverLitPV (L l a) = cmdFail (locA l) (ppr a)
mkHsWildCardPV l = cmdFail l (text "_")
mkHsTySigPV l a sig _ = cmdFail (locA l) (ppr a <+> text "::" <+> ppr sig)
mkHsExplicitListPV l xs _ = cmdFail l $
brackets (pprWithCommas ppr xs)
mkHsSplicePV (L l sp) = cmdFail l (pprUntypedSplice True Nothing sp)
mkHsRecordPV _ l _ a (fbinds, ddLoc) _ = do
let (fs, ps) = partitionEithers fbinds
if not (null ps)
then addFatalError $ mkPlainErrorMsgEnvelope l $ PsErrOverloadedRecordDotInvalid
else cmdFail l $ ppr a <+> ppr (mk_rec_fields fs ddLoc)
mkHsNegAppPV l a _ = cmdFail l (text "-" <> ppr a)
mkHsSectionR_PV l op c = cmdFail l $
let pp_op = fromMaybe (panic "cannot print infix operator")
(ppr_infix_expr (unLoc op))
in pp_op <> ppr c
mkHsViewPatPV l a b _ = cmdFail l $
ppr a <+> text "->" <+> ppr b
mkHsAsPatPV l v _ c = cmdFail l $
pprPrefixOcc (unLoc v) <> text "@" <> ppr c
mkHsLazyPatPV l c _ = cmdFail l $
text "~" <> ppr c
mkHsBangPatPV l c _ = cmdFail l $
text "!" <> ppr c
mkSumOrTuplePV l boxity a _ = cmdFail (locA l) (pprSumOrTuple boxity a)
mkHsEmbTyPV l _ ty = cmdFail l (text "type" <+> ppr ty)
rejectPragmaPV _ = return ()
cmdFail :: SrcSpan -> SDoc -> PV a
cmdFail loc e = addFatalError $ mkPlainErrorMsgEnvelope loc $ PsErrParseErrorInCmd e
checkLamMatchGroup :: SrcSpan -> HsLamVariant -> MatchGroup GhcPs (LHsExpr GhcPs) -> PV ()
checkLamMatchGroup l LamSingle (MG { mg_alts = (L _ (matches:_))}) = do
when (null (hsLMatchPats matches)) $ addError $ mkPlainErrorMsgEnvelope l PsErrEmptyLambda
checkLamMatchGroup _ _ _ = return ()
instance DisambECP (HsExpr GhcPs) where
type Body (HsExpr GhcPs) = HsExpr
ecpFromCmd' (L l c) = do
addError $ mkPlainErrorMsgEnvelope (locA l) $ PsErrArrowCmdInExpr c
return (L l (hsHoleExpr noAnn))
ecpFromExp' = return
mkHsProjUpdatePV l fields arg isPun anns = do
!cs <- getCommentsFor l
return $ mkRdrProjUpdate (EpAnn (spanAsAnchor l) noAnn cs) fields arg isPun anns
mkHsLetPV l tkLet bs tkIn c = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsLet (tkLet, tkIn) bs c)
type InfixOp (HsExpr GhcPs) = HsExpr GhcPs
superInfixOp m = m
mkHsOpAppPV l e1 op e2 = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) $ OpApp [] e1 (reLoc op) e2
mkHsCasePV l e (L lm m) anns = do
!cs <- getCommentsFor l
let mg = mkMatchGroup FromSource (L lm m)
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsCase anns e mg)
mkHsLamPV l lam_variant (L lm m) anns = do
!cs <- getCommentsFor l
let mg = mkLamCaseMatchGroup FromSource lam_variant (L lm m)
checkLamMatchGroup l lam_variant mg
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsLam anns lam_variant mg)
type FunArg (HsExpr GhcPs) = HsExpr GhcPs
superFunArg m = m
mkHsAppPV l e1 e2 = do
checkExpBlockArguments e1
checkExpBlockArguments e2
return $ L l (HsApp noExtField e1 e2)
mkHsAppTypePV l e at t = do
checkExpBlockArguments e
return $ L l (HsAppType at e (mkHsWildCardBndrs t))
mkHsIfPV l c semi1 a semi2 b anns = do
checkDoAndIfThenElse PsErrSemiColonsInCondExpr c semi1 a semi2 b
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (mkHsIf c a b anns)
mkHsDoPV l mod stmts anns = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsDo anns (DoExpr mod) stmts)
mkHsParPV l lpar e rpar = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsPar (lpar, rpar) e)
mkHsVarPV v@(L l@(EpAnn anc _ _) _) = do
!cs <- getCommentsFor (getHasLoc l)
return $ L (EpAnn anc noAnn cs) (HsVar noExtField v)
mkHsLitPV (L l a) = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (HsLit noExtField a)
mkHsOverLitPV (L (EpAnn l an csIn) a) = do
!cs <- getCommentsFor (locA l)
return $ L (EpAnn l an (cs Semi.<> csIn)) (HsOverLit NoExtField a)
mkHsWildCardPV l = return $ L (noAnnSrcSpan l) (hsHoleExpr noAnn)
mkHsTySigPV l@(EpAnn anc an csIn) a sig anns = do
!cs <- getCommentsFor (locA l)
return $ L (EpAnn anc an (csIn Semi.<> cs)) (ExprWithTySig anns a (hsTypeToHsSigWcType sig))
mkHsExplicitListPV l xs anns = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (ExplicitList anns xs)
mkHsSplicePV (L l a) = do
!cs <- getCommentsFor l
return $ fmap (HsUntypedSplice NoExtField) (L (EpAnn (spanAsAnchor l) noAnn cs) a)
mkHsRecordPV opts l lrec a (fbinds, ddLoc) anns = do
!cs <- getCommentsFor l
r <- mkRecConstrOrUpdate opts a lrec (fbinds, ddLoc) anns
checkRecordSyntax (L (EpAnn (spanAsAnchor l) noAnn cs) r)
mkHsNegAppPV l a anns = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (NegApp anns a noSyntaxExpr)
mkHsSectionR_PV l op e = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (SectionR noExtField op e)
mkHsViewPatPV l a b _ = addError (mkPlainErrorMsgEnvelope l $ PsErrViewPatInExpr a b)
>> return (L (noAnnSrcSpan l) (hsHoleExpr noAnn))
mkHsAsPatPV l v _ e = addError (mkPlainErrorMsgEnvelope l $ PsErrTypeAppWithoutSpace (unLoc v) e)
>> return (L (noAnnSrcSpan l) (hsHoleExpr noAnn))
mkHsLazyPatPV l e _ = addError (mkPlainErrorMsgEnvelope l $ PsErrLazyPatWithoutSpace e)
>> return (L (noAnnSrcSpan l) (hsHoleExpr noAnn))
mkHsBangPatPV l e _ = addError (mkPlainErrorMsgEnvelope l $ PsErrBangPatWithoutSpace e)
>> return (L (noAnnSrcSpan l) (hsHoleExpr noAnn))
mkSumOrTuplePV = mkSumOrTupleExpr
mkHsEmbTyPV l toktype ty =
return $ L (noAnnSrcSpan l) $
HsEmbTy toktype (mkHsWildCardBndrs ty)
rejectPragmaPV (L _ (OpApp _ _ _ e)) =
-- assuming left-associative parsing of operators
rejectPragmaPV e
rejectPragmaPV (L l (HsPragE _ prag _)) = addError $ mkPlainErrorMsgEnvelope (locA l) $
(PsErrUnallowedPragma prag)
rejectPragmaPV _ = return ()
hsHoleExpr :: Maybe EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr anns = HsUnboundVar anns (mkRdrUnqual (mkVarOccFS (fsLit "_")))
instance DisambECP (PatBuilder GhcPs) where
type Body (PatBuilder GhcPs) = PatBuilder
ecpFromCmd' (L l c) = addFatalError $ mkPlainErrorMsgEnvelope (locA l) $ PsErrArrowCmdInPat c
ecpFromExp' (L l e) = addFatalError $ mkPlainErrorMsgEnvelope (locA l) $ PsErrArrowExprInPat e
mkHsLetPV l _ _ _ _ = addFatalError $ mkPlainErrorMsgEnvelope l PsErrLetInPat
mkHsProjUpdatePV l _ _ _ _ = addFatalError $ mkPlainErrorMsgEnvelope l PsErrOverloadedRecordDotInvalid
type InfixOp (PatBuilder GhcPs) = RdrName
superInfixOp m = m
mkHsOpAppPV l p1 op p2 = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) $ PatBuilderOpApp p1 op p2 []
mkHsLamPV l lam_variant _ _ = addFatalError $ mkPlainErrorMsgEnvelope l (PsErrLambdaInPat lam_variant)
mkHsCasePV l _ _ _ = addFatalError $ mkPlainErrorMsgEnvelope l PsErrCaseInPat
type FunArg (PatBuilder GhcPs) = PatBuilder GhcPs
superFunArg m = m
mkHsAppPV l p1 p2 = return $ L l (PatBuilderApp p1 p2)
mkHsAppTypePV l p at t = do
!cs <- getCommentsFor (locA l)
return $ L (addCommentsToEpAnn l cs) (PatBuilderAppType p at (mkHsTyPat t))
mkHsIfPV l _ _ _ _ _ _ = addFatalError $ mkPlainErrorMsgEnvelope l PsErrIfThenElseInPat
mkHsDoPV l _ _ _ = addFatalError $ mkPlainErrorMsgEnvelope l PsErrDoNotationInPat
mkHsParPV l lpar p rpar = return $ L (noAnnSrcSpan l) (PatBuilderPar lpar p rpar)
mkHsVarPV v@(getLoc -> l) = return $ L (l2l l) (PatBuilderVar v)
mkHsLitPV lit@(L l a) = do
checkUnboxedLitPat lit
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (PatBuilderPat (LitPat noExtField a))
mkHsOverLitPV (L l a) = return $ L l (PatBuilderOverLit a)
mkHsWildCardPV l = return $ L (noAnnSrcSpan l) (PatBuilderPat (WildPat noExtField))
mkHsTySigPV l b sig anns = do
p <- checkLPat b
return $ L l (PatBuilderPat (SigPat anns p (mkHsPatSigType noAnn sig)))
mkHsExplicitListPV l xs anns = do
ps <- traverse checkLPat xs
!cs <- getCommentsFor l
return (L (EpAnn (spanAsAnchor l) noAnn cs) (PatBuilderPat (ListPat anns ps)))
mkHsSplicePV (L l sp) = do
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (PatBuilderPat (SplicePat noExtField sp))
mkHsRecordPV _ l _ a (fbinds, ddLoc) anns = do
let (fs, ps) = partitionEithers fbinds
if not (null ps)
then addFatalError $ mkPlainErrorMsgEnvelope l PsErrOverloadedRecordDotInvalid
else do
!cs <- getCommentsFor l
r <- mkPatRec a (mk_rec_fields fs ddLoc) anns
checkRecordSyntax (L (EpAnn (spanAsAnchor l) noAnn cs) r)
mkHsNegAppPV l (L lp p) anns = do
lit <- case p of
PatBuilderOverLit pos_lit -> return (L (l2l lp) pos_lit)
_ -> patFail l $ PsErrInPat p PEIP_NegApp
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (PatBuilderPat (mkNPat lit (Just noSyntaxExpr) anns))
mkHsSectionR_PV l op p = patFail l (PsErrParseRightOpSectionInPat (unLoc op) (unLoc p))
mkHsViewPatPV l a b anns = do
p <- checkLPat b
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (PatBuilderPat (ViewPat anns a p))
mkHsAsPatPV l v at e = do
p <- checkLPat e
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (PatBuilderPat (AsPat at v p))
mkHsLazyPatPV l e a = do
p <- checkLPat e
!cs <- getCommentsFor l
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (PatBuilderPat (LazyPat a p))
mkHsBangPatPV l e an = do
p <- checkLPat e
!cs <- getCommentsFor l
let pb = BangPat an p
hintBangPat l pb
return $ L (EpAnn (spanAsAnchor l) noAnn cs) (PatBuilderPat pb)
mkSumOrTuplePV = mkSumOrTuplePat
mkHsEmbTyPV l toktype ty =
return $ L (noAnnSrcSpan l) $
PatBuilderPat (EmbTyPat toktype (mkHsTyPat ty))
rejectPragmaPV _ = return ()
-- | Ensure that a literal pattern isn't of type Addr#, Float#, Double#.
checkUnboxedLitPat :: Located (HsLit GhcPs) -> PV ()
checkUnboxedLitPat (L loc lit) =
case lit of
-- Don't allow primitive string literal patterns.
-- See #13260.
HsStringPrim {}
-> addError $ mkPlainErrorMsgEnvelope loc $
(PsErrIllegalUnboxedStringInPat lit)
-- Don't allow Float#/Double# literal patterns.
-- See #9238 and Note [Rules for floating-point comparisons]
-- in GHC.Core.Opt.ConstantFold.
_ | is_floating_lit lit
-> addError $ mkPlainErrorMsgEnvelope loc $
(PsErrIllegalUnboxedFloatingLitInPat lit)
| otherwise
-> return ()
where
is_floating_lit :: HsLit GhcPs -> Bool
is_floating_lit (HsFloatPrim {}) = True
is_floating_lit (HsDoublePrim {}) = True
is_floating_lit _ = False
mkPatRec ::
LocatedA (PatBuilder GhcPs) ->
HsRecFields GhcPs (LocatedA (PatBuilder GhcPs)) ->
[AddEpAnn] ->
PV (PatBuilder GhcPs)
mkPatRec (unLoc -> PatBuilderVar c) (HsRecFields fs dd) anns
| isRdrDataCon (unLoc c)
= do fs <- mapM checkPatField fs
return $ PatBuilderPat $ ConPat
{ pat_con_ext = anns
, pat_con = c
, pat_args = RecCon (HsRecFields fs dd)
}
mkPatRec p _ _ =
addFatalError $ mkPlainErrorMsgEnvelope (getLocA p) $
(PsErrInvalidRecordCon (unLoc p))
-- | Disambiguate constructs that may appear when we do not know
-- ahead of time whether we are parsing a type or a newtype/data constructor.
--
-- See Note [Ambiguous syntactic categories] for the general idea.
--
-- See Note [Parsing data constructors is hard] for the specific issue this
-- particular class is solving.
--
class DisambTD b where
-- | Process the head of a type-level function/constructor application,
-- i.e. the @H@ in @H a b c@.
mkHsAppTyHeadPV :: LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate @f x@ (function application or prefix data constructor).
mkHsAppTyPV :: LocatedA b -> LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate @f \@t@ (visible kind application)
mkHsAppKindTyPV :: LocatedA b -> EpToken "@" -> LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate @f \# x@ (infix operator)
mkHsOpTyPV :: PromotionFlag -> LHsType GhcPs -> LocatedN RdrName -> LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate @{-\# UNPACK \#-} t@ (unpack/nounpack pragma)
mkUnpackednessPV :: Located UnpackednessPragma -> LocatedA b -> PV (LocatedA b)
instance DisambTD (HsType GhcPs) where
mkHsAppTyHeadPV = return
mkHsAppTyPV t1 t2 = return (mkHsAppTy t1 t2)
mkHsAppKindTyPV t at ki = return (mkHsAppKindTy at t ki)
mkHsOpTyPV prom t1 op t2 = do
let (L l ty) = mkLHsOpTy prom t1 op t2
!cs <- getCommentsFor (locA l)
return (L (addCommentsToEpAnn l cs) ty)
mkUnpackednessPV = addUnpackednessP
dataConBuilderCon :: LocatedA DataConBuilder -> LocatedN RdrName
dataConBuilderCon (L _ (PrefixDataConBuilder _ dc)) = dc
dataConBuilderCon (L _ (InfixDataConBuilder _ dc _)) = dc
dataConBuilderDetails :: LocatedA DataConBuilder -> HsConDeclH98Details GhcPs
-- Detect when the record syntax is used:
-- data T = MkT { ... }
dataConBuilderDetails (L _ (PrefixDataConBuilder flds _))
| [L (EpAnn anc _ cs) (HsRecTy an fields)] <- toList flds
= RecCon (L (EpAnn anc an cs) fields)
-- Normal prefix constructor, e.g. data T = MkT A B C
dataConBuilderDetails (L _ (PrefixDataConBuilder flds _))
= PrefixCon noTypeArgs (map hsLinear (toList flds))
-- Infix constructor, e.g. data T = Int :! Bool
dataConBuilderDetails (L (EpAnn _ _ csl) (InfixDataConBuilder (L (EpAnn anc ann csll) lhs) _ rhs))
= InfixCon (hsLinear (L (EpAnn anc ann (csl Semi.<> csll)) lhs)) (hsLinear rhs)
instance DisambTD DataConBuilder where
mkHsAppTyHeadPV = tyToDataConBuilder
mkHsAppTyPV (L l (PrefixDataConBuilder flds fn)) t =
return $
L (noAnnSrcSpan $ combineSrcSpans (locA l) (getLocA t))
(PrefixDataConBuilder (flds `snocOL` t) fn)
mkHsAppTyPV (L _ InfixDataConBuilder{}) _ =
-- This case is impossible because of the way
-- the grammar in Parser.y is written (see infixtype/ftype).
panic "mkHsAppTyPV: InfixDataConBuilder"
mkHsAppKindTyPV lhs at ki =
addFatalError $ mkPlainErrorMsgEnvelope (getEpTokenSrcSpan at) $
(PsErrUnexpectedKindAppInDataCon (unLoc lhs) (unLoc ki))
mkHsOpTyPV prom lhs tc rhs = do
check_no_ops (unLoc rhs) -- check the RHS because parsing type operators is right-associative
data_con <- eitherToP $ tyConToDataCon tc
!cs <- getCommentsFor (locA l)
checkNotPromotedDataCon prom data_con
return $ L (addCommentsToEpAnn l cs) (InfixDataConBuilder lhs data_con rhs)
where
l = combineLocsA lhs rhs
check_no_ops (HsBangTy _ _ t) = check_no_ops (unLoc t)
check_no_ops (HsOpTy{}) =
addError $ mkPlainErrorMsgEnvelope (locA l) $
(PsErrInvalidInfixDataCon (unLoc lhs) (unLoc tc) (unLoc rhs))
check_no_ops _ = return ()
mkUnpackednessPV unpk constr_stuff
| L _ (InfixDataConBuilder lhs data_con rhs) <- constr_stuff
= -- When the user writes data T = {-# UNPACK #-} Int :+ Bool
-- we apply {-# UNPACK #-} to the LHS
do lhs' <- addUnpackednessP unpk lhs
let l = combineLocsA (reLoc unpk) constr_stuff
return $ L l (InfixDataConBuilder lhs' data_con rhs)
| otherwise =
do addError $ mkPlainErrorMsgEnvelope (getLoc unpk) PsErrUnpackDataCon
return constr_stuff
tyToDataConBuilder :: LHsType GhcPs -> PV (LocatedA DataConBuilder)
tyToDataConBuilder (L l (HsTyVar _ prom v)) = do
data_con <- eitherToP $ tyConToDataCon v
checkNotPromotedDataCon prom data_con
return $ L l (PrefixDataConBuilder nilOL data_con)
tyToDataConBuilder (L l (HsTupleTy _ HsBoxedOrConstraintTuple ts)) = do
let data_con = L (l2l l) (getRdrName (tupleDataCon Boxed (length ts)))
return $ L l (PrefixDataConBuilder (toOL ts) data_con)
tyToDataConBuilder (L l (HsTupleTy _ HsUnboxedTuple ts)) = do
let data_con = L (l2l l) (getRdrName (tupleDataCon Unboxed (length ts)))
return $ L l (PrefixDataConBuilder (toOL ts) data_con)
tyToDataConBuilder t =
addFatalError $ mkPlainErrorMsgEnvelope (getLocA t) $
(PsErrInvalidDataCon (unLoc t))
-- | Rejects declarations such as @data T = 'MkT@ (note the leading tick).
checkNotPromotedDataCon :: PromotionFlag -> LocatedN RdrName -> PV ()
checkNotPromotedDataCon NotPromoted _ = return ()
checkNotPromotedDataCon IsPromoted (L l name) =
addError $ mkPlainErrorMsgEnvelope (locA l) $
PsErrIllegalPromotionQuoteDataCon name
mkUnboxedSumCon :: LHsType GhcPs -> ConTag -> Arity -> (LocatedN RdrName, HsConDeclH98Details GhcPs)
mkUnboxedSumCon t tag arity =
(noLocA (getRdrName (sumDataCon tag arity)), PrefixCon noTypeArgs [hsLinear t])
{- Note [Ambiguous syntactic categories]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are places in the grammar where we do not know whether we are parsing an
expression or a pattern without unlimited lookahead (which we do not have in
'happy'):
View patterns:
f (Con a b ) = ... -- 'Con a b' is a pattern
f (Con a b -> x) = ... -- 'Con a b' is an expression
do-notation:
do { Con a b <- x } -- 'Con a b' is a pattern
do { Con a b } -- 'Con a b' is an expression
Guards:
x | True <- p && q = ... -- 'True' is a pattern
x | True = ... -- 'True' is an expression
Top-level value/function declarations (FunBind/PatBind):
f ! a -- TH splice
f ! a = ... -- function declaration
Until we encounter the = sign, we don't know if it's a top-level
TemplateHaskell splice where ! is used, or if it's a function declaration
where ! is bound.
There are also places in the grammar where we do not know whether we are
parsing an expression or a command:
proc x -> do { (stuff) -< x } -- 'stuff' is an expression
proc x -> do { (stuff) } -- 'stuff' is a command
Until we encounter arrow syntax (-<) we don't know whether to parse 'stuff'
as an expression or a command.
In fact, do-notation is subject to both ambiguities:
proc x -> do { (stuff) -< x } -- 'stuff' is an expression
proc x -> do { (stuff) <- f -< x } -- 'stuff' is a pattern
proc x -> do { (stuff) } -- 'stuff' is a command
There are many possible solutions to this problem. For an overview of the ones
we decided against, see Note [Resolving parsing ambiguities: non-taken alternatives]
The solution that keeps basic definitions (such as HsExpr) clean, keeps the
concerns local to the parser, and does not require duplication of hsSyn types,
or an extra pass over the entire AST, is to parse into an overloaded
parser-validator (a so-called tagless final encoding):
class DisambECP b where ...
instance DisambECP (HsCmd GhcPs) where ...
instance DisambECP (HsExp GhcPs) where ...
instance DisambECP (PatBuilder GhcPs) where ...
The 'DisambECP' class contains functions to build and validate 'b'. For example,
to add parentheses we have:
mkHsParPV :: DisambECP b => SrcSpan -> Located b -> PV (Located b)
'mkHsParPV' will wrap the inner value in HsCmdPar for commands, HsPar for
expressions, and 'PatBuilderPar' for patterns (later transformed into ParPat,
see Note [PatBuilder]).
Consider the 'alts' production used to parse case-of alternatives:
alts :: { Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
: alts1 { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
We abstract over LHsExpr GhcPs, and it becomes:
alts :: { forall b. DisambECP b => PV (Located ([AddEpAnn],[LMatch GhcPs (Located b)])) }
: alts1 { $1 >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { $2 >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
Compared to the initial definition, the added bits are:
forall b. DisambECP b => PV ( ... ) -- in the type signature
$1 >>= \ $1 -> return $ -- in one reduction rule
$2 >>= \ $2 -> return $ -- in another reduction rule
The overhead is constant relative to the size of the rest of the reduction
rule, so this approach scales well to large parser productions.
Note that we write ($1 >>= \ $1 -> ...), so the second $1 is in a binding
position and shadows the previous $1. We can do this because internally
'happy' desugars $n to happy_var_n, and the rationale behind this idiom
is to be able to write (sLL $1 $>) later on. The alternative would be to
write this as ($1 >>= \ fresh_name -> ...), but then we couldn't refer
to the last fresh name as $>.
Finally, we instantiate the polymorphic type to a concrete one, and run the
parser-validator, for example:
stmt :: { forall b. DisambECP b => PV (LStmt GhcPs (Located b)) }
e_stmt :: { LStmt GhcPs (LHsExpr GhcPs) }
: stmt {% runPV $1 }
In e_stmt, three things happen:
1. we instantiate: b ~ HsExpr GhcPs
2. we embed the PV computation into P by using runPV
3. we run validation by using a monadic production, {% ... }
At this point the ambiguity is resolved.
-}
{- Note [Resolving parsing ambiguities: non-taken alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alternative I, extra constructors in GHC.Hs.Expr
------------------------------------------------
We could add extra constructors to HsExpr to represent command-specific and
pattern-specific syntactic constructs. Under this scheme, we parse patterns
and commands as expressions and rejig later. This is what GHC used to do, and
it polluted 'HsExpr' with irrelevant constructors:
* for commands: 'HsArrForm', 'HsArrApp'
* for patterns: 'EWildPat', 'EAsPat', 'EViewPat', 'ELazyPat'
(As of now, we still do that for patterns, but we plan to fix it).
There are several issues with this:
* The implementation details of parsing are leaking into hsSyn definitions.
* Code that uses HsExpr has to panic on these impossible-after-parsing cases.
* HsExpr is arbitrarily selected as the extension basis. Why not extend
HsCmd or HsPat with extra constructors instead?
Alternative II, extra constructors in GHC.Hs.Expr for GhcPs
-----------------------------------------------------------
We could address some of the problems with Alternative I by using Trees That
Grow and extending HsExpr only in the GhcPs pass. However, GhcPs corresponds to
the output of parsing, not to its intermediate results, so we wouldn't want
them there either.
Alternative III, extra constructors in GHC.Hs.Expr for GhcPrePs
---------------------------------------------------------------
We could introduce a new pass, GhcPrePs, to keep GhcPs pristine.
Unfortunately, creating a new pass would significantly bloat conversion code
and slow down the compiler by adding another linear-time pass over the entire
AST. For example, in order to build HsExpr GhcPrePs, we would need to build
HsLocalBinds GhcPrePs (as part of HsLet), and we never want HsLocalBinds
GhcPrePs.
Alternative IV, sum type and bottom-up data flow
------------------------------------------------
Expressions and commands are disjoint. There are no user inputs that could be
interpreted as either an expression or a command depending on outer context:
5 -- definitely an expression
x -< y -- definitely a command
Even though we have both 'HsLam' and 'HsCmdLam', we can look at
the body to disambiguate:
\p -> 5 -- definitely an expression
\p -> x -< y -- definitely a command
This means we could use a bottom-up flow of information to determine
whether we are parsing an expression or a command, using a sum type
for intermediate results:
Either (LHsExpr GhcPs) (LHsCmd GhcPs)
There are two problems with this:
* We cannot handle the ambiguity between expressions and
patterns, which are not disjoint.
* Bottom-up flow of information leads to poor error messages. Consider
if ... then 5 else (x -< y)
Do we report that '5' is not a valid command or that (x -< y) is not a
valid expression? It depends on whether we want the entire node to be
'HsIf' or 'HsCmdIf', and this information flows top-down, from the
surrounding parsing context (are we in 'proc'?)
Alternative V, backtracking with parser combinators
---------------------------------------------------
One might think we could sidestep the issue entirely by using a backtracking
parser and doing something along the lines of (try pExpr <|> pPat).
Turns out, this wouldn't work very well, as there can be patterns inside
expressions (e.g. via 'case', 'let', 'do') and expressions inside patterns
(e.g. view patterns). To handle this, we would need to backtrack while
backtracking, and unbound levels of backtracking lead to very fragile
performance.
Alternative VI, an intermediate data type
-----------------------------------------
There are common syntactic elements of expressions, commands, and patterns
(e.g. all of them must have balanced parentheses), and we can capture this
common structure in an intermediate data type, Frame:
data Frame
= FrameVar RdrName
-- ^ Identifier: Just, map, BS.length
| FrameTuple [LTupArgFrame] Boxity
-- ^ Tuple (section): (a,b) (a,b,c) (a,,) (,a,)
| FrameTySig LFrame (LHsSigWcType GhcPs)
-- ^ Type signature: x :: ty
| FramePar (SrcSpan, SrcSpan) LFrame
-- ^ Parentheses
| FrameIf LFrame LFrame LFrame
-- ^ If-expression: if p then x else y
| FrameCase LFrame [LFrameMatch]
-- ^ Case-expression: case x of { p1 -> e1; p2 -> e2 }
| FrameDo HsStmtContextRn [LFrameStmt]
-- ^ Do-expression: do { s1; a <- s2; s3 }
...
| FrameExpr (HsExpr GhcPs) -- unambiguously an expression
| FramePat (HsPat GhcPs) -- unambiguously a pattern
| FrameCommand (HsCmd GhcPs) -- unambiguously a command
To determine which constructors 'Frame' needs to have, we take the union of
intersections between HsExpr, HsCmd, and HsPat.
The intersection between HsPat and HsExpr:
HsPat = VarPat | TuplePat | SigPat | ParPat | ...
HsExpr = HsVar | ExplicitTuple | ExprWithTySig | HsPar | ...
-------------------------------------------------------------------
Frame = FrameVar | FrameTuple | FrameTySig | FramePar | ...
The intersection between HsCmd and HsExpr:
HsCmd = HsCmdIf | HsCmdCase | HsCmdDo | HsCmdPar
HsExpr = HsIf | HsCase | HsDo | HsPar
------------------------------------------------
Frame = FrameIf | FrameCase | FrameDo | FramePar
The intersection between HsCmd and HsPat:
HsPat = ParPat | ...
HsCmd = HsCmdPar | ...
-----------------------
Frame = FramePar | ...
Take the union of each intersection and this yields the final 'Frame' data
type. The problem with this approach is that we end up duplicating a good
portion of hsSyn:
Frame for HsExpr, HsPat, HsCmd
TupArgFrame for HsTupArg
FrameMatch for Match
FrameStmt for StmtLR
FrameGRHS for GRHS
FrameGRHSs for GRHSs
...
Alternative VII, a product type
-------------------------------
We could avoid the intermediate representation of Alternative VI by parsing
into a product of interpretations directly:
type ExpCmdPat = ( PV (LHsExpr GhcPs)
, PV (LHsCmd GhcPs)
, PV (LHsPat GhcPs) )
This means that in positions where we do not know whether to produce
expression, a pattern, or a command, we instead produce a parser-validator for
each possible option.
Then, as soon as we have parsed far enough to resolve the ambiguity, we pick
the appropriate component of the product, discarding the rest:
checkExpOf3 (e, _, _) = e -- interpret as an expression
checkCmdOf3 (_, c, _) = c -- interpret as a command
checkPatOf3 (_, _, p) = p -- interpret as a pattern
We can easily define ambiguities between arbitrary subsets of interpretations.
For example, when we know ahead of type that only an expression or a command is
possible, but not a pattern, we can use a smaller type:
type ExpCmd = (PV (LHsExpr GhcPs), PV (LHsCmd GhcPs))
checkExpOf2 (e, _) = e -- interpret as an expression
checkCmdOf2 (_, c) = c -- interpret as a command
However, there is a slight problem with this approach, namely code duplication
in parser productions. Consider the 'alts' production used to parse case-of
alternatives:
alts :: { Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
: alts1 { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
Under the new scheme, we have to completely duplicate its type signature and
each reduction rule:
alts :: { ( PV (Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)])) -- as an expression
, PV (Located ([AddEpAnn],[LMatch GhcPs (LHsCmd GhcPs)])) -- as a command
) }
: alts1
{ ( checkExpOf2 $1 >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1)
, checkCmdOf2 $1 >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1)
) }
| ';' alts
{ ( checkExpOf2 $2 >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2)
, checkCmdOf2 $2 >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2)
) }
And the same goes for other productions: 'altslist', 'alts1', 'alt', 'alt_rhs',
'ralt', 'gdpats', 'gdpat', 'exp', ... and so on. That is a lot of code!
Alternative VIII, a function from a GADT
----------------------------------------
We could avoid code duplication of the Alternative VII by representing the product
as a function from a GADT:
data ExpCmdG b where
ExpG :: ExpCmdG HsExpr
CmdG :: ExpCmdG HsCmd
type ExpCmd = forall b. ExpCmdG b -> PV (Located (b GhcPs))
checkExp :: ExpCmd -> PV (LHsExpr GhcPs)
checkCmd :: ExpCmd -> PV (LHsCmd GhcPs)
checkExp f = f ExpG -- interpret as an expression
checkCmd f = f CmdG -- interpret as a command
Consider the 'alts' production used to parse case-of alternatives:
alts :: { Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
: alts1 { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
We abstract over LHsExpr, and it becomes:
alts :: { forall b. ExpCmdG b -> PV (Located ([AddEpAnn],[LMatch GhcPs (Located (b GhcPs))])) }
: alts1
{ \tag -> $1 tag >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts
{ \tag -> $2 tag >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
Note that 'ExpCmdG' is a singleton type, the value is completely
determined by the type:
when (b~HsExpr), tag = ExpG
when (b~HsCmd), tag = CmdG
This is a clear indication that we can use a class to pass this value behind
the scenes:
class ExpCmdI b where expCmdG :: ExpCmdG b
instance ExpCmdI HsExpr where expCmdG = ExpG
instance ExpCmdI HsCmd where expCmdG = CmdG
And now the 'alts' production is simplified, as we no longer need to
thread 'tag' explicitly:
alts :: { forall b. ExpCmdI b => PV (Located ([AddEpAnn],[LMatch GhcPs (Located (b GhcPs))])) }
: alts1 { $1 >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { $2 >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
This encoding works well enough, but introduces an extra GADT unlike the
tagless final encoding, and there's no need for this complexity.
-}
{- Note [PatBuilder]
~~~~~~~~~~~~~~~~~~~~
Unlike HsExpr or HsCmd, the Pat type cannot accommodate all intermediate forms,
so we introduce the notion of a PatBuilder.
Consider a pattern like this:
Con a b c
We parse arguments to "Con" one at a time in the fexp aexp parser production,
building the result with mkHsAppPV, so the intermediate forms are:
1. Con
2. Con a
3. Con a b
4. Con a b c
In 'HsExpr', we have 'HsApp', so the intermediate forms are represented like
this (pseudocode):
1. "Con"
2. HsApp "Con" "a"
3. HsApp (HsApp "Con" "a") "b"
3. HsApp (HsApp (HsApp "Con" "a") "b") "c"
Similarly, in 'HsCmd' we have 'HsCmdApp'. In 'Pat', however, what we have
instead is 'ConPatIn', which is very awkward to modify and thus unsuitable for
the intermediate forms.
We also need an intermediate representation to postpone disambiguation between
FunBind and PatBind. Consider:
a `Con` b = ...
a `fun` b = ...
How do we know that (a `Con` b) is a PatBind but (a `fun` b) is a FunBind? We
learn this by inspecting an intermediate representation in 'isFunLhs' and
seeing that 'Con' is a data constructor but 'f' is not. We need an intermediate
representation capable of representing both a FunBind and a PatBind, so Pat is
insufficient.
PatBuilder is an extension of Pat that is capable of representing intermediate
parsing results for patterns and function bindings:
data PatBuilder p
= PatBuilderPat (Pat p)
| PatBuilderApp (LocatedA (PatBuilder p)) (LocatedA (PatBuilder p))
| PatBuilderOpApp (LocatedA (PatBuilder p)) (LocatedA RdrName) (LocatedA (PatBuilder p))
...
It can represent any pattern via 'PatBuilderPat', but it also has a variety of
other constructors which were added by following a simple principle: we never
pattern match on the pattern stored inside 'PatBuilderPat'.
-}
---------------------------------------------------------------------------
-- Miscellaneous utilities
-- | Check if a fixity is valid. We support bypassing the usual bound checks
-- for some special operators.
checkPrecP
:: Located (SourceText,Int) -- ^ precedence
-> Located (OrdList (LocatedN RdrName)) -- ^ operators
-> P ()
checkPrecP (L l (_,i)) (L _ ol)
| 0 <= i, i <= maxPrecedence = pure ()
| all specialOp ol = pure ()
| otherwise = addFatalError $ mkPlainErrorMsgEnvelope l (PsErrPrecedenceOutOfRange i)
where
-- If you change this, consider updating Note [Fixity of (->)] in GHC/Types.hs
specialOp op = unLoc op == getRdrName unrestrictedFunTyCon
mkRecConstrOrUpdate
:: Bool
-> LHsExpr GhcPs
-> SrcSpan
-> ([Fbind (HsExpr GhcPs)], Maybe SrcSpan)
-> [AddEpAnn]
-> PV (HsExpr GhcPs)
mkRecConstrOrUpdate _ (L _ (HsVar _ (L l c))) _lrec (fbinds,dd) anns
| isRdrDataCon c
= do
let (fs, ps) = partitionEithers fbinds
case ps of
p:_ -> addFatalError $ mkPlainErrorMsgEnvelope (getLocA p) $
PsErrOverloadedRecordDotInvalid
_ -> return (mkRdrRecordCon (L l c) (mk_rec_fields fs dd) anns)
mkRecConstrOrUpdate overloaded_update exp _ (fs,dd) anns
| Just dd_loc <- dd = addFatalError $ mkPlainErrorMsgEnvelope dd_loc $
PsErrDotsInRecordUpdate
| otherwise = mkRdrRecordUpd overloaded_update exp fs anns
mkRdrRecordUpd :: Bool -> LHsExpr GhcPs -> [Fbind (HsExpr GhcPs)] -> [AddEpAnn] -> PV (HsExpr GhcPs)
mkRdrRecordUpd overloaded_on exp@(L loc _) fbinds anns = do
-- We do not need to know if OverloadedRecordDot is in effect. We do
-- however need to know if OverloadedRecordUpdate (passed in
-- overloaded_on) is in effect because it affects the Left/Right nature
-- of the RecordUpd value we calculate.
let (fs, ps) = partitionEithers fbinds
fs' :: [LHsRecUpdField GhcPs GhcPs]
fs' = map (fmap mk_rec_upd_field) fs
case overloaded_on of
False | not $ null ps ->
-- A '.' was found in an update and OverloadedRecordUpdate isn't on.
addFatalError $ mkPlainErrorMsgEnvelope (locA loc) PsErrOverloadedRecordUpdateNotEnabled
False ->
-- This is just a regular record update.
return RecordUpd {
rupd_ext = anns
, rupd_expr = exp
, rupd_flds =
RegularRecUpdFields
{ xRecUpdFields = noExtField
, recUpdFields = fs' } }
-- This is a RecordDotSyntax update.
True -> do
let qualifiedFields =
[ L l lbl | L _ (HsFieldBind _ (L l lbl) _ _) <- fs'
, isQual . ambiguousFieldOccRdrName $ lbl
]
case qualifiedFields of
qf:_ -> addFatalError $ mkPlainErrorMsgEnvelope (getLocA qf) $
PsErrOverloadedRecordUpdateNoQualifiedFields
_ -> return $
RecordUpd
{ rupd_ext = anns
, rupd_expr = exp
, rupd_flds =
OverloadedRecUpdFields
{ xOLRecUpdFields = noExtField
, olRecUpdFields = toProjUpdates fbinds } }
where
toProjUpdates :: [Fbind (HsExpr GhcPs)] -> [LHsRecUpdProj GhcPs]
toProjUpdates = map (\case { Right p -> p; Left f -> recFieldToProjUpdate f })
-- Convert a top-level field update like {foo=2} or {bar} (punned)
-- to a projection update.
recFieldToProjUpdate :: LHsRecField GhcPs (LHsExpr GhcPs) -> LHsRecUpdProj GhcPs
recFieldToProjUpdate (L l (HsFieldBind anns (L _ (FieldOcc _ (L loc rdr))) arg pun)) =
-- The idea here is to convert the label to a singleton [FastString].
let f = occNameFS . rdrNameOcc $ rdr
fl = DotFieldOcc noAnn (L loc (FieldLabelString f))
lf = locA loc
in mkRdrProjUpdate l (L lf [L (l2l loc) fl]) (punnedVar f) pun anns
where
-- If punning, compute HsVar "f" otherwise just arg. This
-- has the effect that sentinel HsVar "pun-rhs" is replaced
-- by HsVar "f" here, before the update is written to a
-- setField expressions.
punnedVar :: FastString -> LHsExpr GhcPs
punnedVar f = if not pun then arg else noLocA . HsVar noExtField . noLocA . mkRdrUnqual . mkVarOccFS $ f
mkRdrRecordCon
:: LocatedN RdrName -> HsRecordBinds GhcPs -> [AddEpAnn] -> HsExpr GhcPs
mkRdrRecordCon con flds anns
= RecordCon { rcon_ext = anns, rcon_con = con, rcon_flds = flds }
mk_rec_fields :: [LocatedA (HsRecField (GhcPass p) arg)] -> Maybe SrcSpan -> HsRecFields (GhcPass p) arg
mk_rec_fields fs Nothing = HsRecFields { rec_flds = fs, rec_dotdot = Nothing }
mk_rec_fields fs (Just s) = HsRecFields { rec_flds = fs
, rec_dotdot = Just (L (l2l s) (RecFieldsDotDot $ length fs)) }
mk_rec_upd_field :: HsRecField GhcPs (LHsExpr GhcPs) -> HsRecUpdField GhcPs GhcPs
mk_rec_upd_field (HsFieldBind noAnn (L loc (FieldOcc _ rdr)) arg pun)
= HsFieldBind noAnn (L loc (Unambiguous noExtField rdr)) arg pun
mkInlinePragma :: SourceText -> (InlineSpec, RuleMatchInfo) -> Maybe Activation
-> InlinePragma
-- The (Maybe Activation) is because the user can omit
-- the activation spec (and usually does)
mkInlinePragma src (inl, match_info) mb_act
= InlinePragma { inl_src = src -- Note [Pragma source text] in "GHC.Types.SourceText"
, inl_inline = inl
, inl_sat = Nothing
, inl_act = act
, inl_rule = match_info }
where
act = case mb_act of
Just act -> act
Nothing -> -- No phase specified
case inl of
NoInline _ -> NeverActive
Opaque _ -> NeverActive
_other -> AlwaysActive
mkOpaquePragma :: SourceText -> InlinePragma
mkOpaquePragma src
= InlinePragma { inl_src = src
, inl_inline = Opaque src
, inl_sat = Nothing
-- By marking the OPAQUE pragma NeverActive we stop
-- (constructor) specialisation on OPAQUE things.
--
-- See Note [OPAQUE pragma]
, inl_act = NeverActive
, inl_rule = FunLike
}
checkNewOrData :: SrcSpan -> RdrName -> Bool -> NewOrData -> [LConDecl GhcPs]
-> P (DataDefnCons (LConDecl GhcPs))
checkNewOrData span name is_type_data = curry $ \ case
(NewType, [a]) -> pure $ NewTypeCon a
(DataType, as) -> pure $ DataTypeCons is_type_data (handle_type_data as)
(NewType, as) -> addFatalError $ mkPlainErrorMsgEnvelope span $ PsErrMultipleConForNewtype name (length as)
where
-- In a "type data" declaration, the constructors are in the type/class
-- namespace rather than the data constructor namespace.
-- See Note [Type data declarations] in GHC.Rename.Module.
handle_type_data
| is_type_data = map (fmap promote_constructor)
| otherwise = id
promote_constructor (dc@ConDeclGADT { con_names = cons })
= dc { con_names = fmap (fmap promote_name) cons }
promote_constructor (dc@ConDeclH98 { con_name = con })
= dc { con_name = fmap promote_name con }
promote_constructor dc = dc
promote_name name = fromMaybe name (promoteRdrName name)
-----------------------------------------------------------------------------
-- utilities for foreign declarations
-- construct a foreign import declaration
--
mkImport :: Located CCallConv
-> Located Safety
-> (Located StringLiteral, LocatedN RdrName, LHsSigType GhcPs)
-> P ([AddEpAnn] -> HsDecl GhcPs)
mkImport cconv safety (L loc (StringLiteral esrc entity _), v, ty) =
case unLoc cconv of
CCallConv -> returnSpec =<< mkCImport
CApiConv -> do
imp <- mkCImport
if isCWrapperImport imp
then addFatalError $ mkPlainErrorMsgEnvelope loc PsErrInvalidCApiImport
else returnSpec imp
StdCallConv -> returnSpec =<< mkCImport
PrimCallConv -> mkOtherImport
JavaScriptCallConv -> mkOtherImport
where
-- Parse a C-like entity string of the following form:
-- "[static] [chname] [&] [cid]" | "dynamic" | "wrapper"
-- If 'cid' is missing, the function name 'v' is used instead as symbol
-- name (cf section 8.5.1 in Haskell 2010 report).
mkCImport = do
let e = unpackFS entity
case parseCImport (reLoc cconv) (reLoc safety) (mkExtName (unLoc v)) e (L loc esrc) of
Nothing -> addFatalError $ mkPlainErrorMsgEnvelope loc $
PsErrMalformedEntityString
Just importSpec -> return importSpec
isCWrapperImport (CImport _ _ _ _ CWrapper) = True
isCWrapperImport _ = False
-- currently, all the other import conventions only support a symbol name in
-- the entity string. If it is missing, we use the function name instead.
mkOtherImport = returnSpec importSpec
where
entity' = if nullFS entity
then mkExtName (unLoc v)
else entity
funcTarget = CFunction (StaticTarget esrc entity' Nothing True)
importSpec = CImport (L (l2l loc) esrc) (reLoc cconv) (reLoc safety) Nothing funcTarget
returnSpec spec = return $ \ann -> ForD noExtField $ ForeignImport
{ fd_i_ext = ann
, fd_name = v
, fd_sig_ty = ty
, fd_fi = spec
}
-- the string "foo" is ambiguous: either a header or a C identifier. The
-- C identifier case comes first in the alternatives below, so we pick
-- that one.
parseCImport :: LocatedE CCallConv -> LocatedE Safety -> FastString -> String
-> Located SourceText
-> Maybe (ForeignImport (GhcPass p))
parseCImport cconv safety nm str sourceText =
listToMaybe $ map fst $ filter (null.snd) $
readP_to_S parse str
where
parse = do
skipSpaces
r <- choice [
string "dynamic" >> return (mk Nothing (CFunction DynamicTarget)),
string "wrapper" >> return (mk Nothing CWrapper),
do optional (token "static" >> skipSpaces)
((mk Nothing <$> cimp nm) +++
(do h <- munch1 hdr_char
skipSpaces
let src = mkFastString h
mk (Just (Header (SourceText src) src))
<$> cimp nm))
]
skipSpaces
return r
token str = do _ <- string str
toks <- look
case toks of
c : _
| id_char c -> pfail
_ -> return ()
mk h n = CImport (reLoc sourceText) (reLoc cconv) (reLoc safety) h n
hdr_char c = not (isSpace c)
-- header files are filenames, which can contain
-- pretty much any char (depending on the platform),
-- so just accept any non-space character
id_first_char c = isAlpha c || c == '_'
id_char c = isAlphaNum c || c == '_'
cimp nm = (ReadP.char '&' >> skipSpaces >> CLabel <$> cid)
+++ (do isFun <- case unLoc cconv of
CApiConv ->
option True
(do token "value"
skipSpaces
return False)
_ -> return True
cid' <- cid
return (CFunction (StaticTarget NoSourceText cid'
Nothing isFun)))
where
cid = return nm +++
(do c <- satisfy id_first_char
cs <- many (satisfy id_char)
return (mkFastString (c:cs)))
-- construct a foreign export declaration
--
mkExport :: Located CCallConv
-> (Located StringLiteral, LocatedN RdrName, LHsSigType GhcPs)
-> P ([AddEpAnn] -> HsDecl GhcPs)
mkExport (L lc cconv) (L le (StringLiteral esrc entity _), v, ty)
= return $ \ann -> ForD noExtField $
ForeignExport { fd_e_ext = ann, fd_name = v, fd_sig_ty = ty
, fd_fe = CExport (L (l2l le) esrc) (L (l2l lc) (CExportStatic esrc entity' cconv)) }
where
entity' | nullFS entity = mkExtName (unLoc v)
| otherwise = entity
-- Supplying the ext_name in a foreign decl is optional; if it
-- isn't there, the Haskell name is assumed. Note that no transformation
-- of the Haskell name is then performed, so if you foreign export (++),
-- it's external name will be "++". Too bad; it's important because we don't
-- want z-encoding (e.g. names with z's in them shouldn't be doubled)
--
mkExtName :: RdrName -> CLabelString
mkExtName rdrNm = occNameFS (rdrNameOcc rdrNm)
--------------------------------------------------------------------------------
-- Help with module system imports/exports
data ImpExpSubSpec = ImpExpAbs
| ImpExpAll
| ImpExpList [LocatedA ImpExpQcSpec]
| ImpExpAllWith [LocatedA ImpExpQcSpec]
data ImpExpQcSpec = ImpExpQcName (LocatedN RdrName)
| ImpExpQcType EpaLocation (LocatedN RdrName)
| ImpExpQcWildcard
mkModuleImpExp :: Maybe (LWarningTxt GhcPs) -> [AddEpAnn] -> LocatedA ImpExpQcSpec
-> ImpExpSubSpec -> P (IE GhcPs)
mkModuleImpExp warning anns (L l specname) subs = do
case subs of
ImpExpAbs
| isVarNameSpace (rdrNameSpace name)
-> return $ IEVar warning
(L l (ieNameFromSpec specname)) Nothing
| otherwise -> IEThingAbs (warning, anns) . L l <$> nameT <*> pure noExportDoc
ImpExpAll -> IEThingAll (warning, anns) . L l <$> nameT <*> pure noExportDoc
ImpExpList xs ->
(\newName -> IEThingWith (warning, anns) (L l newName)
NoIEWildcard (wrapped xs)) <$> nameT <*> pure noExportDoc
ImpExpAllWith xs ->
do allowed <- getBit PatternSynonymsBit
if allowed
then
let withs = map unLoc xs
pos = maybe NoIEWildcard IEWildcard
(findIndex isImpExpQcWildcard withs)
ies :: [LocatedA (IEWrappedName GhcPs)]
ies = wrapped $ filter (not . isImpExpQcWildcard . unLoc) xs
in (\newName
-> IEThingWith (warning, anns) (L l newName) pos ies)
<$> nameT <*> pure noExportDoc
else addFatalError $ mkPlainErrorMsgEnvelope (locA l) $
PsErrIllegalPatSynExport
where
noExportDoc :: Maybe (LHsDoc GhcPs)
noExportDoc = Nothing
name = ieNameVal specname
nameT =
if isVarNameSpace (rdrNameSpace name)
then addFatalError $ mkPlainErrorMsgEnvelope (locA l) $
(PsErrVarForTyCon name)
else return $ ieNameFromSpec specname
ieNameVal (ImpExpQcName ln) = unLoc ln
ieNameVal (ImpExpQcType _ ln) = unLoc ln
ieNameVal (ImpExpQcWildcard) = panic "ieNameVal got wildcard"
ieNameFromSpec :: ImpExpQcSpec -> IEWrappedName GhcPs
ieNameFromSpec (ImpExpQcName (L l n)) = IEName noExtField (L l n)
ieNameFromSpec (ImpExpQcType r (L l n)) = IEType r (L l n)
ieNameFromSpec (ImpExpQcWildcard) = panic "ieName got wildcard"
wrapped = map (fmap ieNameFromSpec)
mkTypeImpExp :: LocatedN RdrName -- TcCls or Var name space
-> P (LocatedN RdrName)
mkTypeImpExp name =
do requireExplicitNamespaces (getLocA name)
return (fmap (`setRdrNameSpace` tcClsName) name)
checkImportSpec :: LocatedL [LIE GhcPs] -> P (LocatedL [LIE GhcPs])
checkImportSpec ie@(L _ specs) =
case [l | (L l (IEThingWith _ _ (IEWildcard _) _ _)) <- specs] of
[] -> return ie
(l:_) -> importSpecError (locA l)
where
importSpecError l =
addFatalError $ mkPlainErrorMsgEnvelope l PsErrIllegalImportBundleForm
-- In the correct order
mkImpExpSubSpec :: [LocatedA ImpExpQcSpec] -> P ([AddEpAnn], ImpExpSubSpec)
mkImpExpSubSpec [] = return ([], ImpExpList [])
mkImpExpSubSpec [L la ImpExpQcWildcard] =
return ([AddEpAnn AnnDotdot (entry la)], ImpExpAll)
mkImpExpSubSpec xs =
if (any (isImpExpQcWildcard . unLoc) xs)
then return $ ([], ImpExpAllWith xs)
else return $ ([], ImpExpList xs)
isImpExpQcWildcard :: ImpExpQcSpec -> Bool
isImpExpQcWildcard ImpExpQcWildcard = True
isImpExpQcWildcard _ = False
-----------------------------------------------------------------------------
-- Warnings and failures
warnPrepositiveQualifiedModule :: SrcSpan -> P ()
warnPrepositiveQualifiedModule span =
addPsMessage span PsWarnImportPreQualified
failNotEnabledImportQualifiedPost :: SrcSpan -> P ()
failNotEnabledImportQualifiedPost loc =
addError $ mkPlainErrorMsgEnvelope loc $ PsErrImportPostQualified
failImportQualifiedTwice :: SrcSpan -> P ()
failImportQualifiedTwice loc =
addError $ mkPlainErrorMsgEnvelope loc $ PsErrImportQualifiedTwice
warnStarIsType :: SrcSpan -> P ()
warnStarIsType span = addPsMessage span PsWarnStarIsType
failOpFewArgs :: MonadP m => LocatedN RdrName -> m a
failOpFewArgs (L loc op) =
do { star_is_type <- getBit StarIsTypeBit
; let is_star_type = if star_is_type then StarIsType else StarIsNotType
; addFatalError $ mkPlainErrorMsgEnvelope (locA loc) $
(PsErrOpFewArgs is_star_type op) }
requireExplicitNamespaces :: MonadP m => SrcSpan -> m ()
requireExplicitNamespaces l = do
allowed <- getBit ExplicitNamespacesBit
unless allowed $
addError $ mkPlainErrorMsgEnvelope l PsErrIllegalExplicitNamespace
-----------------------------------------------------------------------------
-- Misc utils
data PV_Context =
PV_Context
{ pv_options :: ParserOpts
, pv_details :: ParseContext -- See Note [Parser-Validator Details]
}
data PV_Accum =
PV_Accum
{ pv_warnings :: Messages PsMessage
, pv_errors :: Messages PsMessage
, pv_header_comments :: Strict.Maybe [LEpaComment]
, pv_comment_q :: [LEpaComment]
}
data PV_Result a = PV_Ok PV_Accum a | PV_Failed PV_Accum
deriving (Foldable, Functor, Traversable)
-- During parsing, we make use of several monadic effects: reporting parse errors,
-- accumulating warnings, adding API annotations, and checking for extensions. These
-- effects are captured by the 'MonadP' type class.
--
-- Sometimes we need to postpone some of these effects to a later stage due to
-- ambiguities described in Note [Ambiguous syntactic categories].
-- We could use two layers of the P monad, one for each stage:
--
-- abParser :: forall x. DisambAB x => P (P x)
--
-- The outer layer of P consumes the input and builds the inner layer, which
-- validates the input. But this type is not particularly helpful, as it obscures
-- the fact that the inner layer of P never consumes any input.
--
-- For clarity, we introduce the notion of a parser-validator: a parser that does
-- not consume any input, but may fail or use other effects. Thus we have:
--
-- abParser :: forall x. DisambAB x => P (PV x)
--
newtype PV a = PV { unPV :: PV_Context -> PV_Accum -> PV_Result a }
deriving (Functor)
instance Applicative PV where
pure a = a `seq` PV (\_ acc -> PV_Ok acc a)
(<*>) = ap
instance Monad PV where
m >>= f = PV $ \ctx acc ->
case unPV m ctx acc of
PV_Ok acc' a -> unPV (f a) ctx acc'
PV_Failed acc' -> PV_Failed acc'
runPV :: PV a -> P a
runPV = runPV_details noParseContext
askParseContext :: PV ParseContext
askParseContext = PV $ \(PV_Context _ details) acc -> PV_Ok acc details
runPV_details :: ParseContext -> PV a -> P a
runPV_details details m =
P $ \s ->
let
pv_ctx = PV_Context
{ pv_options = options s
, pv_details = details }
pv_acc = PV_Accum
{ pv_warnings = warnings s
, pv_errors = errors s
, pv_header_comments = header_comments s
, pv_comment_q = comment_q s }
mkPState acc' =
s { warnings = pv_warnings acc'
, errors = pv_errors acc'
, comment_q = pv_comment_q acc' }
in
case unPV m pv_ctx pv_acc of
PV_Ok acc' a -> POk (mkPState acc') a
PV_Failed acc' -> PFailed (mkPState acc')
instance MonadP PV where
addError err =
PV $ \_ctx acc -> PV_Ok acc{pv_errors = err `addMessage` pv_errors acc} ()
addWarning w =
PV $ \_ctx acc ->
-- No need to check for the warning flag to be set, GHC will correctly discard suppressed
-- diagnostics.
PV_Ok acc{pv_warnings= w `addMessage` pv_warnings acc} ()
addFatalError err =
addError err >> PV (const PV_Failed)
getBit ext =
PV $ \ctx acc ->
let b = ext `xtest` pExtsBitmap (pv_options ctx) in
PV_Ok acc $! b
allocateCommentsP ss = PV $ \_ s ->
if null (pv_comment_q s) then PV_Ok s emptyComments else -- fast path
let (comment_q', newAnns) = allocateComments ss (pv_comment_q s) in
PV_Ok s {
pv_comment_q = comment_q'
} (EpaComments newAnns)
allocatePriorCommentsP ss = PV $ \_ s ->
let (header_comments', comment_q', newAnns)
= allocatePriorComments ss (pv_comment_q s) (pv_header_comments s) in
PV_Ok s {
pv_header_comments = header_comments',
pv_comment_q = comment_q'
} (EpaComments newAnns)
allocateFinalCommentsP ss = PV $ \_ s ->
let (header_comments', comment_q', newAnns)
= allocateFinalComments ss (pv_comment_q s) (pv_header_comments s) in
PV_Ok s {
pv_header_comments = header_comments',
pv_comment_q = comment_q'
} (EpaCommentsBalanced (Strict.fromMaybe [] header_comments') newAnns)
{- Note [Parser-Validator Details]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A PV computation is parameterized by some 'ParseContext' for diagnostic messages, which can be set
depending on validation context. We use this in checkPattern to fix #984.
Consider this example, where the user has forgotten a 'do':
f _ = do
x <- computation
case () of
_ ->
result <- computation
case () of () -> undefined
GHC parses it as follows:
f _ = do
x <- computation
(case () of
_ ->
result) <- computation
case () of () -> undefined
Note that this fragment is parsed as a pattern:
case () of
_ ->
result
We attempt to detect such cases and add a hint to the diagnostic messages:
T984.hs:6:9:
Parse error in pattern: case () of { _ -> result }
Possibly caused by a missing 'do'?
The "Possibly caused by a missing 'do'?" suggestion is the hint that is computed
out of the 'ParseContext', which are read by functions like 'patFail' when
constructing the 'PsParseErrorInPatDetails' data structure. When validating in a
context other than 'bindpat' (a pattern to the left of <-), we set the
details to 'noParseContext' and it has no effect on the diagnostic messages.
-}
-- | Hint about bang patterns, assuming @BangPatterns@ is off.
hintBangPat :: SrcSpan -> Pat GhcPs -> PV ()
hintBangPat span e = do
bang_on <- getBit BangPatBit
unless bang_on $
addError $ mkPlainErrorMsgEnvelope span $ PsErrIllegalBangPattern e
mkSumOrTupleExpr :: SrcSpanAnnA -> Boxity -> SumOrTuple (HsExpr GhcPs)
-> [AddEpAnn]
-> PV (LHsExpr GhcPs)
-- Tuple
mkSumOrTupleExpr l@(EpAnn anc an csIn) boxity (Tuple es) anns = do
!cs <- getCommentsFor (locA l)
return $ L (EpAnn anc an (csIn Semi.<> cs)) (ExplicitTuple anns (map toTupArg es) boxity)
where
toTupArg :: Either (EpAnn Bool) (LHsExpr GhcPs) -> HsTupArg GhcPs
toTupArg (Left ann) = missingTupArg ann
toTupArg (Right a) = Present noExtField a
-- Sum
-- mkSumOrTupleExpr l Unboxed (Sum alt arity e) =
-- return $ L l (ExplicitSum noExtField alt arity e)
mkSumOrTupleExpr l@(EpAnn anc anIn csIn) Unboxed (Sum alt arity e barsp barsa) anns = do
let an = case anns of
[AddEpAnn AnnOpenPH o, AddEpAnn AnnClosePH c] ->
AnnExplicitSum o barsp barsa c
_ -> panic "mkSumOrTupleExpr"
!cs <- getCommentsFor (locA l)
return $ L (EpAnn anc anIn (csIn Semi.<> cs)) (ExplicitSum an alt arity e)
mkSumOrTupleExpr l Boxed a@Sum{} _ =
addFatalError $ mkPlainErrorMsgEnvelope (locA l) $ PsErrUnsupportedBoxedSumExpr a
mkSumOrTuplePat
:: SrcSpanAnnA -> Boxity -> SumOrTuple (PatBuilder GhcPs) -> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
-- Tuple
mkSumOrTuplePat l boxity (Tuple ps) anns = do
ps' <- traverse toTupPat ps
return $ L l (PatBuilderPat (TuplePat anns ps' boxity))
where
toTupPat :: Either (EpAnn Bool) (LocatedA (PatBuilder GhcPs)) -> PV (LPat GhcPs)
-- Ignore the element location so that the error message refers to the
-- entire tuple. See #19504 (and the discussion) for details.
toTupPat p = case p of
Left _ -> addFatalError $
mkPlainErrorMsgEnvelope (locA l) PsErrTupleSectionInPat
Right p' -> checkLPat p'
-- Sum
mkSumOrTuplePat l Unboxed (Sum alt arity p barsb barsa) anns = do
p' <- checkLPat p
let an = EpAnnSumPat anns barsb barsa
return $ L l (PatBuilderPat (SumPat an p' alt arity))
mkSumOrTuplePat l Boxed a@Sum{} _ =
addFatalError $
mkPlainErrorMsgEnvelope (locA l) $ PsErrUnsupportedBoxedSumPat a
mkLHsOpTy :: PromotionFlag -> LHsType GhcPs -> LocatedN RdrName -> LHsType GhcPs -> LHsType GhcPs
mkLHsOpTy prom x op y =
let loc = locA x `combineSrcSpans` locA op `combineSrcSpans` locA y
in L (noAnnSrcSpan loc) (mkHsOpTy prom x op y)
mkMultTy :: EpToken "%" -> LHsType GhcPs -> EpUniToken "->" "→" -> HsArrow GhcPs
mkMultTy pct t@(L _ (HsTyLit _ (HsNumTy (SourceText (unpackFS -> "1")) 1))) arr
-- See #18888 for the use of (SourceText "1") above
= HsLinearArrow (EpPct1 pct1 arr)
where
-- The location of "%" combined with the location of "1".
pct1 :: EpToken "%1"
pct1 = epTokenWidenR pct (locA (getLoc t))
mkMultTy pct t arr = HsExplicitMult (pct, arr) t
mkMultAnn :: EpToken "%" -> LHsType GhcPs -> HsMultAnn GhcPs
mkMultAnn pct t@(L _ (HsTyLit _ (HsNumTy (SourceText (unpackFS -> "1")) 1)))
-- See #18888 for the use of (SourceText "1") above
= HsPct1Ann pct1
where
-- The location of "%" combined with the location of "1".
pct1 :: EpToken "%1"
pct1 = epTokenWidenR pct (locA (getLoc t))
mkMultAnn pct t = HsMultAnn pct t
mkTokenLocation :: SrcSpan -> TokenLocation
mkTokenLocation (UnhelpfulSpan _) = NoTokenLoc
mkTokenLocation (RealSrcSpan r mb) = TokenLoc (EpaSpan (RealSrcSpan r mb))
-- Precondition: the EpToken has EpaSpan, never EpaDelta.
epTokenWidenR :: EpToken tok -> SrcSpan -> EpToken tok'
epTokenWidenR NoEpTok _ = NoEpTok
epTokenWidenR (EpTok l) (UnhelpfulSpan _) = EpTok l
epTokenWidenR (EpTok (EpaSpan s1)) s2 = EpTok (EpaSpan (combineSrcSpans s1 s2))
epTokenWidenR (EpTok (EpaDelta _ _)) _ =
-- Never happens because the parser does not produce EpaDelta.
panic "epTokenWidenR: EpaDelta"
-----------------------------------------------------------------------------
-- Token symbols
starSym :: Bool -> FastString
starSym True = fsLit "★"
starSym False = fsLit "*"
-----------------------------------------
-- Bits and pieces for RecordDotSyntax.
mkRdrGetField :: LHsExpr GhcPs -> LocatedAn NoEpAnns (DotFieldOcc GhcPs)
-> HsExpr GhcPs
mkRdrGetField arg field =
HsGetField {
gf_ext = NoExtField
, gf_expr = arg
, gf_field = field
}
mkRdrProjection :: NonEmpty (LocatedAn NoEpAnns (DotFieldOcc GhcPs)) -> AnnProjection -> HsExpr GhcPs
mkRdrProjection flds anns =
HsProjection {
proj_ext = anns
, proj_flds = flds
}
mkRdrProjUpdate :: SrcSpanAnnA -> Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)]
-> LHsExpr GhcPs -> Bool -> [AddEpAnn]
-> LHsRecProj GhcPs (LHsExpr GhcPs)
mkRdrProjUpdate _ (L _ []) _ _ _ = panic "mkRdrProjUpdate: The impossible has happened!"
mkRdrProjUpdate loc (L l flds) arg isPun anns =
L loc HsFieldBind {
hfbAnn = anns
, hfbLHS = L (noAnnSrcSpan l) (FieldLabelStrings flds)
, hfbRHS = arg
, hfbPun = isPun
}
-----------------------------------------------------------------------------
-- Tuple and list punning
punsAllowed :: P Bool
punsAllowed = getBit ListTuplePunsBit
-- | Check whether @ListTuplePuns@ is enabled and return the first arg if it is,
-- the second arg otherwise.
punsIfElse :: a -> a -> P a
punsIfElse enabled disabled = do
allowed <- punsAllowed
pure (if allowed then enabled else disabled)
-- | Emit an error of type 'PsErrInvalidPun' with a location from @start@ to
-- @end@ if the extension @ListTuplePuns@ is disabled.
--
-- This is used in Parser.y to guard rules that require punning.
requireLTPuns :: PsErrPunDetails -> Located a -> Located b -> P ()
requireLTPuns err start end =
unlessM punsAllowed $ do
addError (mkPlainErrorMsgEnvelope loc (PsErrInvalidPun err))
where
loc = (combineSrcSpans (getLoc start) (getLoc end))
-- | Call a parser with a span and its comments given by a start and end token.
withCombinedComments ::
HasLoc l1 =>
HasLoc l2 =>
l1 ->
l2 ->
(SrcSpan -> P a) ->
P (LocatedA a)
withCombinedComments start end use = do
cs <- getCommentsFor fullSpan
a <- use fullSpan
pure (L (EpAnn (spanAsAnchor fullSpan) noAnn cs) a)
where
fullSpan = combineSrcSpans (getHasLoc start) (getHasLoc end)
-- | Decide whether to parse tuple syntax @(Int, Double)@ in a type as a
-- type or data constructor, based on the extension @ListTuplePuns@.
-- The case with an explicit promotion quote, @'(Int, Double)@, is handled
-- by 'mkExplicitTupleTy'.
mkTupleSyntaxTy :: EpaLocation
-> [LocatedA (HsType GhcPs)]
-> EpaLocation
-> P (HsType GhcPs)
mkTupleSyntaxTy parOpen args parClose =
punsIfElse enabled disabled
where
enabled =
HsTupleTy annParen HsBoxedOrConstraintTuple args
disabled =
HsExplicitTupleTy annsKeyword args
annParen = AnnParen AnnParens parOpen parClose
annsKeyword = [AddEpAnn AnnOpenP parOpen, AddEpAnn AnnCloseP parClose]
-- | Decide whether to parse tuple con syntax @(,)@ in a type as a
-- type or data constructor, based on the extension @ListTuplePuns@.
-- The case with an explicit promotion quote, @'(,)@, is handled
-- by the rule @SIMPLEQUOTE sysdcon_nolist@ in @atype@.
mkTupleSyntaxTycon :: Boxity -> Int -> P RdrName
mkTupleSyntaxTycon boxity n =
punsIfElse
(getRdrName (tupleTyCon boxity n))
(getRdrName (tupleDataCon boxity n))
-- | Decide whether to parse list tycon syntax @[]@ in a type as a type or data
-- constructor, based on the extension @ListTuplePuns@.
-- The case with an explicit promotion quote, @'[]@, is handled by
-- 'mkExplicitListTy'.
mkListSyntaxTy0 :: EpaLocation
-> EpaLocation
-> SrcSpan
-> P (HsType GhcPs)
mkListSyntaxTy0 brkOpen brkClose span =
punsIfElse enabled disabled
where
enabled = HsTyVar noAnn NotPromoted rn
-- attach the comments only to the RdrName since it's the innermost AST node
rn = L (EpAnn fullLoc rdrNameAnn emptyComments) listTyCon_RDR
disabled =
HsExplicitListTy annsKeyword NotPromoted []
rdrNameAnn = NameAnnOnly NameSquare brkOpen brkClose []
annsKeyword = [AddEpAnn AnnOpenS brkOpen, AddEpAnn AnnCloseS brkClose]
fullLoc = EpaSpan span
-- | Decide whether to parse list type syntax @[Int]@ in a type as a
-- type or data constructor, based on the extension @ListTuplePuns@.
-- The case with an explicit promotion quote, @'[Int]@, is handled
-- by 'mkExplicitListTy'.
mkListSyntaxTy1 :: EpaLocation
-> LocatedA (HsType GhcPs)
-> EpaLocation
-> P (HsType GhcPs)
mkListSyntaxTy1 brkOpen t brkClose =
punsIfElse enabled disabled
where
enabled = HsListTy annParen t
disabled =
HsExplicitListTy annsKeyword NotPromoted [t]
annsKeyword = [AddEpAnn AnnOpenS brkOpen, AddEpAnn AnnCloseS brkClose]
annParen = AnnParen AnnParensSquare brkOpen brkClose
|