1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
|
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE FlexibleContexts #-}
{-# OPTIONS_GHC -fprof-auto-top #-}
--
-- (c) The University of Glasgow 2002-2006
--
-- | GHC.StgToByteCode: Generate bytecode from STG
module GHC.StgToByteCode ( UnlinkedBCO, byteCodeGen) where
import GHC.Prelude
import GHC.Driver.DynFlags
import GHC.Driver.Env
import GHC.ByteCode.Instr
import GHC.ByteCode.Asm
import GHC.ByteCode.Types
import GHC.Cmm.CallConv
import GHC.Cmm.Expr
import GHC.Cmm.Node
import GHC.Cmm.Utils
import GHC.Platform
import GHC.Platform.Profile
import GHC.Runtime.Interpreter
import GHCi.FFI
import GHCi.RemoteTypes
import GHC.Types.Basic
import GHC.Utils.Outputable
import GHC.Types.Name
import GHC.Types.Id
import GHC.Types.ForeignCall
import GHC.Core
import GHC.Types.Literal
import GHC.Builtin.PrimOps
import GHC.Builtin.PrimOps.Ids (primOpId)
import GHC.Core.Type
import GHC.Core.TyCo.Compare (eqType)
import GHC.Types.RepType
import GHC.Core.DataCon
import GHC.Core.TyCon
import GHC.Utils.Misc
import GHC.Utils.Logger
import GHC.Types.Var.Set
import GHC.Builtin.Types.Prim
import GHC.Core.TyCo.Ppr ( pprType )
import GHC.Utils.Error
import GHC.Builtin.Uniques
import GHC.Data.FastString
import GHC.Utils.Panic
import GHC.Utils.Exception (evaluate)
import GHC.StgToCmm.Closure ( NonVoid(..), fromNonVoid, idPrimRepU,
addIdReps, addArgReps,
nonVoidIds, nonVoidStgArgs )
import GHC.StgToCmm.Layout
import GHC.Runtime.Heap.Layout hiding (WordOff, ByteOff, wordsToBytes)
import GHC.Data.Bitmap
import GHC.Data.OrdList
import GHC.Data.Maybe
import GHC.Types.Name.Env (mkNameEnv)
import GHC.Types.Tickish
import Data.List ( genericReplicate, intersperse
, partition, scanl', sortBy, zip4, zip6 )
import Foreign hiding (shiftL, shiftR)
import Control.Monad
import Data.Char
import GHC.Unit.Module
import GHC.Unit.Home.ModInfo (lookupHpt)
import Data.Array
import Data.Coerce (coerce)
import Data.ByteString (ByteString)
import Data.Map (Map)
import Data.IntMap (IntMap)
import qualified Data.Map as Map
import qualified Data.IntMap as IntMap
import qualified GHC.Data.FiniteMap as Map
import Data.Ord
import Data.Either ( partitionEithers )
import GHC.Stg.Syntax
import qualified Data.IntSet as IntSet
import GHC.CoreToIface
-- -----------------------------------------------------------------------------
-- Generating byte code for a complete module
byteCodeGen :: HscEnv
-> Module
-> [CgStgTopBinding]
-> [TyCon]
-> Maybe ModBreaks
-> IO CompiledByteCode
byteCodeGen hsc_env this_mod binds tycs mb_modBreaks
= withTiming logger
(text "GHC.StgToByteCode"<+>brackets (ppr this_mod))
(const ()) $ do
-- Split top-level binds into strings and others.
-- See Note [Generating code for top-level string literal bindings].
let (strings, lifted_binds) = partitionEithers $ do -- list monad
bnd <- binds
case bnd of
StgTopLifted bnd -> [Right bnd]
StgTopStringLit b str -> [Left (b, str)]
flattenBind (StgNonRec b e) = [(b,e)]
flattenBind (StgRec bs) = bs
stringPtrs <- allocateTopStrings interp strings
(BcM_State{..}, proto_bcos) <-
runBc hsc_env this_mod mb_modBreaks $ do
let flattened_binds = concatMap flattenBind (reverse lifted_binds)
mapM schemeTopBind flattened_binds
when (notNull ffis)
(panic "GHC.StgToByteCode.byteCodeGen: missing final emitBc?")
putDumpFileMaybe logger Opt_D_dump_BCOs
"Proto-BCOs" FormatByteCode
(vcat (intersperse (char ' ') (map ppr proto_bcos)))
cbc <- assembleBCOs interp profile proto_bcos tycs stringPtrs
(case modBreaks of
Nothing -> Nothing
Just mb -> Just mb{ modBreaks_breakInfo = breakInfo })
-- Squash space leaks in the CompiledByteCode. This is really
-- important, because when loading a set of modules into GHCi
-- we don't touch the CompiledByteCode until the end when we
-- do linking. Forcing out the thunks here reduces space
-- usage by more than 50% when loading a large number of
-- modules.
evaluate (seqCompiledByteCode cbc)
return cbc
where dflags = hsc_dflags hsc_env
logger = hsc_logger hsc_env
interp = hscInterp hsc_env
profile = targetProfile dflags
-- | see Note [Generating code for top-level string literal bindings]
allocateTopStrings
:: Interp
-> [(Id, ByteString)]
-> IO AddrEnv
allocateTopStrings interp topStrings = do
let !(bndrs, strings) = unzip topStrings
ptrs <- interpCmd interp $ MallocStrings strings
return $ mkNameEnv (zipWith mk_entry bndrs ptrs)
where
mk_entry bndr ptr = let nm = getName bndr
in (nm, (nm, AddrPtr ptr))
{- Note [Generating code for top-level string literal bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As described in Note [Compilation plan for top-level string literals]
in GHC.Core, the core-to-core optimizer can introduce top-level Addr#
bindings to represent string literals. The creates two challenges for
the bytecode compiler: (1) compiling the bindings themselves, and
(2) compiling references to such bindings. Here is a summary on how
we deal with them:
1. Top-level string literal bindings are separated from the rest of
the module. Memory for them is allocated immediately, via
interpCmd, in allocateTopStrings, and the resulting AddrEnv is
recorded in the bc_strs field of the CompiledByteCode result.
2. When we encounter a reference to a top-level string literal, we
generate a PUSH_ADDR pseudo-instruction, which is assembled to
a PUSH_UBX instruction with a BCONPtrAddr argument.
3. The loader accumulates string literal bindings from loaded
bytecode in the addr_env field of the LinkerEnv.
4. The BCO linker resolves BCONPtrAddr references by searching both
the addr_env (to find literals defined in bytecode) and the native
symbol table (to find literals defined in native code).
This strategy works alright, but it does have one significant problem:
we never free the memory that we allocate for the top-level strings.
In theory, we could explicitly free it when BCOs are unloaded, but
this comes with its own complications; see #22400 for why. For now,
we just accept the leak, but it would nice to find something better. -}
-- -----------------------------------------------------------------------------
-- Compilation schema for the bytecode generator
type BCInstrList = OrdList BCInstr
wordsToBytes :: Platform -> WordOff -> ByteOff
wordsToBytes platform = fromIntegral . (* platformWordSizeInBytes platform) . fromIntegral
-- Used when we know we have a whole number of words
bytesToWords :: Platform -> ByteOff -> WordOff
bytesToWords platform (ByteOff bytes) =
let (q, r) = bytes `quotRem` (platformWordSizeInBytes platform)
in if r == 0
then fromIntegral q
else pprPanic "GHC.StgToByteCode.bytesToWords"
(text "bytes=" <> ppr bytes)
wordSize :: Platform -> ByteOff
wordSize platform = ByteOff (platformWordSizeInBytes platform)
type Sequel = ByteOff -- back off to this depth before ENTER
type StackDepth = ByteOff
-- | Maps Ids to their stack depth. This allows us to avoid having to mess with
-- it after each push/pop.
type BCEnv = Map Id StackDepth -- To find vars on the stack
{-
ppBCEnv :: BCEnv -> SDoc
ppBCEnv p
= text "begin-env"
$$ nest 4 (vcat (map pp_one (sortBy cmp_snd (Map.toList p))))
$$ text "end-env"
where
pp_one (var, ByteOff offset) = int offset <> colon <+> ppr var <+> ppr (bcIdArgReps var)
cmp_snd x y = compare (snd x) (snd y)
-}
-- Create a BCO and do a spot of peephole optimisation on the insns
-- at the same time.
mkProtoBCO
:: Platform
-> name
-> BCInstrList
-> Either [CgStgAlt] (CgStgRhs)
-- ^ original expression; for debugging only
-> Int -- ^ arity
-> WordOff -- ^ bitmap size
-> [StgWord] -- ^ bitmap
-> Bool -- ^ True <=> is a return point, rather than a function
-> [FFIInfo]
-> ProtoBCO name
mkProtoBCO platform nm instrs_ordlist origin arity bitmap_size bitmap is_ret ffis
= ProtoBCO {
protoBCOName = nm,
protoBCOInstrs = maybe_with_stack_check,
protoBCOBitmap = bitmap,
protoBCOBitmapSize = fromIntegral bitmap_size,
protoBCOArity = arity,
protoBCOExpr = origin,
protoBCOFFIs = ffis
}
where
-- Overestimate the stack usage (in words) of this BCO,
-- and if >= iNTERP_STACK_CHECK_THRESH, add an explicit
-- stack check. (The interpreter always does a stack check
-- for iNTERP_STACK_CHECK_THRESH words at the start of each
-- BCO anyway, so we only need to add an explicit one in the
-- (hopefully rare) cases when the (overestimated) stack use
-- exceeds iNTERP_STACK_CHECK_THRESH.
maybe_with_stack_check
| is_ret && stack_usage < fromIntegral (pc_AP_STACK_SPLIM (platformConstants platform)) = peep_d
-- don't do stack checks at return points,
-- everything is aggregated up to the top BCO
-- (which must be a function).
-- That is, unless the stack usage is >= AP_STACK_SPLIM,
-- see bug #1466.
| stack_usage >= fromIntegral iNTERP_STACK_CHECK_THRESH
= STKCHECK stack_usage : peep_d
| otherwise
= peep_d -- the supposedly common case
-- We assume that this sum doesn't wrap
stack_usage = sum (map bciStackUse peep_d)
-- Merge local pushes
peep_d = peep (fromOL instrs_ordlist)
peep (PUSH_L off1 : PUSH_L off2 : PUSH_L off3 : rest)
= PUSH_LLL off1 (off2-1) (off3-2) : peep rest
peep (PUSH_L off1 : PUSH_L off2 : rest)
= PUSH_LL off1 (off2-1) : peep rest
peep (i:rest)
= i : peep rest
peep []
= []
argBits :: Platform -> [ArgRep] -> [Bool]
argBits _ [] = []
argBits platform (rep : args)
| isFollowableArg rep = False : argBits platform args
| otherwise = replicate (argRepSizeW platform rep) True ++ argBits platform args
-- -----------------------------------------------------------------------------
-- schemeTopBind
-- Compile code for the right-hand side of a top-level binding
schemeTopBind :: (Id, CgStgRhs) -> BcM (ProtoBCO Name)
schemeTopBind (id, rhs)
| Just data_con <- isDataConWorkId_maybe id,
isNullaryRepDataCon data_con = do
platform <- profilePlatform <$> getProfile
-- Special case for the worker of a nullary data con.
-- It'll look like this: Nil = /\a -> Nil a
-- If we feed it into schemeR, we'll get
-- Nil = Nil
-- because mkConAppCode treats nullary constructor applications
-- by just re-using the single top-level definition. So
-- for the worker itself, we must allocate it directly.
-- ioToBc (putStrLn $ "top level BCO")
emitBc (mkProtoBCO platform (getName id) (toOL [PACK data_con 0, RETURN P])
(Right rhs) 0 0 [{-no bitmap-}] False{-not alts-})
| otherwise
= schemeR [{- No free variables -}] (getName id, rhs)
-- -----------------------------------------------------------------------------
-- schemeR
-- Compile code for a right-hand side, to give a BCO that,
-- when executed with the free variables and arguments on top of the stack,
-- will return with a pointer to the result on top of the stack, after
-- removing the free variables and arguments.
--
-- Park the resulting BCO in the monad. Also requires the
-- name of the variable to which this value was bound,
-- so as to give the resulting BCO a name.
schemeR :: [Id] -- Free vars of the RHS, ordered as they
-- will appear in the thunk. Empty for
-- top-level things, which have no free vars.
-> (Name, CgStgRhs)
-> BcM (ProtoBCO Name)
schemeR fvs (nm, rhs)
= schemeR_wrk fvs nm rhs (collect rhs)
-- If an expression is a lambda, return the
-- list of arguments to the lambda (in R-to-L order) and the
-- underlying expression
collect :: CgStgRhs -> ([Var], CgStgExpr)
collect (StgRhsClosure _ _ _ args body _) = (args, body)
collect (StgRhsCon _cc dc cnum _ticks args _typ) = ([], StgConApp dc cnum args [])
schemeR_wrk
:: [Id]
-> Name
-> CgStgRhs -- expression e, for debugging only
-> ([Var], CgStgExpr) -- result of collect on e
-> BcM (ProtoBCO Name)
schemeR_wrk fvs nm original_body (args, body)
= do
profile <- getProfile
let
platform = profilePlatform profile
all_args = reverse args ++ fvs
arity = length all_args
-- all_args are the args in reverse order. We're compiling a function
-- \fv1..fvn x1..xn -> e
-- i.e. the fvs come first
-- Stack arguments always take a whole number of words, we never pack
-- them unlike constructor fields.
szsb_args = map (wordsToBytes platform . idSizeW platform) all_args
sum_szsb_args = sum szsb_args
p_init = Map.fromList (zip all_args (mkStackOffsets 0 szsb_args))
-- make the arg bitmap
bits = argBits platform (reverse (map (idArgRep platform) all_args))
bitmap_size = strictGenericLength bits
bitmap = mkBitmap platform bits
body_code <- schemeER_wrk sum_szsb_args p_init body
emitBc (mkProtoBCO platform nm body_code (Right original_body)
arity bitmap_size bitmap False{-not alts-})
-- | Introduce break instructions for ticked expressions.
-- If no breakpoint information is available, the instruction is omitted.
schemeER_wrk :: StackDepth -> BCEnv -> CgStgExpr -> BcM BCInstrList
schemeER_wrk d p (StgTick (Breakpoint tick_ty tick_no fvs tick_mod) rhs) = do
code <- schemeE d 0 p rhs
hsc_env <- getHscEnv
current_mod <- getCurrentModule
mb_current_mod_breaks <- getCurrentModBreaks
case mb_current_mod_breaks of
-- if we're not generating ModBreaks for this module for some reason, we
-- can't store breakpoint occurrence information.
Nothing -> pure code
Just current_mod_breaks -> case break_info hsc_env tick_mod current_mod mb_current_mod_breaks of
Nothing -> pure code
Just ModBreaks {modBreaks_flags = breaks, modBreaks_module = tick_mod_ptr, modBreaks_ccs = cc_arr} -> do
platform <- profilePlatform <$> getProfile
let idOffSets = getVarOffSets platform d p fvs
ty_vars = tyCoVarsOfTypesWellScoped (tick_ty:map idType fvs)
toWord :: Maybe (Id, WordOff) -> Maybe (Id, Word)
toWord = fmap (\(i, wo) -> (i, fromIntegral wo))
breakInfo = dehydrateCgBreakInfo ty_vars (map toWord idOffSets) tick_ty
let info_mod_ptr = modBreaks_module current_mod_breaks
infox <- newBreakInfo breakInfo
let cc | Just interp <- hsc_interp hsc_env
, interpreterProfiled interp
= cc_arr ! tick_no
| otherwise = toRemotePtr nullPtr
let -- cast that checks that round-tripping through Word16 doesn't change the value
toW16 x = let r = fromIntegral x :: Word16
in if fromIntegral r == x
then r
else pprPanic "schemeER_wrk: breakpoint tick/info index too large!" (ppr x)
breakInstr = BRK_FUN breaks tick_mod_ptr (toW16 tick_no) info_mod_ptr (toW16 infox) cc
return $ breakInstr `consOL` code
schemeER_wrk d p rhs = schemeE d 0 p rhs
-- | Determine the GHCi-allocated 'BreakArray' and module pointer for the module
-- from which the breakpoint originates.
-- These are stored in 'ModBreaks' as remote pointers in order to allow the BCOs
-- to refer to pointers in GHCi's address space.
-- They are initialized in 'GHC.HsToCore.Breakpoints.mkModBreaks', called by
-- 'GHC.HsToCore.deSugar'.
--
-- Breakpoints might be disabled because we're in TH, because
-- @-fno-break-points@ was specified, or because a module was reloaded without
-- reinitializing 'ModBreaks'.
--
-- If the module stored in the breakpoint is the currently processed module, use
-- the 'ModBreaks' from the state.
-- If that is 'Nothing', consider breakpoints to be disabled and skip the
-- instruction.
--
-- If the breakpoint is inlined from another module, look it up in the home
-- package table.
-- If the module doesn't exist there, or its module pointer is null (which means
-- that the 'ModBreaks' value is uninitialized), skip the instruction.
break_info ::
HscEnv ->
Module ->
Module ->
Maybe ModBreaks ->
Maybe ModBreaks
break_info hsc_env mod current_mod current_mod_breaks
| mod == current_mod
= check_mod_ptr =<< current_mod_breaks
| Just hp <- lookupHpt (hsc_HPT hsc_env) (moduleName mod)
= check_mod_ptr (getModBreaks hp)
| otherwise
= Nothing
where
check_mod_ptr mb
| mod_ptr <- modBreaks_module mb
, fromRemotePtr mod_ptr /= nullPtr
= Just mb
| otherwise
= Nothing
getVarOffSets :: Platform -> StackDepth -> BCEnv -> [Id] -> [Maybe (Id, WordOff)]
getVarOffSets platform depth env = map getOffSet
where
getOffSet id = case lookupBCEnv_maybe id env of
Nothing -> Nothing
Just offset ->
-- michalt: I'm not entirely sure why we need the stack
-- adjustment by 2 here. I initially thought that there's
-- something off with getIdValFromApStack (the only user of this
-- value), but it looks ok to me. My current hypothesis is that
-- this "adjustment" is needed due to stack manipulation for
-- BRK_FUN in Interpreter.c In any case, this is used only when
-- we trigger a breakpoint.
let !var_depth_ws = bytesToWords platform (depth - offset) + 2
in Just (id, var_depth_ws)
fvsToEnv :: BCEnv -> CgStgRhs -> [Id]
-- Takes the free variables of a right-hand side, and
-- delivers an ordered list of the local variables that will
-- be captured in the thunk for the RHS
-- The BCEnv argument tells which variables are in the local
-- environment: these are the ones that should be captured
--
-- The code that constructs the thunk, and the code that executes
-- it, have to agree about this layout
fvsToEnv p rhs = [v | v <- dVarSetElems $ freeVarsOfRhs rhs,
v `Map.member` p]
-- -----------------------------------------------------------------------------
-- schemeE
-- Returning an unlifted value.
-- Heave it on the stack, SLIDE, and RETURN.
returnUnliftedAtom
:: StackDepth
-> Sequel
-> BCEnv
-> StgArg
-> BcM BCInstrList
returnUnliftedAtom d s p e = do
let reps = stgArgRep e
(push, szb) <- pushAtom d p e
ret <- returnUnliftedReps d s szb reps
return (push `appOL` ret)
-- return an unlifted value from the top of the stack
returnUnliftedReps
:: StackDepth
-> Sequel
-> ByteOff -- size of the thing we're returning
-> [PrimRep] -- representations
-> BcM BCInstrList
returnUnliftedReps d s szb reps = do
profile <- getProfile
let platform = profilePlatform profile
ret <- case reps of
-- use RETURN for nullary/unary representations
[] -> return (unitOL $ RETURN V)
[rep] -> return (unitOL $ RETURN (toArgRep platform rep))
-- otherwise use RETURN_TUPLE with a tuple descriptor
nv_reps -> do
let (call_info, args_offsets) = layoutNativeCall profile NativeTupleReturn 0 (primRepCmmType platform) nv_reps
tuple_bco <- emitBc (tupleBCO platform call_info args_offsets)
return $ PUSH_UBX (mkNativeCallInfoLit platform call_info) 1 `consOL`
PUSH_BCO tuple_bco `consOL`
unitOL RETURN_TUPLE
return ( mkSlideB platform szb (d - s) -- clear to sequel
`appOL` ret) -- go
-- construct and return an unboxed tuple
returnUnboxedTuple
:: StackDepth
-> Sequel
-> BCEnv
-> [StgArg]
-> BcM BCInstrList
returnUnboxedTuple d s p es = do
profile <- getProfile
let platform = profilePlatform profile
arg_ty e = primRepCmmType platform (stgArgRepU e)
(call_info, tuple_components) = layoutNativeCall profile
NativeTupleReturn
d
arg_ty
es
go _ pushes [] = return (reverse pushes)
go !dd pushes ((a, off):cs) = do (push, szb) <- pushAtom dd p a
massert (off == dd + szb)
go (dd + szb) (push:pushes) cs
pushes <- go d [] tuple_components
let rep_to_maybe :: PrimOrVoidRep -> Maybe PrimRep
rep_to_maybe VoidRep = Nothing
rep_to_maybe (NVRep rep) = Just rep
ret <- returnUnliftedReps d
s
(wordsToBytes platform $ nativeCallSize call_info)
(mapMaybe (rep_to_maybe . stgArgRep1) es)
return (mconcat pushes `appOL` ret)
-- Compile code to apply the given expression to the remaining args
-- on the stack, returning a HNF.
schemeE
:: StackDepth -> Sequel -> BCEnv -> CgStgExpr -> BcM BCInstrList
schemeE d s p (StgLit lit) = returnUnliftedAtom d s p (StgLitArg lit)
schemeE d s p (StgApp x [])
| isUnliftedType (idType x) = returnUnliftedAtom d s p (StgVarArg x)
-- Delegate tail-calls to schemeT.
schemeE d s p e@(StgApp {}) = schemeT d s p e
schemeE d s p e@(StgConApp {}) = schemeT d s p e
schemeE d s p e@(StgOpApp {}) = schemeT d s p e
schemeE d s p (StgLetNoEscape xlet bnd body)
= schemeE d s p (StgLet xlet bnd body)
schemeE d s p (StgLet _xlet
(StgNonRec x (StgRhsCon _cc data_con _cnum _ticks args _typ))
body)
= do -- Special case for a non-recursive let whose RHS is a
-- saturated constructor application.
-- Just allocate the constructor and carry on
alloc_code <- mkConAppCode d s p data_con args
platform <- targetPlatform <$> getDynFlags
let !d2 = d + wordSize platform
body_code <- schemeE d2 s (Map.insert x d2 p) body
return (alloc_code `appOL` body_code)
-- General case for let. Generates correct, if inefficient, code in
-- all situations.
schemeE d s p (StgLet _ext binds body) = do
platform <- targetPlatform <$> getDynFlags
let (xs,rhss) = case binds of StgNonRec x rhs -> ([x],[rhs])
StgRec xs_n_rhss -> unzip xs_n_rhss
n_binds = strictGenericLength xs
fvss = map (fvsToEnv p') rhss
-- Sizes of free vars
size_w = idSizeW platform
sizes = map (\rhs_fvs -> sum (map size_w rhs_fvs)) fvss
-- the arity of each rhs
arities = map (strictGenericLength . fst . collect) rhss
-- This p', d' defn is safe because all the items being pushed
-- are ptrs, so all have size 1 word. d' and p' reflect the stack
-- after the closures have been allocated in the heap (but not
-- filled in), and pointers to them parked on the stack.
offsets = mkStackOffsets d (genericReplicate n_binds (wordSize platform))
p' = Map.insertList (zipE xs offsets) p
d' = d + wordsToBytes platform n_binds
zipE = zipEqual "schemeE"
-- ToDo: don't build thunks for things with no free variables
build_thunk
:: StackDepth
-> [Id]
-> WordOff
-> ProtoBCO Name
-> WordOff
-> HalfWord
-> BcM BCInstrList
build_thunk _ [] size bco off arity
= return (PUSH_BCO bco `consOL` unitOL (mkap (off+size) (fromIntegral size)))
where
mkap | arity == 0 = MKAP
| otherwise = MKPAP
build_thunk dd (fv:fvs) size bco off arity = do
(push_code, pushed_szb) <- pushAtom dd p' (StgVarArg fv)
more_push_code <-
build_thunk (dd + pushed_szb) fvs size bco off arity
return (push_code `appOL` more_push_code)
alloc_code = toOL (zipWith mkAlloc sizes arities)
where mkAlloc sz 0
| is_tick = ALLOC_AP_NOUPD (fromIntegral sz)
| otherwise = ALLOC_AP (fromIntegral sz)
mkAlloc sz arity = ALLOC_PAP arity (fromIntegral sz)
is_tick = case binds of
StgNonRec id _ -> occNameFS (getOccName id) == tickFS
_other -> False
compile_bind d' fvs x (rhs::CgStgRhs) size arity off = do
bco <- schemeR fvs (getName x,rhs)
build_thunk d' fvs size bco off arity
compile_binds =
[ compile_bind d' fvs x rhs size arity n
| (fvs, x, rhs, size, arity, n) <-
zip6 fvss xs rhss sizes arities [n_binds, n_binds-1 .. 1]
]
body_code <- schemeE d' s p' body
thunk_codes <- sequence compile_binds
return (alloc_code `appOL` concatOL thunk_codes `appOL` body_code)
schemeE _d _s _p (StgTick (Breakpoint _ bp_id _ _) _rhs)
= panic ("schemeE: Breakpoint without let binding: " ++
show bp_id ++
" forgot to run bcPrep?")
-- ignore other kinds of tick
schemeE d s p (StgTick _ rhs) = schemeE d s p rhs
-- no alts: scrut is guaranteed to diverge
schemeE d s p (StgCase scrut _ _ []) = schemeE d s p scrut
schemeE d s p (StgCase scrut bndr _ alts)
= doCase d s p scrut bndr alts
{-
Ticked Expressions
------------------
The idea is that the "breakpoint<n,fvs> E" is really just an annotation on
the code. When we find such a thing, we pull out the useful information,
and then compile the code as if it was just the expression E.
-}
-- Compile code to do a tail call. Specifically, push the fn,
-- slide the on-stack app back down to the sequel depth,
-- and enter. Four cases:
--
-- 0. (Nasty hack).
-- An application "GHC.Prim.tagToEnum# <type> unboxed-int".
-- The int will be on the stack. Generate a code sequence
-- to convert it to the relevant constructor, SLIDE and ENTER.
--
-- 1. The fn denotes a ccall. Defer to generateCCall.
--
-- 2. An unboxed tuple: push the components on the top of
-- the stack and return.
--
-- 3. Application of a constructor, by defn saturated.
-- Split the args into ptrs and non-ptrs, and push the nonptrs,
-- then the ptrs, and then do PACK and RETURN.
--
-- 4. Otherwise, it must be a function call. Push the args
-- right to left, SLIDE and ENTER.
schemeT :: StackDepth -- Stack depth
-> Sequel -- Sequel depth
-> BCEnv -- stack env
-> CgStgExpr
-> BcM BCInstrList
-- Case 0
schemeT d s p app
| Just (arg, constr_names) <- maybe_is_tagToEnum_call app
= implement_tagToId d s p arg constr_names
-- Case 1
schemeT d s p (StgOpApp (StgFCallOp (CCall ccall_spec) _ty) args result_ty)
= if isSupportedCConv ccall_spec
then generateCCall d s p ccall_spec result_ty args
else unsupportedCConvException
schemeT d s p (StgOpApp (StgPrimOp op) args _ty)
= doTailCall d s p (primOpId op) (reverse args)
schemeT d s p (StgOpApp (StgPrimCallOp (PrimCall label unit)) args result_ty)
= generatePrimCall d s p label (Just unit) result_ty args
schemeT d s p (StgConApp con _cn args _tys)
-- Case 2: Unboxed tuple
| isUnboxedTupleDataCon con || isUnboxedSumDataCon con
= returnUnboxedTuple d s p args
-- Case 3: Ordinary data constructor
| otherwise
= do alloc_con <- mkConAppCode d s p con args
platform <- profilePlatform <$> getProfile
return (alloc_con `appOL`
mkSlideW 1 (bytesToWords platform $ d - s) `snocOL` RETURN P)
-- Case 4: Tail call of function
schemeT d s p (StgApp fn args)
= doTailCall d s p fn (reverse args)
schemeT _ _ _ e = pprPanic "GHC.StgToByteCode.schemeT"
(pprStgExpr shortStgPprOpts e)
-- -----------------------------------------------------------------------------
-- Generate code to build a constructor application,
-- leaving it on top of the stack
mkConAppCode
:: StackDepth
-> Sequel
-> BCEnv
-> DataCon -- The data constructor
-> [StgArg] -- Args, in *reverse* order
-> BcM BCInstrList
mkConAppCode orig_d _ p con args = app_code
where
app_code = do
profile <- getProfile
let platform = profilePlatform profile
non_voids =
addArgReps (nonVoidStgArgs args)
(_, _, args_offsets) =
mkVirtHeapOffsetsWithPadding profile StdHeader non_voids
do_pushery !d (arg : args) = do
(push, arg_bytes) <- case arg of
(Padding l _) -> return $! pushPadding (ByteOff l)
(FieldOff a _) -> pushConstrAtom d p (fromNonVoid a)
more_push_code <- do_pushery (d + arg_bytes) args
return (push `appOL` more_push_code)
do_pushery !d [] = do
let !n_arg_words = bytesToWords platform (d - orig_d)
return (unitOL (PACK con n_arg_words))
-- Push on the stack in the reverse order.
do_pushery orig_d (reverse args_offsets)
-- -----------------------------------------------------------------------------
-- Generate code for a tail-call
doTailCall
:: StackDepth
-> Sequel
-> BCEnv
-> Id
-> [StgArg]
-> BcM BCInstrList
doTailCall init_d s p fn args = do
platform <- profilePlatform <$> getProfile
do_pushes init_d args (map (atomRep platform) args)
where
do_pushes !d [] reps = do
assert (null reps) return ()
(push_fn, sz) <- pushAtom d p (StgVarArg fn)
platform <- profilePlatform <$> getProfile
assert (sz == wordSize platform) return ()
let slide = mkSlideB platform (d - init_d + wordSize platform) (init_d - s)
return (push_fn `appOL` (slide `appOL` unitOL ENTER))
do_pushes !d args reps = do
let (push_apply, n, rest_of_reps) = findPushSeq reps
(these_args, rest_of_args) = splitAt n args
(next_d, push_code) <- push_seq d these_args
platform <- profilePlatform <$> getProfile
instrs <- do_pushes (next_d + wordSize platform) rest_of_args rest_of_reps
-- ^^^ for the PUSH_APPLY_ instruction
return (push_code `appOL` (push_apply `consOL` instrs))
push_seq d [] = return (d, nilOL)
push_seq d (arg:args) = do
(push_code, sz) <- pushAtom d p arg
(final_d, more_push_code) <- push_seq (d + sz) args
return (final_d, push_code `appOL` more_push_code)
-- v. similar to CgStackery.findMatch, ToDo: merge
findPushSeq :: [ArgRep] -> (BCInstr, Int, [ArgRep])
findPushSeq (P: P: P: P: P: P: rest)
= (PUSH_APPLY_PPPPPP, 6, rest)
findPushSeq (P: P: P: P: P: rest)
= (PUSH_APPLY_PPPPP, 5, rest)
findPushSeq (P: P: P: P: rest)
= (PUSH_APPLY_PPPP, 4, rest)
findPushSeq (P: P: P: rest)
= (PUSH_APPLY_PPP, 3, rest)
findPushSeq (P: P: rest)
= (PUSH_APPLY_PP, 2, rest)
findPushSeq (P: rest)
= (PUSH_APPLY_P, 1, rest)
findPushSeq (V: rest)
= (PUSH_APPLY_V, 1, rest)
findPushSeq (N: rest)
= (PUSH_APPLY_N, 1, rest)
findPushSeq (F: rest)
= (PUSH_APPLY_F, 1, rest)
findPushSeq (D: rest)
= (PUSH_APPLY_D, 1, rest)
findPushSeq (L: rest)
= (PUSH_APPLY_L, 1, rest)
findPushSeq argReps
| any (`elem` [V16, V32, V64]) argReps
= sorry "SIMD vector operations are not available in GHCi"
findPushSeq _
= panic "GHC.StgToByteCode.findPushSeq"
-- -----------------------------------------------------------------------------
-- Case expressions
doCase
:: StackDepth
-> Sequel
-> BCEnv
-> CgStgExpr
-> Id
-> [CgStgAlt]
-> BcM BCInstrList
doCase d s p scrut bndr alts
= do
profile <- getProfile
hsc_env <- getHscEnv
let
platform = profilePlatform profile
-- Are we dealing with an unboxed tuple with a tuple return frame?
--
-- 'Simple' tuples with at most one non-void component,
-- like (# Word# #) or (# Int#, State# RealWorld #) do not have a
-- tuple return frame. This is because (# foo #) and (# foo, Void# #)
-- have the same runtime rep. We have more efficient specialized
-- return frames for the situations with one non-void element.
non_void_arg_reps = typeArgReps platform bndr_ty
ubx_tuple_frame =
(isUnboxedTupleType bndr_ty || isUnboxedSumType bndr_ty) &&
length non_void_arg_reps > 1
profiling
| Just interp <- hsc_interp hsc_env
= interpreterProfiled interp
| otherwise = False
-- Top of stack is the return itbl, as usual.
-- underneath it is the pointer to the alt_code BCO.
-- When an alt is entered, it assumes the returned value is
-- on top of the itbl; see Note [Return convention for non-tuple values]
-- for details.
ret_frame_size_b :: StackDepth
ret_frame_size_b | ubx_tuple_frame =
(if profiling then 5 else 4) * wordSize platform
| otherwise = 2 * wordSize platform
-- The stack space used to save/restore the CCCS when profiling
save_ccs_size_b | profiling &&
not ubx_tuple_frame = 2 * wordSize platform
| otherwise = 0
-- The size of the return frame info table pointer if one exists
unlifted_itbl_size_b :: StackDepth
unlifted_itbl_size_b | ubx_tuple_frame = wordSize platform
| otherwise = 0
(bndr_size, call_info, args_offsets)
| ubx_tuple_frame =
let bndr_ty = primRepCmmType platform
bndr_reps = typePrimRep (idType bndr)
(call_info, args_offsets) =
layoutNativeCall profile NativeTupleReturn 0 bndr_ty bndr_reps
in ( wordsToBytes platform (nativeCallSize call_info)
, call_info
, args_offsets
)
| otherwise = ( wordsToBytes platform (idSizeW platform bndr)
, voidTupleReturnInfo
, []
)
-- depth of stack after the return value has been pushed
d_bndr =
d + ret_frame_size_b + bndr_size
-- depth of stack after the extra info table for an unlifted return
-- has been pushed, if any. This is the stack depth at the
-- continuation.
d_alts = d + ret_frame_size_b + bndr_size + unlifted_itbl_size_b
-- Env in which to compile the alts, not including
-- any vars bound by the alts themselves
p_alts = Map.insert bndr d_bndr p
bndr_ty = idType bndr
isAlgCase = isAlgType bndr_ty
-- given an alt, return a discr and code for it.
codeAlt :: CgStgAlt -> BcM (Discr, BCInstrList)
codeAlt GenStgAlt{alt_con=DEFAULT,alt_bndrs=_,alt_rhs=rhs}
= do rhs_code <- schemeE d_alts s p_alts rhs
return (NoDiscr, rhs_code)
codeAlt alt@GenStgAlt{alt_con=_, alt_bndrs=bndrs, alt_rhs=rhs}
-- primitive or nullary constructor alt: no need to UNPACK
| null real_bndrs = do
rhs_code <- schemeE d_alts s p_alts rhs
return (my_discr alt, rhs_code)
| isUnboxedTupleType bndr_ty || isUnboxedSumType bndr_ty =
let bndr_ty = primRepCmmType platform . idPrimRepU
tuple_start = d_bndr
(call_info, args_offsets) =
layoutNativeCall profile
NativeTupleReturn
0
bndr_ty
bndrs
stack_bot = d_alts
p' = Map.insertList
[ (arg, tuple_start -
wordsToBytes platform (nativeCallSize call_info) +
offset)
| (arg, offset) <- args_offsets
, not (isZeroBitTy $ idType arg)]
p_alts
in do
rhs_code <- schemeE stack_bot s p' rhs
return (NoDiscr, rhs_code)
-- algebraic alt with some binders
| otherwise =
let (tot_wds, _ptrs_wds, args_offsets) =
mkVirtHeapOffsets profile NoHeader
(addIdReps (nonVoidIds real_bndrs))
size = WordOff tot_wds
stack_bot = d_alts + wordsToBytes platform size
-- convert offsets from Sp into offsets into the virtual stack
p' = Map.insertList
[ (arg, stack_bot - ByteOff offset)
| (NonVoid arg, offset) <- args_offsets ]
p_alts
in do
massert isAlgCase
rhs_code <- schemeE stack_bot s p' rhs
return (my_discr alt,
unitOL (UNPACK size) `appOL` rhs_code)
where
real_bndrs = filterOut isTyVar bndrs
my_discr alt = case alt_con alt of
DEFAULT -> NoDiscr {-shouldn't really happen-}
DataAlt dc
| isUnboxedTupleDataCon dc || isUnboxedSumDataCon dc
-> NoDiscr
| otherwise
-> DiscrP (fromIntegral (dataConTag dc - fIRST_TAG))
LitAlt l -> case l of
LitNumber LitNumInt i -> DiscrI (fromInteger i)
LitNumber LitNumInt8 i -> DiscrI8 (fromInteger i)
LitNumber LitNumInt16 i -> DiscrI16 (fromInteger i)
LitNumber LitNumInt32 i -> DiscrI32 (fromInteger i)
LitNumber LitNumInt64 i -> DiscrI64 (fromInteger i)
LitNumber LitNumWord w -> DiscrW (fromInteger w)
LitNumber LitNumWord8 w -> DiscrW8 (fromInteger w)
LitNumber LitNumWord16 w -> DiscrW16 (fromInteger w)
LitNumber LitNumWord32 w -> DiscrW32 (fromInteger w)
LitNumber LitNumWord64 w -> DiscrW64 (fromInteger w)
LitNumber LitNumBigNat _ -> unsupported
LitFloat r -> DiscrF (fromRational r)
LitDouble r -> DiscrD (fromRational r)
LitChar i -> DiscrI (ord i)
LitString {} -> unsupported
LitRubbish {} -> unsupported
LitNullAddr {} -> unsupported
LitLabel {} -> unsupported
where
unsupported = pprPanic "schemeE(StgCase).my_discr:" (ppr l)
maybe_ncons
| not isAlgCase = Nothing
| otherwise
= case [dc | DataAlt dc <- alt_con <$> alts] of
[] -> Nothing
(dc:_) -> Just (tyConFamilySize (dataConTyCon dc))
-- the bitmap is relative to stack depth d, i.e. before the
-- BCO, info table and return value are pushed on.
-- This bit of code is v. similar to buildLivenessMask in CgBindery,
-- except that here we build the bitmap from the known bindings of
-- things that are pointers, whereas in CgBindery the code builds the
-- bitmap from the free slots and unboxed bindings.
-- (ToDo: merge?)
--
-- NOTE [7/12/2006] bug #1013, testcase ghci/should_run/ghci002.
-- The bitmap must cover the portion of the stack up to the sequel only.
-- Previously we were building a bitmap for the whole depth (d), but we
-- really want a bitmap up to depth (d-s). This affects compilation of
-- case-of-case expressions, which is the only time we can be compiling a
-- case expression with s /= 0.
-- unboxed tuples get two more words, the second is a pointer (tuple_bco)
(extra_pointers, extra_slots)
| ubx_tuple_frame && profiling = ([1], 3) -- call_info, tuple_BCO, CCCS
| ubx_tuple_frame = ([1], 2) -- call_info, tuple_BCO
| otherwise = ([], 0)
bitmap_size :: WordOff
bitmap_size = fromIntegral extra_slots +
bytesToWords platform (d - s)
bitmap_size' :: Int
bitmap_size' = fromIntegral bitmap_size
pointers =
extra_pointers ++
filter (< bitmap_size') (map (+extra_slots) rel_slots)
where
-- NB: unboxed tuple cases bind the scrut binder to the same offset
-- as one of the alt binders, so we have to remove any duplicates here:
-- 'toAscList' takes care of sorting the result, which was previously done after the application of 'filter'.
rel_slots = IntSet.toAscList $ IntSet.fromList $ Map.elems $ Map.mapMaybeWithKey spread p
spread id offset | isUnboxedTupleType (idType id) ||
isUnboxedSumType (idType id) = Nothing
| isFollowableArg (idArgRep platform id) = Just (fromIntegral rel_offset)
| otherwise = Nothing
where rel_offset = bytesToWords platform (d - offset)
bitmap = intsToReverseBitmap platform bitmap_size' pointers
alt_stuff <- mapM codeAlt alts
alt_final0 <- mkMultiBranch maybe_ncons alt_stuff
let alt_final
| ubx_tuple_frame = SLIDE 0 2 `consOL` alt_final0
| otherwise = alt_final0
let
alt_bco_name = getName bndr
alt_bco = mkProtoBCO platform alt_bco_name alt_final (Left alts)
0{-no arity-} bitmap_size bitmap True{-is alts-}
scrut_code <- schemeE (d + ret_frame_size_b + save_ccs_size_b)
(d + ret_frame_size_b + save_ccs_size_b)
p scrut
alt_bco' <- emitBc alt_bco
if ubx_tuple_frame
then do tuple_bco <- emitBc (tupleBCO platform call_info args_offsets)
return (PUSH_ALTS_TUPLE alt_bco' call_info tuple_bco
`consOL` scrut_code)
else let scrut_rep = case non_void_arg_reps of
[] -> V
[rep] -> rep
_ -> panic "schemeE(StgCase).push_alts"
in return (PUSH_ALTS alt_bco' scrut_rep `consOL` scrut_code)
-- -----------------------------------------------------------------------------
-- Deal with tuples
-- The native calling convention uses registers for tuples, but in the
-- bytecode interpreter, all values live on the stack.
layoutNativeCall :: Profile
-> NativeCallType
-> ByteOff
-> (a -> CmmType)
-> [a]
-> ( NativeCallInfo -- See Note [GHCi TupleInfo]
, [(a, ByteOff)] -- argument, offset on stack
)
layoutNativeCall profile call_type start_off arg_ty reps =
let platform = profilePlatform profile
(orig_stk_bytes, pos) = assignArgumentsPos profile
0
NativeReturn
arg_ty
reps
-- keep the stack parameters in the same place
orig_stk_params = [(x, fromIntegral off) | (x, StackParam off) <- pos]
-- sort the register parameters by register and add them to the stack
regs_order :: Map.Map GlobalReg Int
regs_order = Map.fromList $ zip (allArgRegsCover platform) [0..]
reg_order :: GlobalReg -> (Int, GlobalReg)
reg_order reg | Just n <- Map.lookup reg regs_order = (n, reg)
-- if we don't have a position for a FloatReg then they must be passed
-- in the equivalent DoubleReg
reg_order (FloatReg n) = reg_order (DoubleReg n)
-- one-tuples can be passed in other registers, but then we don't need
-- to care about the order
reg_order reg = (0, reg)
(regs, reg_params)
= unzip $ sortBy (comparing fst)
[(reg_order reg, x) | (x, RegisterParam reg) <- pos]
(new_stk_bytes, new_stk_params) = assignStack platform
orig_stk_bytes
arg_ty
reg_params
regs_set = mkRegSet (map snd regs)
get_byte_off (x, StackParam y) = (x, fromIntegral y)
get_byte_off _ =
panic "GHC.StgToByteCode.layoutTuple get_byte_off"
in ( NativeCallInfo
{ nativeCallType = call_type
, nativeCallSize = bytesToWords platform (ByteOff new_stk_bytes)
, nativeCallRegs = regs_set
, nativeCallStackSpillSize = bytesToWords platform
(ByteOff orig_stk_bytes)
}
, sortBy (comparing snd) $
map (\(x, o) -> (x, o + start_off))
(orig_stk_params ++ map get_byte_off new_stk_params)
)
{- Note [Return convention for non-tuple values]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RETURN and ENTER instructions are used to return values. RETURN directly
returns the value at the top of the stack while ENTER evaluates it first (so
RETURN is only used when the result is already known to be evaluated), but the
end result is the same: control returns to the enclosing stack frame with the
result at the top of the stack.
The PUSH_ALTS instruction pushes a two-word stack frame that receives a single
lifted value. Its payload is a BCO that is executed when control returns, with
the stack set up as if a RETURN instruction had just been executed: the returned
value is at the top of the stack, and beneath it is the two-word frame being
returned to. It is the continuation BCO’s job to pop its own frame off the
stack, so the simplest possible continuation consists of two instructions:
SLIDE 1 2 -- pop the return frame off the stack, keeping the returned value
RETURN P -- return the returned value to our caller
RETURN and PUSH_ALTS are not really instructions but are in fact representation-
polymorphic *families* of instructions indexed by ArgRep. ENTER, however, is a
single real instruction, since it is only used to return lifted values, which
are always pointers.
The RETURN, ENTER, and PUSH_ALTS instructions are only used when the returned
value has nullary or unary representation. Returning/receiving an unboxed
tuple (or, indirectly, an unboxed sum, since unboxed sums have been desugared to
unboxed tuples by Unarise) containing two or more results uses the special
RETURN_TUPLE/PUSH_ALTS_TUPLE instructions, which use a different return
convention. See Note [unboxed tuple bytecodes and tuple_BCO] for details.
Note [unboxed tuple bytecodes and tuple_BCO]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have the bytecode instructions RETURN_TUPLE and PUSH_ALTS_TUPLE to
return and receive arbitrary unboxed tuples, respectively. These
instructions use the helper data tuple_BCO and call_info.
The helper data is used to convert tuples between GHCs native calling
convention (object code), which uses stack and registers, and the bytecode
calling convention, which only uses the stack. See Note [GHCi TupleInfo]
for more details.
Returning a tuple
=================
Bytecode that returns a tuple first pushes all the tuple fields followed
by the appropriate call_info and tuple_BCO onto the stack. It then
executes the RETURN_TUPLE instruction, which causes the interpreter
to push stg_ret_t_info to the top of the stack. The stack (growing down)
then looks as follows:
...
next_frame
tuple_field_1
tuple_field_2
...
tuple_field_n
call_info
tuple_BCO
stg_ret_t_info <- Sp
If next_frame is bytecode, the interpreter will start executing it. If
it's object code, the interpreter jumps back to the scheduler, which in
turn jumps to stg_ret_t. stg_ret_t converts the tuple to the native
calling convention using the description in call_info, and then jumps
to next_frame.
Receiving a tuple
=================
Bytecode that receives a tuple uses the PUSH_ALTS_TUPLE instruction to
push a continuation, followed by jumping to the code that produces the
tuple. The PUSH_ALTS_TUPLE instuction contains three pieces of data:
* cont_BCO: the continuation that receives the tuple
* call_info: see below
* tuple_BCO: see below
The interpreter pushes these onto the stack when the PUSH_ALTS_TUPLE
instruction is executed, followed by stg_ctoi_tN_info, with N depending
on the number of stack words used by the tuple in the GHC native calling
convention. N is derived from call_info.
For example if we expect a tuple with three words on the stack, the stack
looks as follows after PUSH_ALTS_TUPLE:
...
next_frame
cont_free_var_1
cont_free_var_2
...
cont_free_var_n
call_info
tuple_BCO
cont_BCO
stg_ctoi_t3_info <- Sp
If the tuple is returned by object code, stg_ctoi_t3 will deal with
adjusting the stack pointer and converting the tuple to the bytecode
calling convention. See Note [GHCi unboxed tuples stack spills] for more
details.
The tuple_BCO
=============
The tuple_BCO is a helper bytecode object. Its main purpose is describing
the contents of the stack frame containing the tuple for the storage
manager. It contains only instructions to immediately return the tuple
that is already on the stack.
The call_info word
===================
The call_info word describes the stack and STG register (e.g. R1..R6,
D1..D6) usage for the tuple. call_info contains enough information to
convert the tuple between the stack-only bytecode and stack+registers
GHC native calling conventions.
See Note [GHCi and native call registers] for more details of how the
data is packed in a single word.
-}
tupleBCO :: Platform -> NativeCallInfo -> [(PrimRep, ByteOff)] -> [FFIInfo] -> ProtoBCO Name
tupleBCO platform args_info args =
mkProtoBCO platform invented_name body_code (Left [])
0{-no arity-} bitmap_size bitmap False{-is alts-}
where
{-
The tuple BCO is never referred to by name, so we can get away
with using a fake name here. We will need to change this if we want
to save some memory by sharing the BCO between places that have
the same tuple shape
-}
invented_name = mkSystemVarName (mkPseudoUniqueE 0) (fsLit "tuple")
-- the first word in the frame is the call_info word,
-- which is not a pointer
nptrs_prefix = 1
(bitmap_size, bitmap) = mkStackBitmap platform nptrs_prefix args_info args
body_code = mkSlideW 0 1 -- pop frame header
`snocOL` RETURN_TUPLE -- and add it again
primCallBCO :: Platform -> NativeCallInfo -> [(PrimRep, ByteOff)] -> [FFIInfo] -> ProtoBCO Name
primCallBCO platform args_info args =
mkProtoBCO platform invented_name body_code (Left [])
0{-no arity-} bitmap_size bitmap False{-is alts-}
where
{-
The primcall BCO is never referred to by name, so we can get away
with using a fake name here. We will need to change this if we want
to save some memory by sharing the BCO between places that have
the same tuple shape
-}
invented_name = mkSystemVarName (mkPseudoUniqueE 0) (fsLit "primcall")
-- The first two words in the frame (after the BCO) are the call_info word
-- and the pointer to the Cmm function being called. Neither of these is a
-- pointer that should be followed by the garbage collector.
nptrs_prefix = 2
(bitmap_size, bitmap) = mkStackBitmap platform nptrs_prefix args_info args
-- if the primcall BCO is ever run it's a bug, since the BCO should only
-- be pushed immediately before running the PRIMCALL bytecode instruction,
-- which immediately leaves the interpreter to jump to the stg_primcall_info
-- Cmm function
body_code = unitOL CASEFAIL
-- | Builds a bitmap for a stack layout with a nonpointer prefix followed by
-- some number of arguments.
mkStackBitmap
:: Platform
-> WordOff
-- ^ The number of nonpointer words that prefix the arguments.
-> NativeCallInfo
-> [(PrimRep, ByteOff)]
-- ^ The stack layout of the arguments, where each offset is relative to the
-- /bottom/ of the stack space they occupy. Their offsets must be word-aligned,
-- and the list must be sorted in order of ascending offset (i.e. bottom to top).
-> (WordOff, [StgWord])
mkStackBitmap platform nptrs_prefix args_info args
= (bitmap_size, bitmap)
where
bitmap_size = nptrs_prefix + arg_bottom
bitmap = intsToReverseBitmap platform (fromIntegral bitmap_size) ptr_offsets
arg_bottom = nativeCallSize args_info
ptr_offsets = reverse $ map (fromIntegral . convert_arg_offset)
$ mapMaybe get_ptr_offset args
get_ptr_offset :: (PrimRep, ByteOff) -> Maybe ByteOff
get_ptr_offset (rep, byte_offset)
| isFollowableArg (toArgRep platform rep) = Just byte_offset
| otherwise = Nothing
convert_arg_offset :: ByteOff -> WordOff
convert_arg_offset arg_offset =
-- The argument offsets are relative to `arg_bottom`, but
-- `intsToReverseBitmap` expects offsets from the top, so we need to flip
-- them around.
nptrs_prefix + (arg_bottom - bytesToWords platform arg_offset)
-- -----------------------------------------------------------------------------
-- Deal with a primitive call to native code.
generatePrimCall
:: StackDepth
-> Sequel
-> BCEnv
-> CLabelString -- where to call
-> Maybe Unit
-> Type
-> [StgArg] -- args (atoms)
-> BcM BCInstrList
generatePrimCall d s p target _mb_unit _result_ty args
= do
profile <- getProfile
let
platform = profilePlatform profile
non_void VoidRep = False
non_void _ = True
nv_args :: [StgArg]
nv_args = filter (non_void . stgArgRep1) args
(args_info, args_offsets) =
layoutNativeCall profile
NativePrimCall
0
(primRepCmmType platform . stgArgRepU)
nv_args
prim_args_offsets = mapFst stgArgRepU args_offsets
shifted_args_offsets = mapSnd (+ d) args_offsets
push_target = PUSH_UBX (LitLabel target Nothing IsFunction) 1
push_info = PUSH_UBX (mkNativeCallInfoLit platform args_info) 1
{-
compute size to move payload (without stg_primcall_info header)
size of arguments plus three words for:
- function pointer to the target
- call_info word
- BCO to describe the stack frame
-}
szb = wordsToBytes platform (nativeCallSize args_info + 3)
go _ pushes [] = return (reverse pushes)
go !dd pushes ((a, off):cs) = do (push, szb) <- pushAtom dd p a
massert (off == dd + szb)
go (dd + szb) (push:pushes) cs
push_args <- go d [] shifted_args_offsets
args_bco <- emitBc (primCallBCO platform args_info prim_args_offsets)
return $ mconcat push_args `appOL`
(push_target `consOL`
push_info `consOL`
PUSH_BCO args_bco `consOL`
(mkSlideB platform szb (d - s) `appOL` unitOL PRIMCALL))
-- -----------------------------------------------------------------------------
-- Deal with a CCall.
-- Taggedly push the args onto the stack R->L,
-- deferencing ForeignObj#s and adjusting addrs to point to
-- payloads in Ptr/Byte arrays. Then, generate the marshalling
-- (machine) code for the ccall, and create bytecodes to call that and
-- then return in the right way.
generateCCall
:: StackDepth
-> Sequel
-> BCEnv
-> CCallSpec -- where to call
-> Type
-> [StgArg] -- args (atoms)
-> BcM BCInstrList
generateCCall d0 s p (CCallSpec target PrimCallConv _) result_ty args
| (StaticTarget _ label mb_unit _) <- target
= generatePrimCall d0 s p label mb_unit result_ty args
| otherwise
= panic "GHC.StgToByteCode.generateCCall: primcall convention only supports static targets"
generateCCall d0 s p (CCallSpec target cconv safety) result_ty args
= do
profile <- getProfile
let
args_r_to_l = reverse args
platform = profilePlatform profile
-- useful constants
addr_size_b :: ByteOff
addr_size_b = wordSize platform
arrayish_rep_hdr_size :: TyCon -> Maybe Int
arrayish_rep_hdr_size t
| t == arrayPrimTyCon || t == mutableArrayPrimTyCon
= Just (arrPtrsHdrSize profile)
| t == smallArrayPrimTyCon || t == smallMutableArrayPrimTyCon
= Just (smallArrPtrsHdrSize profile)
| t == byteArrayPrimTyCon || t == mutableByteArrayPrimTyCon
= Just (arrWordsHdrSize profile)
| otherwise
= Nothing
-- Get the args on the stack, with tags and suitably
-- dereferenced for the CCall. For each arg, return the
-- depth to the first word of the bits for that arg, and the
-- ArgRep of what was actually pushed.
pargs
:: ByteOff -> [StgArg] -> BcM [(BCInstrList, PrimOrVoidRep)]
pargs _ [] = return []
pargs d (aa@(StgVarArg a):az)
| Just t <- tyConAppTyCon_maybe (idType a)
, Just hdr_sz <- arrayish_rep_hdr_size t
-- Do magic for Ptr/Byte arrays. Push a ptr to the array on
-- the stack but then advance it over the headers, so as to
-- point to the payload.
= do rest <- pargs (d + addr_size_b) az
(push_fo, _) <- pushAtom d p aa
-- The ptr points at the header. Advance it over the
-- header and then pretend this is an Addr#.
let code = push_fo `snocOL` SWIZZLE 0 (fromIntegral hdr_sz)
return ((code, NVRep AddrRep) : rest)
pargs d (aa:az) = do (code_a, sz_a) <- pushAtom d p aa
rest <- pargs (d + sz_a) az
return ((code_a, stgArgRep1 aa) : rest)
code_n_reps <- pargs d0 args_r_to_l
let
(pushs_arg, a_reps_pushed_r_to_l) = unzip code_n_reps
a_reps_sizeW = sum (map (repSizeWords platform) a_reps_pushed_r_to_l)
push_args = concatOL pushs_arg
!d_after_args = d0 + wordsToBytes platform a_reps_sizeW
a_reps_pushed_RAW
| VoidRep:xs <- a_reps_pushed_r_to_l
= reverse xs
| otherwise
= panic "GHC.StgToByteCode.generateCCall: missing or invalid World token?"
-- Now: a_reps_pushed_RAW are the reps which are actually on the stack.
-- push_args is the code to do that.
-- d_after_args is the stack depth once the args are on.
-- Get the result rep.
r_rep = maybe_getCCallReturnRep result_ty
{-
Because the Haskell stack grows down, the a_reps refer to
lowest to highest addresses in that order. The args for the call
are on the stack. Now push an unboxed Addr# indicating
the C function to call. Then push a dummy placeholder for the
result. Finally, emit a CCALL insn with an offset pointing to the
Addr# just pushed, and a literal field holding the mallocville
address of the piece of marshalling code we generate.
So, just prior to the CCALL insn, the stack looks like this
(growing down, as usual):
<arg_n>
...
<arg_1>
Addr# address_of_C_fn
<placeholder-for-result#> (must be an unboxed type)
The interpreter then calls the marshal code mentioned
in the CCALL insn, passing it (& <placeholder-for-result#>),
that is, the addr of the topmost word in the stack.
When this returns, the placeholder will have been
filled in. The placeholder is slid down to the sequel
depth, and we RETURN.
This arrangement makes it simple to do f-i-dynamic since the Addr#
value is the first arg anyway.
The marshalling code is generated specifically for this
call site, and so knows exactly the (Haskell) stack
offsets of the args, fn address and placeholder. It
copies the args to the C stack, calls the stacked addr,
and parks the result back in the placeholder. The interpreter
calls it as a normal C call, assuming it has a signature
void marshal_code ( StgWord* ptr_to_top_of_stack )
-}
-- resolve static address
maybe_static_target :: Maybe Literal
maybe_static_target =
case target of
DynamicTarget -> Nothing
StaticTarget _ _ _ False ->
panic "generateCCall: unexpected FFI value import"
StaticTarget _ target _ True ->
Just (LitLabel target mb_size IsFunction)
where
mb_size
| OSMinGW32 <- platformOS platform
, StdCallConv <- cconv
= Just (fromIntegral a_reps_sizeW * platformWordSizeInBytes platform)
| otherwise
= Nothing
let
is_static = isJust maybe_static_target
-- Get the arg reps, zapping the leading Addr# in the dynamic case
a_reps -- | trace (showSDoc (ppr a_reps_pushed_RAW)) False = error "???"
| is_static = a_reps_pushed_RAW
| _:xs <- a_reps_pushed_RAW = xs
| otherwise = panic "GHC.StgToByteCode.generateCCall: dyn with no args"
-- push the Addr#
(push_Addr, d_after_Addr)
| Just machlabel <- maybe_static_target
= (toOL [PUSH_UBX machlabel 1], d_after_args + addr_size_b)
| otherwise -- is already on the stack
= (nilOL, d_after_args)
-- Push the return placeholder. For a call returning nothing,
-- this is a V (tag).
r_sizeW = repSizeWords platform r_rep
d_after_r = d_after_Addr + wordsToBytes platform r_sizeW
push_r = case r_rep of
VoidRep -> nilOL
NVRep r -> unitOL (PUSH_UBX (mkDummyLiteral platform r) r_sizeW)
-- generate the marshalling code we're going to call
-- Offset of the next stack frame down the stack. The CCALL
-- instruction needs to describe the chunk of stack containing
-- the ccall args to the GC, so it needs to know how large it
-- is. See comment in Interpreter.c with the CCALL instruction.
stk_offset = bytesToWords platform (d_after_r - s)
conv = case cconv of
CCallConv -> FFICCall
CApiConv -> FFICCall
StdCallConv -> FFIStdCall
_ -> panic "GHC.StgToByteCode: unexpected calling convention"
-- the only difference in libffi mode is that we prepare a cif
-- describing the call type by calling libffi, and we attach the
-- address of this to the CCALL instruction.
let ffires = primRepToFFIType platform r_rep
ffiargs = map (primRepToFFIType platform) a_reps
interp <- hscInterp <$> getHscEnv
token <- ioToBc $ interpCmd interp (PrepFFI conv ffiargs ffires)
recordFFIBc token
let
-- do the call
do_call = unitOL (CCALL stk_offset token flags)
where flags = case safety of
PlaySafe -> 0x0
PlayInterruptible -> 0x1
PlayRisky -> 0x2
-- slide and return
d_after_r_min_s = bytesToWords platform (d_after_r - s)
wrapup = mkSlideW r_sizeW (d_after_r_min_s - r_sizeW)
`snocOL` RETURN (toArgRepOrV platform r_rep)
--trace (show (arg1_offW, args_offW , (map argRepSizeW a_reps) )) $
return (
push_args `appOL`
push_Addr `appOL` push_r `appOL` do_call `appOL` wrapup
)
primRepToFFIType :: Platform -> PrimOrVoidRep -> FFIType
primRepToFFIType _ VoidRep = FFIVoid
primRepToFFIType platform (NVRep r)
= case r of
IntRep -> signed_word
WordRep -> unsigned_word
Int8Rep -> FFISInt8
Word8Rep -> FFIUInt8
Int16Rep -> FFISInt16
Word16Rep -> FFIUInt16
Int32Rep -> FFISInt32
Word32Rep -> FFIUInt32
Int64Rep -> FFISInt64
Word64Rep -> FFIUInt64
AddrRep -> FFIPointer
FloatRep -> FFIFloat
DoubleRep -> FFIDouble
BoxedRep _ -> FFIPointer
_ -> pprPanic "primRepToFFIType" (ppr r)
where
(signed_word, unsigned_word) = case platformWordSize platform of
PW4 -> (FFISInt32, FFIUInt32)
PW8 -> (FFISInt64, FFIUInt64)
-- Make a dummy literal, to be used as a placeholder for FFI return
-- values on the stack.
mkDummyLiteral :: Platform -> PrimRep -> Literal
mkDummyLiteral platform pr
= case pr of
IntRep -> mkLitInt platform 0
WordRep -> mkLitWord platform 0
Int8Rep -> mkLitInt8 0
Word8Rep -> mkLitWord8 0
Int16Rep -> mkLitInt16 0
Word16Rep -> mkLitWord16 0
Int32Rep -> mkLitInt32 0
Word32Rep -> mkLitWord32 0
Int64Rep -> mkLitInt64 0
Word64Rep -> mkLitWord64 0
AddrRep -> LitNullAddr
DoubleRep -> LitDouble 0
FloatRep -> LitFloat 0
BoxedRep _ -> LitNullAddr
_ -> pprPanic "mkDummyLiteral" (ppr pr)
-- Convert (eg)
-- GHC.Prim.Char# -> GHC.Prim.State# GHC.Prim.RealWorld
-- -> (# GHC.Prim.State# GHC.Prim.RealWorld, GHC.Prim.Int# #)
--
-- to NVRep IntRep
-- and check that an unboxed pair is returned wherein the first arg is V'd.
--
-- Alternatively, for call-targets returning nothing, convert
--
-- GHC.Prim.Char# -> GHC.Prim.State# GHC.Prim.RealWorld
-- -> (# GHC.Prim.State# GHC.Prim.RealWorld #)
--
-- to VoidRep
maybe_getCCallReturnRep :: Type -> PrimOrVoidRep
maybe_getCCallReturnRep fn_ty
= let
(_a_tys, r_ty) = splitFunTys (dropForAlls fn_ty)
in
case typePrimRep r_ty of
[] -> VoidRep
[rep] -> NVRep rep
-- if it was, it would be impossible to create a
-- valid return value placeholder on the stack
_ -> pprPanic "maybe_getCCallReturn: can't handle:"
(pprType fn_ty)
maybe_is_tagToEnum_call :: CgStgExpr -> Maybe (StgArg, [Name])
-- Detect and extract relevant info for the tagToEnum kludge.
maybe_is_tagToEnum_call (StgOpApp (StgPrimOp TagToEnumOp) args t)
| [v] <- args
= Just (v, extract_constr_Names t)
| otherwise
= pprPanic "StgToByteCode: tagToEnum#"
$ text "Expected exactly one arg, but actual args are:" <+> ppr args
where
extract_constr_Names ty
| rep_ty <- unwrapType ty
, Just tyc <- tyConAppTyCon_maybe rep_ty
, isDataTyCon tyc
= map (getName . dataConWorkId) (tyConDataCons tyc)
-- NOTE: use the worker name, not the source name of
-- the DataCon. See "GHC.Core.DataCon" for details.
| otherwise
= pprPanic "maybe_is_tagToEnum_call.extract_constr_Ids" (ppr ty)
maybe_is_tagToEnum_call _ = Nothing
{- -----------------------------------------------------------------------------
Note [Implementing tagToEnum#]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(implement_tagToId arg names) compiles code which takes an argument
'arg', (call it i), and enters the i'th closure in the supplied list
as a consequence. The [Name] is a list of the constructors of this
(enumeration) type.
The code we generate is this:
push arg
TESTEQ_I 0 L1
PUSH_G <lbl for first data con>
JMP L_Exit
L1: TESTEQ_I 1 L2
PUSH_G <lbl for second data con>
JMP L_Exit
...etc...
Ln: TESTEQ_I n L_fail
PUSH_G <lbl for last data con>
JMP L_Exit
L_fail: CASEFAIL
L_exit: SLIDE 1 n
ENTER
-}
implement_tagToId
:: StackDepth
-> Sequel
-> BCEnv
-> StgArg
-> [Name]
-> BcM BCInstrList
-- See Note [Implementing tagToEnum#]
implement_tagToId d s p arg names
= assert (notNull names) $
do (push_arg, arg_bytes) <- pushAtom d p arg
labels <- getLabelsBc (strictGenericLength names)
label_fail <- getLabelBc
label_exit <- getLabelBc
dflags <- getDynFlags
let infos = zip4 labels (tail labels ++ [label_fail])
[0 ..] names
platform = targetPlatform dflags
steps = map (mkStep label_exit) infos
slide_ws = bytesToWords platform (d - s + arg_bytes)
return (push_arg
`appOL` concatOL steps
`appOL` toOL [ LABEL label_fail, CASEFAIL,
LABEL label_exit ]
`appOL` mkSlideW 1 slide_ws
`appOL` unitOL ENTER)
where
mkStep l_exit (my_label, next_label, n, name_for_n)
= toOL [LABEL my_label,
TESTEQ_I n next_label,
PUSH_G name_for_n,
JMP l_exit]
-- -----------------------------------------------------------------------------
-- pushAtom
-- Push an atom onto the stack, returning suitable code & number of
-- stack words used.
--
-- The env p must map each variable to the highest- numbered stack
-- slot for it. For example, if the stack has depth 4 and we
-- tagged-ly push (v :: Int#) on it, the value will be in stack[4],
-- the tag in stack[5], the stack will have depth 6, and p must map v
-- to 5 and not to 4. Stack locations are numbered from zero, so a
-- depth 6 stack has valid words 0 .. 5.
pushAtom
:: StackDepth -> BCEnv -> StgArg -> BcM (BCInstrList, ByteOff)
-- See Note [Empty case alternatives] in GHC.Core
-- and Note [Bottoming expressions] in GHC.Core.Utils:
-- The scrutinee of an empty case evaluates to bottom
pushAtom d p (StgVarArg var)
| [] <- typePrimRep (idType var)
= return (nilOL, 0)
| isFCallId var
= pprPanic "pushAtom: shouldn't get an FCallId here" (ppr var)
| Just primop <- isPrimOpId_maybe var
= do
platform <- targetPlatform <$> getDynFlags
return (unitOL (PUSH_PRIMOP primop), wordSize platform)
| Just d_v <- lookupBCEnv_maybe var p -- var is a local variable
= do platform <- targetPlatform <$> getDynFlags
let !szb = idSizeCon platform var
with_instr :: (ByteOff -> BCInstr) -> BcM (OrdList BCInstr, ByteOff)
with_instr instr = do
let !off_b = d - d_v
return (unitOL (instr off_b), wordSize platform)
case szb of
1 -> with_instr PUSH8_W
2 -> with_instr PUSH16_W
4 -> with_instr PUSH32_W
_ -> do
let !szw = bytesToWords platform szb
!off_w = bytesToWords platform (d - d_v) + szw - 1
return (toOL (genericReplicate szw (PUSH_L off_w)),
wordsToBytes platform szw)
-- d - d_v offset from TOS to the first slot of the object
--
-- d - d_v + sz - 1 offset from the TOS of the last slot of the object
--
-- Having found the last slot, we proceed to copy the right number of
-- slots on to the top of the stack.
| otherwise -- var must be a global variable
= do platform <- targetPlatform <$> getDynFlags
let !szb = idSizeCon platform var
massert (szb == wordSize platform)
-- PUSH_G doesn't tag constructors. So we use PACK here
-- if we are dealing with nullary constructor.
case isDataConWorkId_maybe var of
Just con -> do
massert (isNullaryRepDataCon con)
return (unitOL (PACK con 0), szb)
Nothing
-- see Note [Generating code for top-level string literal bindings]
| isUnliftedType (idType var) -> do
massert (idType var `eqType` addrPrimTy)
return (unitOL (PUSH_ADDR (getName var)), szb)
| otherwise -> do
return (unitOL (PUSH_G (getName var)), szb)
pushAtom _ _ (StgLitArg lit) = pushLiteral True lit
pushLiteral :: Bool -> Literal -> BcM (BCInstrList, ByteOff)
pushLiteral padded lit =
do
platform <- targetPlatform <$> getDynFlags
let code :: PrimRep -> BcM (BCInstrList, ByteOff)
code rep =
return (padding_instr `snocOL` instr, size_bytes + padding_bytes)
where
size_bytes = ByteOff $ primRepSizeB platform rep
-- Here we handle the non-word-width cases specifically since we
-- must emit different bytecode for them.
round_to_words (ByteOff bytes) =
ByteOff (roundUpToWords platform bytes)
padding_bytes
| padded = round_to_words size_bytes - size_bytes
| otherwise = 0
(padding_instr, _) = pushPadding padding_bytes
instr =
case size_bytes of
1 -> PUSH_UBX8 lit
2 -> PUSH_UBX16 lit
4 -> PUSH_UBX32 lit
_ -> PUSH_UBX lit (bytesToWords platform size_bytes)
case lit of
LitLabel {} -> code AddrRep
LitFloat {} -> code FloatRep
LitDouble {} -> code DoubleRep
LitChar {} -> code WordRep
LitNullAddr -> code AddrRep
LitString {} -> code AddrRep
LitRubbish _ rep-> case runtimeRepPrimRep (text "pushLiteral") rep of
[pr] -> code pr
_ -> pprPanic "pushLiteral" (ppr lit)
LitNumber nt _ -> case nt of
LitNumInt -> code IntRep
LitNumWord -> code WordRep
LitNumInt8 -> code Int8Rep
LitNumWord8 -> code Word8Rep
LitNumInt16 -> code Int16Rep
LitNumWord16 -> code Word16Rep
LitNumInt32 -> code Int32Rep
LitNumWord32 -> code Word32Rep
LitNumInt64 -> code Int64Rep
LitNumWord64 -> code Word64Rep
-- No LitNumBigNat should be left by the time this is called. CorePrep
-- should have converted them all to a real core representation.
LitNumBigNat -> panic "pushAtom: LitNumBigNat"
-- | Push an atom for constructor (i.e., PACK instruction) onto the stack.
-- This is slightly different to @pushAtom@ due to the fact that we allow
-- packing constructor fields. See also @mkConAppCode@ and @pushPadding@.
pushConstrAtom
:: StackDepth -> BCEnv -> StgArg -> BcM (BCInstrList, ByteOff)
pushConstrAtom _ _ (StgLitArg lit) = pushLiteral False lit
pushConstrAtom d p va@(StgVarArg v)
| Just d_v <- lookupBCEnv_maybe v p = do -- v is a local variable
platform <- targetPlatform <$> getDynFlags
let !szb = idSizeCon platform v
done instr = do
let !off = d - d_v
return (unitOL (instr off), szb)
case szb of
1 -> done PUSH8
2 -> done PUSH16
4 -> done PUSH32
_ -> pushAtom d p va
pushConstrAtom d p expr = pushAtom d p expr
pushPadding :: ByteOff -> (BCInstrList, ByteOff)
pushPadding (ByteOff n) = go n (nilOL, 0)
where
go n acc@(!instrs, !off) = case n of
0 -> acc
1 -> (instrs `mappend` unitOL PUSH_PAD8, off + 1)
2 -> (instrs `mappend` unitOL PUSH_PAD16, off + 2)
3 -> go 1 (go 2 acc)
4 -> (instrs `mappend` unitOL PUSH_PAD32, off + 4)
_ -> go (n - 4) (go 4 acc)
-- -----------------------------------------------------------------------------
-- Given a bunch of alts code and their discrs, do the donkey work
-- of making a multiway branch using a switch tree.
-- What a load of hassle!
mkMultiBranch :: Maybe Int -- # datacons in tycon, if alg alt
-- a hint; generates better code
-- Nothing is always safe
-> [(Discr, BCInstrList)]
-> BcM BCInstrList
mkMultiBranch maybe_ncons raw_ways = do
lbl_default <- getLabelBc
let
mkTree :: [(Discr, BCInstrList)] -> Discr -> Discr -> BcM BCInstrList
mkTree [] _range_lo _range_hi = return (unitOL (JMP lbl_default))
-- shouldn't happen?
mkTree [val] range_lo range_hi
| range_lo == range_hi
= return (snd val)
| null defaults -- Note [CASEFAIL]
= do lbl <- getLabelBc
return (testEQ (fst val) lbl
`consOL` (snd val
`appOL` (LABEL lbl `consOL` unitOL CASEFAIL)))
| otherwise
= return (testEQ (fst val) lbl_default `consOL` snd val)
-- Note [CASEFAIL]
-- ~~~~~~~~~~~~~~~
-- It may be that this case has no default
-- branch, but the alternatives are not exhaustive - this
-- happens for GADT cases for example, where the types
-- prove that certain branches are impossible. We could
-- just assume that the other cases won't occur, but if
-- this assumption was wrong (because of a bug in GHC)
-- then the result would be a segfault. So instead we
-- emit an explicit test and a CASEFAIL instruction that
-- causes the interpreter to barf() if it is ever
-- executed.
mkTree vals range_lo range_hi
= let n = length vals `div` 2
(vals_lo, vals_hi) = splitAt n vals
v_mid = fst (head vals_hi)
in do
label_geq <- getLabelBc
code_lo <- mkTree vals_lo range_lo (dec v_mid)
code_hi <- mkTree vals_hi v_mid range_hi
return (testLT v_mid label_geq
`consOL` (code_lo
`appOL` unitOL (LABEL label_geq)
`appOL` code_hi))
the_default
= case defaults of
[] -> nilOL
[(_, def)] -> LABEL lbl_default `consOL` def
_ -> panic "mkMultiBranch/the_default"
instrs <- mkTree notd_ways init_lo init_hi
return (instrs `appOL` the_default)
where
(defaults, not_defaults) = partition (isNoDiscr.fst) raw_ways
notd_ways = sortBy (comparing fst) not_defaults
testLT (DiscrI i) fail_label = TESTLT_I i fail_label
testLT (DiscrI8 i) fail_label = TESTLT_I8 (fromIntegral i) fail_label
testLT (DiscrI16 i) fail_label = TESTLT_I16 (fromIntegral i) fail_label
testLT (DiscrI32 i) fail_label = TESTLT_I32 (fromIntegral i) fail_label
testLT (DiscrI64 i) fail_label = TESTLT_I64 (fromIntegral i) fail_label
testLT (DiscrW i) fail_label = TESTLT_W i fail_label
testLT (DiscrW8 i) fail_label = TESTLT_W8 (fromIntegral i) fail_label
testLT (DiscrW16 i) fail_label = TESTLT_W16 (fromIntegral i) fail_label
testLT (DiscrW32 i) fail_label = TESTLT_W32 (fromIntegral i) fail_label
testLT (DiscrW64 i) fail_label = TESTLT_W64 (fromIntegral i) fail_label
testLT (DiscrF i) fail_label = TESTLT_F i fail_label
testLT (DiscrD i) fail_label = TESTLT_D i fail_label
testLT (DiscrP i) fail_label = TESTLT_P i fail_label
testLT NoDiscr _ = panic "mkMultiBranch NoDiscr"
testEQ (DiscrI i) fail_label = TESTEQ_I i fail_label
testEQ (DiscrI8 i) fail_label = TESTEQ_I8 (fromIntegral i) fail_label
testEQ (DiscrI16 i) fail_label = TESTEQ_I16 (fromIntegral i) fail_label
testEQ (DiscrI32 i) fail_label = TESTEQ_I32 (fromIntegral i) fail_label
testEQ (DiscrI64 i) fail_label = TESTEQ_I64 (fromIntegral i) fail_label
testEQ (DiscrW i) fail_label = TESTEQ_W i fail_label
testEQ (DiscrW8 i) fail_label = TESTEQ_W8 (fromIntegral i) fail_label
testEQ (DiscrW16 i) fail_label = TESTEQ_W16 (fromIntegral i) fail_label
testEQ (DiscrW32 i) fail_label = TESTEQ_W32 (fromIntegral i) fail_label
testEQ (DiscrW64 i) fail_label = TESTEQ_W64 (fromIntegral i) fail_label
testEQ (DiscrF i) fail_label = TESTEQ_F i fail_label
testEQ (DiscrD i) fail_label = TESTEQ_D i fail_label
testEQ (DiscrP i) fail_label = TESTEQ_P i fail_label
testEQ NoDiscr _ = panic "mkMultiBranch NoDiscr"
-- None of these will be needed if there are no non-default alts
(init_lo, init_hi) = case notd_ways of
[] -> panic "mkMultiBranch: awesome foursome"
(discr, _):_ -> case discr of
DiscrI _ -> ( DiscrI minBound, DiscrI maxBound )
DiscrI8 _ -> ( DiscrI8 minBound, DiscrI8 maxBound )
DiscrI16 _ -> ( DiscrI16 minBound, DiscrI16 maxBound )
DiscrI32 _ -> ( DiscrI32 minBound, DiscrI32 maxBound )
DiscrI64 _ -> ( DiscrI64 minBound, DiscrI64 maxBound )
DiscrW _ -> ( DiscrW minBound, DiscrW maxBound )
DiscrW8 _ -> ( DiscrW8 minBound, DiscrW8 maxBound )
DiscrW16 _ -> ( DiscrW16 minBound, DiscrW16 maxBound )
DiscrW32 _ -> ( DiscrW32 minBound, DiscrW32 maxBound )
DiscrW64 _ -> ( DiscrW64 minBound, DiscrW64 maxBound )
DiscrF _ -> ( DiscrF minF, DiscrF maxF )
DiscrD _ -> ( DiscrD minD, DiscrD maxD )
DiscrP _ -> ( DiscrP algMinBound, DiscrP algMaxBound )
NoDiscr -> panic "mkMultiBranch NoDiscr"
(algMinBound, algMaxBound)
= case maybe_ncons of
-- XXX What happens when n == 0?
Just n -> (0, fromIntegral n - 1)
Nothing -> (minBound, maxBound)
isNoDiscr NoDiscr = True
isNoDiscr _ = False
dec (DiscrI i) = DiscrI (i-1)
dec (DiscrW w) = DiscrW (w-1)
dec (DiscrP i) = DiscrP (i-1)
dec other = other -- not really right, but if you
-- do cases on floating values, you'll get what you deserve
-- same snotty comment applies to the following
minF, maxF :: Float
minD, maxD :: Double
minF = -1.0e37
maxF = 1.0e37
minD = -1.0e308
maxD = 1.0e308
-- -----------------------------------------------------------------------------
-- Supporting junk for the compilation schemes
-- Describes case alts
data Discr
= DiscrI Int
| DiscrI8 Int8
| DiscrI16 Int16
| DiscrI32 Int32
| DiscrI64 Int64
| DiscrW Word
| DiscrW8 Word8
| DiscrW16 Word16
| DiscrW32 Word32
| DiscrW64 Word64
| DiscrF Float
| DiscrD Double
| DiscrP Word16
| NoDiscr
deriving (Eq, Ord)
instance Outputable Discr where
ppr (DiscrI i) = int i
ppr (DiscrI8 i) = text (show i)
ppr (DiscrI16 i) = text (show i)
ppr (DiscrI32 i) = text (show i)
ppr (DiscrI64 i) = text (show i)
ppr (DiscrW w) = text (show w)
ppr (DiscrW8 w) = text (show w)
ppr (DiscrW16 w) = text (show w)
ppr (DiscrW32 w) = text (show w)
ppr (DiscrW64 w) = text (show w)
ppr (DiscrF f) = text (show f)
ppr (DiscrD d) = text (show d)
ppr (DiscrP i) = ppr i
ppr NoDiscr = text "DEF"
lookupBCEnv_maybe :: Id -> BCEnv -> Maybe ByteOff
lookupBCEnv_maybe = Map.lookup
idSizeW :: Platform -> Id -> WordOff
idSizeW platform = WordOff . argRepSizeW platform . idArgRep platform
idSizeCon :: Platform -> Id -> ByteOff
idSizeCon platform var
-- unboxed tuple components are padded to word size
| isUnboxedTupleType (idType var) ||
isUnboxedSumType (idType var) =
wordsToBytes platform .
WordOff . sum . map (argRepSizeW platform . toArgRep platform) .
typePrimRep . idType $ var
| otherwise = ByteOff (primRepSizeB platform (idPrimRepU var))
repSizeWords :: Platform -> PrimOrVoidRep -> WordOff
repSizeWords platform rep = WordOff $ argRepSizeW platform (toArgRepOrV platform rep)
isFollowableArg :: ArgRep -> Bool
isFollowableArg P = True
isFollowableArg _ = False
-- | Indicate if the calling convention is supported
isSupportedCConv :: CCallSpec -> Bool
isSupportedCConv (CCallSpec _ cconv _) = case cconv of
CCallConv -> True -- we explicitly pattern match on every
StdCallConv -> True -- convention to ensure that a warning
PrimCallConv -> True -- is triggered when a new one is added
JavaScriptCallConv -> False
CApiConv -> True
-- See bug #10462
unsupportedCConvException :: a
unsupportedCConvException = throwGhcException (ProgramError
("Error: bytecode compiler can't handle some foreign calling conventions\n"++
" Workaround: use -fobject-code, or compile this module to .o separately."))
mkSlideB :: Platform -> ByteOff -> ByteOff -> OrdList BCInstr
mkSlideB platform nb db = mkSlideW n d
where
!n = bytesToWords platform nb
!d = bytesToWords platform db
mkSlideW :: WordOff -> WordOff -> OrdList BCInstr
mkSlideW !n !ws
| ws == 0
= nilOL
| otherwise
= unitOL (SLIDE n $ fromIntegral ws)
atomRep :: Platform -> StgArg -> ArgRep
atomRep platform e = toArgRepOrV platform (stgArgRep1 e)
-- | Let szsw be the sizes in bytes of some items pushed onto the stack, which
-- has initial depth @original_depth@. Return the values which the stack
-- environment should map these items to.
mkStackOffsets :: ByteOff -> [ByteOff] -> [ByteOff]
mkStackOffsets original_depth szsb = tail (scanl' (+) original_depth szsb)
typeArgReps :: Platform -> Type -> [ArgRep]
typeArgReps platform = map (toArgRep platform) . typePrimRep
-- -----------------------------------------------------------------------------
-- The bytecode generator's monad
data BcM_State
= BcM_State
{ bcm_hsc_env :: HscEnv
, thisModule :: Module -- current module (for breakpoints)
, nextlabel :: Word32 -- for generating local labels
, ffis :: [FFIInfo] -- ffi info blocks, to free later
-- Should be free()d when it is GCd
, modBreaks :: Maybe ModBreaks -- info about breakpoints
, breakInfo :: IntMap CgBreakInfo -- ^ Info at breakpoint occurrence.
-- Indexed with breakpoint *info* index.
-- See Note [Breakpoint identifiers]
-- in GHC.Types.Breakpoint
, breakInfoIdx :: !Int -- ^ Next index for breakInfo array
}
newtype BcM r = BcM (BcM_State -> IO (BcM_State, r)) deriving (Functor)
ioToBc :: IO a -> BcM a
ioToBc io = BcM $ \st -> do
x <- io
return (st, x)
runBc :: HscEnv -> Module -> Maybe ModBreaks
-> BcM r
-> IO (BcM_State, r)
runBc hsc_env this_mod modBreaks (BcM m)
= m (BcM_State hsc_env this_mod 0 [] modBreaks IntMap.empty 0)
thenBc :: BcM a -> (a -> BcM b) -> BcM b
thenBc (BcM expr) cont = BcM $ \st0 -> do
(st1, q) <- expr st0
let BcM k = cont q
(st2, r) <- k st1
return (st2, r)
thenBc_ :: BcM a -> BcM b -> BcM b
thenBc_ (BcM expr) (BcM cont) = BcM $ \st0 -> do
(st1, _) <- expr st0
(st2, r) <- cont st1
return (st2, r)
returnBc :: a -> BcM a
returnBc result = BcM $ \st -> (return (st, result))
instance Applicative BcM where
pure = returnBc
(<*>) = ap
(*>) = thenBc_
instance Monad BcM where
(>>=) = thenBc
(>>) = (*>)
instance HasDynFlags BcM where
getDynFlags = BcM $ \st -> return (st, hsc_dflags (bcm_hsc_env st))
getHscEnv :: BcM HscEnv
getHscEnv = BcM $ \st -> return (st, bcm_hsc_env st)
getProfile :: BcM Profile
getProfile = targetProfile <$> getDynFlags
emitBc :: ([FFIInfo] -> ProtoBCO Name) -> BcM (ProtoBCO Name)
emitBc bco
= BcM $ \st -> return (st{ffis=[]}, bco (ffis st))
recordFFIBc :: RemotePtr C_ffi_cif -> BcM ()
recordFFIBc a
= BcM $ \st -> return (st{ffis = FFIInfo a : ffis st}, ())
getLabelBc :: BcM LocalLabel
getLabelBc
= BcM $ \st -> do let nl = nextlabel st
when (nl == maxBound) $
panic "getLabelBc: Ran out of labels"
return (st{nextlabel = nl + 1}, LocalLabel nl)
getLabelsBc :: Word32 -> BcM [LocalLabel]
getLabelsBc n
= BcM $ \st -> let ctr = nextlabel st
in return (st{nextlabel = ctr+n}, coerce [ctr .. ctr+n-1])
newBreakInfo :: CgBreakInfo -> BcM Int
newBreakInfo info = BcM $ \st ->
let ix = breakInfoIdx st
st' = st
{ breakInfo = IntMap.insert ix info (breakInfo st)
, breakInfoIdx = ix + 1
}
in return (st', ix)
getCurrentModule :: BcM Module
getCurrentModule = BcM $ \st -> return (st, thisModule st)
getCurrentModBreaks :: BcM (Maybe ModBreaks)
getCurrentModBreaks = BcM $ \st -> return (st, modBreaks st)
tickFS :: FastString
tickFS = fsLit "ticked"
|