1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
module GHC.StgToJS
( stgToJS
)
where
import GHC.StgToJS.CodeGen
-- Note [StgToJS design]
-- ~~~~~~~~~~~~~~~~~~~~~
--
-- StgToJS ("JS backend") is adapted from GHCJS [GHCJS2013].
--
-- Haskell to JavaScript
-- ~~~~~~~~~~~~~~~~~~~~~
-- StgToJS converts STG into a JavaScript AST (in GHC.JS) that has been adapted
-- from JMacro [JMacro].
--
-- Tail calls: translated code is tail call optimized through a trampoline,
-- since JavaScript implementations don't always support tail calls.
--
-- JavaScript ASTs are then optimized. A dataflow analysis is performed and then
-- dead code and redundant assignments are removed.
--
-- Primitives
-- ~~~~~~~~~~
-- Haskell primitives have to be represented as JavaScript values. This is done
-- as follows:
--
-- - Int#/Int32# -> number in Int32 range
-- - Int16# -> number in Int16 range
-- - Int8# -> number in Int8 range
-- - Word#/Word32# -> number in Word32 range
-- - Word16# -> number in Word16 range
-- - Word8# -> number in Word8 range
--
-- - Float#/Double# -> both represented as Javascript Double (no Float!)
--
-- - Int64# -> represented with two fields:
-- high -> number in Int32 range
-- low -> number in Word32 range
-- - Word64# -> represented with two fields: high, low
-- high -> number in Word32 range
-- low -> number in Word32 range
--
-- - Addr# -> represented with two fields: array (used as a namespace) and index
-- - StablePtr# -> similar to Addr# with array fixed to h$stablePtrBuf
--
-- - JSVal# -> any Javascript object (used to pass JS objects via FFI)
--
-- - TVar#, MVar#, etc. are represented with JS objects
--
-- Foreign JavaScript imports
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~
-- StgToJS supports inline JavaScript code. Example:
--
-- > foreign import javascript unsafe
-- > "((x,y) => x + y)"
-- > plus :: Int -> Int -> Int
--
-- Currently the JS backend only supports functions as JS imports.
--
-- In comparison, GHCJS supports JavaScript snippets with $1, $2... variables
-- as placeholders for the arguments. It requires a JavaScript parser that the
-- JS backend lacks. In GHCJS, the parser is inherited from JMacro and supports
-- local variable declarations, loops, etc. Local variables are converted to
-- hygienic names to avoid capture.
--
-- Primitives that are represented as multiple values (Int64#, Word64#, Addr#)
-- are passed to FFI functions with multiple arguments.
--
-- Interruptible convention: FFI imports with the "interruptible" calling
-- convention are passed an extra argument (usually named "$c") that is a
-- continuation function. The FFI function must call this function to return to
-- Haskell code.
--
-- Unboxed tuples: returning an unboxed tuple can be done with the predefined
-- macros RETURN_UBX_TUPn where n is the size of the tuples. Internally it uses
-- predefined "h$retN" global variables to pass additional values; the first
-- element of the tuple is returned normally.
--
-- Memory management
-- ~~~~~~~~~~~~~~~~~
-- Heap objects are represented as JavaScript values.
--
-- Most heap objects are represented generically as JavaScript "objects" (hash
-- maps). However, some Haskell heap objects can use use a more memory efficient
-- JavaScript representation: number, string... An example of a consequence of
-- this is that both Int# and Int are represented the same as a JavaScript
-- number. JavaScript introspection (e.g. typeof) is used to differentiate
-- heap object representations when necessary.
--
-- Generic representation: objects on the heap ("closures") are represented as
-- JavaScript objects with the following fields:
--
-- { f -- (function) entry function + info table
-- , d1 -- two fields of payload
-- , d2
-- , m -- GC mark
-- , cc -- optional cost-center
-- }
--
-- Payload: payload only consists of two fields (d1, d2). When more than two
-- fields of payload are required, the second field is itself an object.
-- payload [] ==> { d1 = null, d2 = null }
-- payload [a] ==> { d1 = a , d2 = null }
-- payload [a,b] ==> { d1 = a , d2 = b }
-- payload [a,b,c] ==> { d1 = a , d2 = { d1 = b, d2 = c} }
-- payload [a,b,c...] ==> { d1 = a , d2 = { d1 = b, d2 = c, ...} }
--
-- Entry function/ info tables: JavaScript functions are JavaScript objects. If
-- "f" is a function, we can:
-- - call it, e.g. "f(arg0,arg1...)"
-- - get/set its fields, e.g. "f.xyz = abc"
-- This is used to implement the equivalent of tables-next-to-code in
-- JavaScript: every heap object has an entry function "f" that also contains
-- some metadata (info table) about the Haskell object:
-- { t -- object type
-- , size -- number of fields in the payload (-1 if variable layout)
-- , i -- (array) fields layout (empty if variable layout)
-- , n -- (string) object name for easier dubugging
-- , a -- constructor tag / fun arity
-- , r -- ??
-- , s -- static references?
-- , m -- GC mark?
-- }
--
-- Payloads for each kind of heap object:
--
-- THUNK =
-- { f = returns the object reduced to WHNF
-- , m = ?
-- , d1 = ?
-- , d2 = ?
-- }
--
-- FUN =
-- { f = function itself
-- , m = ?
-- , d1 = free variable 1
-- , d2 = free variable 2
-- }
--
-- There are two different kinds of partial application:
-- - pap_r : pre-generated PAP that contains r registers
-- - pap_gen : generic PAP, contains any number of registers
--
-- PAP =
-- { f = ?
-- , m = ?
-- , d1 = function
-- , d2 =
-- { d1 & 0xff = number of args (PAP arity)
-- , d1 >> 8 = number of registers (r for h$pap_r)
-- , d2, d3... = args (r)
-- }
-- }
--
-- CON =
-- { f = entry function of the datacon worker
-- , m = 0
-- , d1 = first arg
-- , d2 = arity = 2: second arg
-- arity > 2: { d1, d2, ...} object with remaining args (starts with "d1 = x2"!)
-- }
--
-- BLACKHOLE =
-- { f = h$blackhole
-- , m = ?
-- , d1 = owning TSO
-- , d2 = waiters array
-- }
--
-- StackFrame closures are *not* represented as JS objects. Instead they are
-- "unpacked" in the stack, i.e. a stack frame occupies a few slots in the JS
-- array representing the stack ("h$stack").
--
-- When a shared thunk is entered, it is overriden with a black hole ("eager
-- blackholing") and an update frame is pushed on the stack.
--
-- Stack: the Haskell stack is implemented with a dynamically growing JavaScript
-- array ("h$stack").
-- TODO: does it shrink sometimes?
-- TODO: what are the elements of the stack? one JS object per stack frame?
--
--
-- Interaction with JavaScript's garbage collector
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Using JS objects to represent Haskell heap objects means that JS's GC does
-- most of the memory management work.
--
-- However, GHC extends Haskell with features that rely on GC layer violation
-- (weak references, finalizers, etc.). To support these features, a heap scan
-- is can be performed (using TSOs, StablePtr, etc. as roots) to mark reachable
-- objects. Scanning the heap is an expensive operation, but fortunately it
-- doesn't need to happen too often and it can be disabled.
--
-- TODO: importance of eager blackholing
--
-- Concurrency
-- ~~~~~~~~~~~
-- The scheduler is implemented in JS and runs in a single JavaScript thread
-- (similarly to the C RTS not using `-threaded`).
--
-- The scheduler relies on callbacks/continuations to interact with other JS
-- codes (user interface, etc.). In particular, safe foreign import can use "$c"
-- as a continuation function to return to Haskell code.
--
-- TODO: is this still true since 2013 or are we using more recent JS features now?
-- TODO: synchronous threads
--
--
-- REFERENCES
-- * [GHCJS2013] "Demo Proposal: GHCJS, Concurrent Haskell in the Browser", Luite Stegeman,
-- 2013 (https://www.haskell.org/haskell-symposium/2013/ghcjs.pdf)
-- * [JMacro] https://hackage.haskell.org/package/jmacro
|