1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
@Uniques@ are used to distinguish entities in the compiler (@Ids@,
@Classes@, etc.) from each other. Thus, @Uniques@ are the basic
comparison key in the compiler.
If there is any single operation that needs to be fast, it is @Unique@
comparison. Unsurprisingly, there is quite a bit of huff-and-puff
directed to that end.
Some of the other hair in this code is to be able to use a
``splittable @UniqueSupply@'' if requested/possible (not standard
Haskell).
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
module GHC.Types.Unique (
-- * Main data types
Unique, Uniquable(..),
uNIQUE_BITS,
-- ** Constructors, destructors and operations on 'Unique's
hasKey,
pprUniqueAlways,
mkTag,
mkUniqueGrimily,
mkUniqueIntGrimily,
getKey,
mkUnique, unpkUnique,
mkUniqueInt,
eqUnique, ltUnique,
incrUnique, stepUnique,
newTagUnique,
nonDetCmpUnique,
isValidKnownKeyUnique,
-- ** Local uniques
-- | These are exposed exclusively for use by 'GHC.Types.Var.Env.uniqAway', which
-- has rather peculiar needs. See Note [Local uniques].
mkLocalUnique, minLocalUnique, maxLocalUnique,
) where
#include "Unique.h"
import GHC.Prelude
import GHC.Data.FastString
import GHC.Utils.Outputable
import GHC.Utils.Word64 (intToWord64, word64ToInt)
-- just for implementing a fast [0,61) -> Char function
import GHC.Exts (indexCharOffAddr#, Char(..), Int(..))
import GHC.Word ( Word64 )
import Data.Char ( chr, ord )
import Language.Haskell.Syntax.Module.Name
{-
************************************************************************
* *
\subsection[Unique-type]{@Unique@ type and operations}
* *
************************************************************************
Note [Uniques and tags]
~~~~~~~~~~~~~~~~~~~~~~~~
A `Unique` in GHC is a 64 bit value composed of two pieces:
* A "tag", of width `UNIQUE_TAG_BITS`, in the high order bits
* A number, of width `uNIQUE_BITS`, which fills up the remainder of the Word64
The tag is typically an ASCII character. It is typically used to make it easier
to distinguish uniques constructed by different parts of the compiler.
There is a (potentially incomplete) list of unique tags used given in
GHC.Builtin.Uniques. See Note [Uniques for wired-in prelude things and known tags]
`mkUnique` constructs a `Unique` from its pieces
mkUnique :: Char -> Word64 -> Unique
-}
-- | Unique identifier.
--
-- The type of unique identifiers that are used in many places in GHC
-- for fast ordering and equality tests. You should generate these with
-- the functions from the 'UniqSupply' module
--
-- These are sometimes also referred to as \"keys\" in comments in GHC.
newtype Unique = MkUnique Word64
{-# INLINE uNIQUE_BITS #-}
uNIQUE_BITS :: Int
uNIQUE_BITS = 64 - UNIQUE_TAG_BITS
{-
Now come the functions which construct uniques from their pieces, and vice versa.
The stuff about unique *supplies* is handled further down this module.
-}
unpkUnique :: Unique -> (Char, Word64) -- The reverse
mkUniqueGrimily :: Word64 -> Unique -- A trap-door for UniqSupply
getKey :: Unique -> Word64 -- for Var
incrUnique :: Unique -> Unique
stepUnique :: Unique -> Word64 -> Unique
newTagUnique :: Unique -> Char -> Unique
mkUniqueGrimily = MkUnique
{-# INLINE getKey #-}
getKey (MkUnique x) = x
incrUnique (MkUnique i) = MkUnique (i + 1)
stepUnique (MkUnique i) n = MkUnique (i + n)
mkLocalUnique :: Word64 -> Unique
mkLocalUnique i = mkUnique 'X' i
minLocalUnique :: Unique
minLocalUnique = mkLocalUnique 0
maxLocalUnique :: Unique
maxLocalUnique = mkLocalUnique uniqueMask
-- newTagUnique changes the "domain" of a unique to a different char
newTagUnique u c = mkUnique c i where (_,i) = unpkUnique u
-- | Bitmask that has zeros for the tag bits and ones for the rest.
uniqueMask :: Word64
uniqueMask = (1 `shiftL` uNIQUE_BITS) - 1
-- | Put the character in the highest bits of the Word64.
-- This may truncate the character to UNIQUE_TAG_BITS.
-- This function is used in @`mkSplitUniqSupply`@ so that it can
-- precompute and share the tag part of the uniques it generates.
mkTag :: Char -> Word64
mkTag c = intToWord64 (ord c) `shiftL` uNIQUE_BITS
-- pop the Char in the top 8 bits of the Unique(Supply)
-- No 64-bit bugs here, as long as we have at least 32 bits. --JSM
-- and as long as the Char fits in 8 bits, which we assume anyway!
mkUnique :: Char -> Word64 -> Unique -- Builds a unique from pieces
-- EXPORTED and used only in GHC.Builtin.Uniques
mkUnique c i
= MkUnique (tag .|. bits)
where
tag = mkTag c
bits = i .&. uniqueMask
mkUniqueInt :: Char -> Int -> Unique
mkUniqueInt c i = mkUnique c (intToWord64 i)
mkUniqueIntGrimily :: Int -> Unique
mkUniqueIntGrimily = MkUnique . intToWord64
unpkUnique (MkUnique u)
= let
-- The potentially truncating use of fromIntegral here is safe
-- because the argument is just the tag bits after shifting.
tag = chr (word64ToInt (u `shiftR` uNIQUE_BITS))
i = u .&. uniqueMask
in
(tag, i)
-- | The interface file symbol-table encoding assumes that known-key uniques fit
-- in 30-bits; verify this.
--
-- See Note [Symbol table representation of names] in "GHC.Iface.Binary" for details.
isValidKnownKeyUnique :: Unique -> Bool
isValidKnownKeyUnique u =
case unpkUnique u of
(c, x) -> ord c < 0xff && x <= (1 `shiftL` 22)
{-
************************************************************************
* *
\subsection[Uniquable-class]{The @Uniquable@ class}
* *
************************************************************************
-}
-- | Class of things that we can obtain a 'Unique' from
class Uniquable a where
getUnique :: a -> Unique
hasKey :: Uniquable a => a -> Unique -> Bool
x `hasKey` k = getUnique x == k
instance Uniquable FastString where
getUnique fs = mkUniqueIntGrimily (uniqueOfFS fs)
instance Uniquable Int where
getUnique i = mkUniqueIntGrimily i
instance Uniquable ModuleName where
getUnique (ModuleName nm) = getUnique nm
{-
************************************************************************
* *
\subsection[Unique-instances]{Instance declarations for @Unique@}
* *
************************************************************************
And the whole point (besides uniqueness) is fast equality. We don't
use `deriving' because we want {\em precise} control of ordering
(equality on @Uniques@ is v common).
-}
-- Note [Unique Determinism]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of allocated @Uniques@ is not stable across rebuilds.
-- The main reason for that is that typechecking interface files pulls
-- @Uniques@ from @UniqSupply@ and the interface file for the module being
-- currently compiled can, but doesn't have to exist.
--
-- It gets more complicated if you take into account that the interface
-- files are loaded lazily and that building multiple files at once has to
-- work for any subset of interface files present. When you add parallelism
-- this makes @Uniques@ hopelessly random.
--
-- As such, to get deterministic builds, the order of the allocated
-- @Uniques@ should not affect the final result.
-- see also wiki/deterministic-builds
--
-- Note [Unique Determinism and code generation]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The goal of the deterministic builds (wiki/deterministic-builds, #4012)
-- is to get ABI compatible binaries given the same inputs and environment.
-- The motivation behind that is that if the ABI doesn't change the
-- binaries can be safely reused.
-- Note that this is weaker than bit-for-bit identical binaries and getting
-- bit-for-bit identical binaries is not a goal for now.
-- This means that we don't care about nondeterminism that happens after
-- the interface files are created, in particular we don't care about
-- register allocation and code generation.
-- To track progress on bit-for-bit determinism see #12262.
eqUnique :: Unique -> Unique -> Bool
eqUnique (MkUnique u1) (MkUnique u2) = u1 == u2
ltUnique :: Unique -> Unique -> Bool
ltUnique (MkUnique u1) (MkUnique u2) = u1 < u2
-- Provided here to make it explicit at the call-site that it can
-- introduce non-determinism.
-- See Note [Unique Determinism]
-- See Note [No Ord for Unique]
nonDetCmpUnique :: Unique -> Unique -> Ordering
nonDetCmpUnique (MkUnique u1) (MkUnique u2)
= if u1 == u2 then EQ else if u1 < u2 then LT else GT
{-
Note [No Ord for Unique]
~~~~~~~~~~~~~~~~~~~~~~~~~~
As explained in Note [Unique Determinism] the relative order of Uniques
is nondeterministic. To prevent from accidental use the Ord Unique
instance has been removed.
This makes it easier to maintain deterministic builds, but comes with some
drawbacks.
The biggest drawback is that Maps keyed by Uniques can't directly be used.
The alternatives are:
1) Use UniqFM or UniqDFM, see Note [Deterministic UniqFM] to decide which
2) Create a newtype wrapper based on Unique ordering where nondeterminism
is controlled. See GHC.Unit.Module.Env.ModuleEnv
3) Change the algorithm to use nonDetCmpUnique and document why it's still
deterministic
4) Use TrieMap as done in GHC.Cmm.CommonBlockElim.groupByLabel
-}
instance Eq Unique where
a == b = eqUnique a b
a /= b = not (eqUnique a b)
instance Uniquable Unique where
getUnique u = u
-- We do sometimes make strings with @Uniques@ in them:
showUnique :: Unique -> String
showUnique uniq
= case unpkUnique uniq of
(tag, u) -> tag : w64ToBase62 u
pprUniqueAlways :: IsLine doc => Unique -> doc
-- The "always" means regardless of -dsuppress-uniques
-- It replaces the old pprUnique to remind callers that
-- they should consider whether they want to consult
-- Opt_SuppressUniques
pprUniqueAlways u
= text (showUnique u)
{-# SPECIALIZE pprUniqueAlways :: Unique -> SDoc #-}
{-# SPECIALIZE pprUniqueAlways :: Unique -> HLine #-} -- see Note [SPECIALIZE to HDoc] in GHC.Utils.Outputable
instance Outputable Unique where
ppr = pprUniqueAlways
instance Show Unique where
show uniq = showUnique uniq
{-
************************************************************************
* *
\subsection[Utils-base62]{Base-62 numbers}
* *
************************************************************************
A character-stingy way to read/write numbers (notably Uniques).
The ``62-its'' are \tr{[0-9a-zA-Z]}.
Code stolen from Lennart.
-}
w64ToBase62 :: Word64 -> String
w64ToBase62 n_ = go n_ ""
where
-- The potentially truncating uses of fromIntegral here are safe
-- because the argument is guaranteed to be less than 62 in both cases.
go n cs | n < 62
= let !c = chooseChar62 (word64ToInt n) in c : cs
| otherwise
= go q (c : cs) where (!q, r) = quotRem n 62
!c = chooseChar62 (word64ToInt r)
chooseChar62 :: Int -> Char
{-# INLINE chooseChar62 #-}
chooseChar62 (I# n) = C# (indexCharOffAddr# chars62 n)
chars62 = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"#
|