1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Dynamic semantics %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The definitions in this file do *not* strictly correspond to any specific
% code in GHC. They are here to provide a reasonable operational semantic
% interpretation to the typing rules presented in the other ott files. Thus,
% your mileage may vary. In particular, there has been *no* attempt to
% write any formal proofs over these semantics.
%
% With that disclaimer disclaimed, these rules are a reasonable jumping-off
% point for an analysis of FC's operational semantics. If you don't want to
% worry about mutual recursion (and who does?), you can even drop the
% environment S.
%
% Join points are ignored here because operationally they work exactly the same
% as regular bindings. Simply read "join" as "let" and "jump" as application to
% see how a (well-typed!) program should run.
grammar
defns
OpSem :: '' ::=
defn e --> e' :: :: step :: 'S_' {{ com Single step semantics }}
{{ tex \begin{array}{l} [[e]] [[-->]] [[e']] \end{array} }}
by
e1 --> e1'
------------------- :: App
e1 e2 --> e1' e2
----------------------------- :: Beta
(\n.e1) e2 --> e1[n |-> e2]
% g : (t1 -> t2) ~Rep# (t3 -> t4)
% e2 : t3
% g0 : t3 ~Rep# t1
% g1 : t2 ~Rep# t4
g0 = sym (nth Rep 2 g)
g1 = nth Rep 3 g
not e2 is_a_type
not e2 is_a_coercion
----------------------------------------------- :: Push
((\n.e1) |> g) e2 --> (\n.e1 |> g1) (e2 |> g0)
% g : (forall (a : k1). t1) ~Rep# (forall (a : k2). t2)
% t : k2
% g' : k2 ~# k1
% t' : k1
g' = sym (nth Nom 0 g)
t' = t |> g'
-------------------------------------------------------- :: TPush
((\n.e) |> g) t --> ((\n.e) t') |> (g @ (sym <t> Nom MCo g'))
% g : ((t1 ~rho# t2) -> t3) ~Rep# ((t4 ~rho# t5) -> t6)
% g2 : t3 ~Rep# t6
% g' : t4 ~rho# t5
% g0 : t1 ~rho# t4
% g1 : t5 ~rho# t2
% recall that (->) :: forall r1 r2. TYPE r1 -> TYPE r2 -> Type
% and that (~#) :: forall k1 k2. k1 -> k2 -> TYPE (TupleRep '[])
% so pulling out the first visible argument for both is argument 2,
% and the second visible argument for both is argument 3
R = coercionRole g'
g0 = nth R 2 (nth Rep 2 g)
g1 = sym (nth R 3 (nth Rep 2 g))
g2 = nth Rep 3 g
------------------------------- :: CPush
((\n.e) |> g) g' --> (\n.e |> g2) (g0 ; g' ; g1)
--------------------------------------- :: Trans
(e |> g1) |> g2 --> e |> (g1 ; g2)
e --> e'
------------------------ :: Cast
e |> g --> e' |> g
e --> e'
------------------------------ :: Tick
e { tick } --> e' { tick }
e --> e'
--------------------------------------- :: Case
case e as n return t of </ alti // i /> --> case e' as n return t of </ alti // i />
altj = K </ alphabb_kbb // bb /> </ xcc_tcc // cc /> -> u
e = K </ t'aa // aa /> </ sbb // bb /> </ ecc // cc />
u' = u[n |-> e] </ [alphabb_kbb |-> sbb] // bb /> </ [xcc_tcc |-> ecc] // cc />
-------------------------------------------------------------- :: MatchData
case e as n return t of </ alti // i /> --> u'
altj = lit -> u
---------------------------------------------------------------- :: MatchLit
case lit as n return t of </ alti // i /> --> u[n |-> lit]
altj = _ -> u
no other case matches
------------------------------------------------------------ :: MatchDefault
case e as n return t of </ alti // i /> --> u[n |-> e]
T </ taa // aa /> k'~Rep# k T </ t'aa // aa /> = coercionKind g
</ Raa // aa /> = tyConRoles T
forall </ alphaaa_kaa // aa />. forall </ betabb_k'bb // bb />. </ t1cc // cc /> $ -> T </ alphaaa_kaa // aa /> = dataConRepType K
</ e'cc = ecc |> (t1cc $ </ [alphaaa_kaa |-> nth Raa aa g] // aa /> </ [betabb_k'bb |-> <sbb>] // bb />) // cc />
--------------------------- :: CasePush
case (K </ taa // aa /> </ sbb // bb /> </ ecc // cc />) |> g as n return t2 of </ alti // i /> --> \\ case K </ t'aa // aa /> </ sbb // bb /> </ e'cc // cc /> as n return t2 of </ alti // i />
----------------- :: LetNonRec
let n = e1 in e2 --> e2[n |-> e1]
------------------------------------ :: LetRec
let rec </ ni = ei // i /> in u --> u </ [ni |-> let rec </ ni = ei // i /> in ei ] // i />
|