1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE Safe #-}
-- Needed because the CPSed versions of Writer and State are secretly State
-- wrappers, which don't force such constraints, even though they should legally
-- be there.
{-# OPTIONS_GHC -Wno-redundant-constraints #-}
{- |
Module : Control.Monad.Error.Class
Copyright : (c) Michael Weber <michael.weber@post.rwth-aachen.de> 2001,
(c) Jeff Newbern 2003-2006,
(c) Andriy Palamarchuk 2006
(c) Edward Kmett 2012
License : BSD-style (see the file LICENSE)
Maintainer : libraries@haskell.org
Stability : experimental
Portability : non-portable (multi-parameter type classes)
[Computation type:] Computations which may fail or throw exceptions.
[Binding strategy:] Failure records information about the cause\/location
of the failure. Failure values bypass the bound function,
other values are used as inputs to the bound function.
[Useful for:] Building computations from sequences of functions that may fail
or using exception handling to structure error handling.
[Zero and plus:] Zero is represented by an empty error and the plus operation
executes its second argument if the first fails.
[Example type:] @'Either' 'String' a@
The Error monad (also called the Exception monad).
-}
{-
Rendered by Michael Weber <mailto:michael.weber@post.rwth-aachen.de>,
inspired by the Haskell Monad Template Library from
Andy Gill (<http://web.cecs.pdx.edu/~andy/>)
-}
module Control.Monad.Error.Class (
MonadError(..),
liftEither,
tryError,
withError,
handleError,
mapError,
modifyError,
) where
import Control.Monad.Trans.Except (ExceptT)
import qualified Control.Monad.Trans.Except as ExceptT (catchE, runExceptT, throwE)
import Control.Monad.Trans.Identity (IdentityT)
import qualified Control.Monad.Trans.Identity as Identity
import Control.Monad.Trans.Maybe (MaybeT)
import qualified Control.Monad.Trans.Maybe as Maybe
import Control.Monad.Trans.Reader (ReaderT)
import qualified Control.Monad.Trans.Reader as Reader
import qualified Control.Monad.Trans.RWS.Lazy as LazyRWS
import qualified Control.Monad.Trans.RWS.Strict as StrictRWS
import qualified Control.Monad.Trans.State.Lazy as LazyState
import qualified Control.Monad.Trans.State.Strict as StrictState
import qualified Control.Monad.Trans.Writer.Lazy as LazyWriter
import qualified Control.Monad.Trans.Writer.Strict as StrictWriter
import Control.Monad.Trans.Accum (AccumT)
import qualified Control.Monad.Trans.Accum as Accum
import qualified Control.Monad.Trans.RWS.CPS as CPSRWS
import qualified Control.Monad.Trans.Writer.CPS as CPSWriter
import Control.Monad.Trans.Class (lift)
import Control.Exception (IOException, catch, ioError)
import Control.Monad (Monad)
import Data.Monoid (Monoid)
import Prelude (Either (Left, Right), Maybe (Nothing), either, flip, (.), IO, pure, (<$>), (>>=))
{- |
The strategy of combining computations that can throw exceptions
by bypassing bound functions
from the point an exception is thrown to the point that it is handled.
Is parameterized over the type of error information and
the monad type constructor.
It is common to use @'Either' String@ as the monad type constructor
for an error monad in which error descriptions take the form of strings.
In that case and many other common cases the resulting monad is already defined
as an instance of the 'MonadError' class.
You can also define your own error type and\/or use a monad type constructor
other than @'Either' 'String'@ or @'Either' 'IOError'@.
In these cases you will have to explicitly define instances of the 'MonadError'
class.
(If you are using the deprecated "Control.Monad.Error" or
"Control.Monad.Trans.Error", you may also have to define an 'Error' instance.)
-}
class (Monad m) => MonadError e m | m -> e where
-- | Is used within a monadic computation to begin exception processing.
throwError :: e -> m a
{- |
A handler function to handle previous errors and return to normal execution.
A common idiom is:
> do { action1; action2; action3 } `catchError` handler
where the @action@ functions can call 'throwError'.
Note that @handler@ and the do-block must have the same return type.
-}
catchError :: m a -> (e -> m a) -> m a
{-# MINIMAL throwError, catchError #-}
{- |
Lifts an @'Either' e@ into any @'MonadError' e@.
> do { val <- liftEither =<< action1; action2 }
where @action1@ returns an 'Either' to represent errors.
@since 2.2.2
-}
liftEither :: MonadError e m => Either e a -> m a
liftEither = either throwError pure
instance MonadError IOException IO where
throwError = ioError
catchError = catch
{- | @since 2.2.2 -}
instance MonadError () Maybe where
throwError () = Nothing
catchError Nothing f = f ()
catchError x _ = x
-- ---------------------------------------------------------------------------
-- Our parameterizable error monad
instance MonadError e (Either e) where
throwError = Left
Left l `catchError` h = h l
Right r `catchError` _ = Right r
{- | @since 2.2 -}
instance Monad m => MonadError e (ExceptT e m) where
throwError = ExceptT.throwE
catchError = ExceptT.catchE
-- ---------------------------------------------------------------------------
-- Instances for other mtl transformers
--
-- All of these instances need UndecidableInstances,
-- because they do not satisfy the coverage condition.
instance MonadError e m => MonadError e (IdentityT m) where
throwError = lift . throwError
catchError = Identity.liftCatch catchError
instance MonadError e m => MonadError e (MaybeT m) where
throwError = lift . throwError
catchError = Maybe.liftCatch catchError
instance MonadError e m => MonadError e (ReaderT r m) where
throwError = lift . throwError
catchError = Reader.liftCatch catchError
instance (Monoid w, MonadError e m) => MonadError e (LazyRWS.RWST r w s m) where
throwError = lift . throwError
catchError = LazyRWS.liftCatch catchError
instance (Monoid w, MonadError e m) => MonadError e (StrictRWS.RWST r w s m) where
throwError = lift . throwError
catchError = StrictRWS.liftCatch catchError
instance MonadError e m => MonadError e (LazyState.StateT s m) where
throwError = lift . throwError
catchError = LazyState.liftCatch catchError
instance MonadError e m => MonadError e (StrictState.StateT s m) where
throwError = lift . throwError
catchError = StrictState.liftCatch catchError
instance (Monoid w, MonadError e m) => MonadError e (LazyWriter.WriterT w m) where
throwError = lift . throwError
catchError = LazyWriter.liftCatch catchError
instance (Monoid w, MonadError e m) => MonadError e (StrictWriter.WriterT w m) where
throwError = lift . throwError
catchError = StrictWriter.liftCatch catchError
-- | @since 2.3
instance (Monoid w, MonadError e m) => MonadError e (CPSRWS.RWST r w s m) where
throwError = lift . throwError
catchError = CPSRWS.liftCatch catchError
-- | @since 2.3
instance (Monoid w, MonadError e m) => MonadError e (CPSWriter.WriterT w m) where
throwError = lift . throwError
catchError = CPSWriter.liftCatch catchError
-- | @since 2.3
instance
( Monoid w
, MonadError e m
) => MonadError e (AccumT w m) where
throwError = lift . throwError
catchError = Accum.liftCatch catchError
-- | 'MonadError' analogue to the 'Control.Exception.try' function.
tryError :: MonadError e m => m a -> m (Either e a)
tryError action = (Right <$> action) `catchError` (pure . Left)
-- | 'MonadError' analogue to the 'withExceptT' function.
-- Modify the value (but not the type) of an error. The type is
-- fixed because of the functional dependency @m -> e@. If you need
-- to change the type of @e@ use 'mapError' or 'modifyError'.
withError :: MonadError e m => (e -> e) -> m a -> m a
withError f action = tryError action >>= either (throwError . f) pure
-- | As 'handle' is flipped 'Control.Exception.catch', 'handleError'
-- is flipped 'catchError'.
handleError :: MonadError e m => (e -> m a) -> m a -> m a
handleError = flip catchError
-- | 'MonadError' analogue of the 'mapExceptT' function. The
-- computation is unwrapped, a function is applied to the @Either@, and
-- the result is lifted into the second 'MonadError' instance.
mapError :: (MonadError e m, MonadError e' n) => (m (Either e a) -> n (Either e' b)) -> m a -> n b
mapError f action = f (tryError action) >>= liftEither
{- |
A different 'MonadError' analogue to the 'withExceptT' function.
Modify the value (and possibly the type) of an error in an @ExceptT@-transformed
monad, while stripping the @ExceptT@ layer.
This is useful for adapting the 'MonadError' constraint of a computation.
For example:
> data DatabaseError = ...
>
> performDatabaseQuery :: (MonadError DatabaseError m, ...) => m PersistedValue
>
> data AppError
> = MkDatabaseError DatabaseError
> | ...
>
> app :: (MonadError AppError m, ...) => m ()
Given these types, @performDatabaseQuery@ cannot be used directly inside
@app@, because the error types don't match. Using 'modifyError', an equivalent
function with a different error type can be constructed:
> performDatabaseQuery' :: (MonadError AppError m, ...) => m PersistedValue
> performDatabaseQuery' = modifyError MkDatabaseError performDatabaseQuery
Since the error types do match, @performDatabaseQuery'@ _can_ be used in @app@,
assuming all other constraints carry over.
This works by instantiating the @m@ in the type of @performDatabaseQuery@ to
@ExceptT DatabaseError m'@, which satisfies the @MonadError DatabaseError@
constraint. Immediately, the @ExceptT DatabaseError@ layer is unwrapped,
producing 'Either' a @DatabaseError@ or a @PersistedValue@. If it's the former,
the error is wrapped in @MkDatabaseError@ and re-thrown in the inner monad,
otherwise the result value is returned.
@since 2.3.1
-}
modifyError :: MonadError e' m => (e -> e') -> ExceptT e m a -> m a
modifyError f m = ExceptT.runExceptT m >>= either (throwError . f) pure
|