1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Safe #-}
{-# LANGUAGE DeriveGeneric #-}
#endif
#if __GLASGOW_HASKELL__ >= 710 && __GLASGOW_HASKELL__ < 802
{-# LANGUAGE AutoDeriveTypeable #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Module : Control.Monad.Trans.State.Strict
-- Copyright : (c) Andy Gill 2001,
-- (c) Oregon Graduate Institute of Science and Technology, 2001
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : R.Paterson@city.ac.uk
-- Stability : experimental
-- Portability : portable
--
-- Strict state monads, passing an updatable state through a computation.
-- See below for examples.
--
-- Some computations may not require the full power of state transformers:
--
-- * For a read-only state, see "Control.Monad.Trans.Reader".
--
-- * To accumulate a value without using it on the way, see
-- "Control.Monad.Trans.Writer".
--
-- In this version, sequencing of computations is strict (but computations
-- are not strict in the state unless you force it with 'seq' or the like).
-- For a lazy version with the same interface, see
-- "Control.Monad.Trans.State.Lazy".
-----------------------------------------------------------------------------
module Control.Monad.Trans.State.Strict (
-- * The State monad
State,
state,
runState,
evalState,
execState,
mapState,
withState,
-- * The StateT monad transformer
StateT(..),
evalStateT,
execStateT,
mapStateT,
withStateT,
-- * State operations
get,
put,
modify,
modify',
modifyM,
gets,
-- * Lifting other operations
liftCallCC,
liftCallCC',
liftCatch,
liftListen,
liftPass,
-- * Examples
-- ** State monads
-- $examples
-- ** Counting
-- $counting
-- ** Labelling trees
-- $labelling
) where
import Control.Monad.IO.Class
import Control.Monad.Signatures
import Control.Monad.Trans.Class
#if MIN_VERSION_base(4,12,0)
import Data.Functor.Contravariant
#endif
import Data.Functor.Identity
import Control.Applicative
import Control.Monad
#if MIN_VERSION_base(4,9,0)
import qualified Control.Monad.Fail as Fail
#endif
import Control.Monad.Fix
#if __GLASGOW_HASKELL__ >= 704
import GHC.Generics
#endif
-- ---------------------------------------------------------------------------
-- | A state monad parameterized by the type @s@ of the state to carry.
--
-- The 'return' function leaves the state unchanged, while @>>=@ uses
-- the final state of the first computation as the initial state of
-- the second.
type State s = StateT s Identity
-- | Construct a state monad computation from a function.
-- (The inverse of 'runState'.)
state :: (Monad m)
=> (s -> (a, s)) -- ^pure state transformer
-> StateT s m a -- ^equivalent state-passing computation
state f = StateT (return . f)
{-# INLINE state #-}
-- | Unwrap a state monad computation as a function.
-- (The inverse of 'state'.)
runState :: State s a -- ^state-passing computation to execute
-> s -- ^initial state
-> (a, s) -- ^return value and final state
runState m = runIdentity . runStateT m
{-# INLINE runState #-}
-- | Evaluate a state computation with the given initial state
-- and return the final value, discarding the final state.
--
-- * @'evalState' m s = 'fst' ('runState' m s)@
evalState :: State s a -- ^state-passing computation to execute
-> s -- ^initial value
-> a -- ^return value of the state computation
evalState m s = fst (runState m s)
{-# INLINE evalState #-}
-- | Evaluate a state computation with the given initial state
-- and return the final state, discarding the final value.
--
-- * @'execState' m s = 'snd' ('runState' m s)@
execState :: State s a -- ^state-passing computation to execute
-> s -- ^initial value
-> s -- ^final state
execState m s = snd (runState m s)
{-# INLINE execState #-}
-- | Map both the return value and final state of a computation using
-- the given function.
--
-- * @'runState' ('mapState' f m) = f . 'runState' m@
mapState :: ((a, s) -> (b, s)) -> State s a -> State s b
mapState f = mapStateT (Identity . f . runIdentity)
{-# INLINE mapState #-}
-- | @'withState' f m@ executes action @m@ on a state modified by
-- applying @f@.
--
-- * @'withState' f m = 'modify' f >> m@
withState :: (s -> s) -> State s a -> State s a
withState = withStateT
{-# INLINE withState #-}
-- ---------------------------------------------------------------------------
-- | A state transformer monad parameterized by:
--
-- * @s@ - The state.
--
-- * @m@ - The inner monad.
--
-- The 'return' function leaves the state unchanged, while @>>=@ uses
-- the final state of the first computation as the initial state of
-- the second.
newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }
#if __GLASGOW_HASKELL__ >= 704
deriving (Generic)
#endif
-- | Evaluate a state computation with the given initial state
-- and return the final value, discarding the final state.
--
-- * @'evalStateT' m s = 'liftM' 'fst' ('runStateT' m s)@
evalStateT :: (Monad m) => StateT s m a -> s -> m a
evalStateT m s = do
(a, _) <- runStateT m s
return a
{-# INLINE evalStateT #-}
-- | Evaluate a state computation with the given initial state
-- and return the final state, discarding the final value.
--
-- * @'execStateT' m s = 'liftM' 'snd' ('runStateT' m s)@
execStateT :: (Monad m) => StateT s m a -> s -> m s
execStateT m s = do
(_, s') <- runStateT m s
return s'
{-# INLINE execStateT #-}
-- | Map both the return value and final state of a computation using
-- the given function.
--
-- * @'runStateT' ('mapStateT' f m) = f . 'runStateT' m@
mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b
mapStateT f m = StateT $ f . runStateT m
{-# INLINE mapStateT #-}
-- | @'withStateT' f m@ executes action @m@ on a state modified by
-- applying @f@.
--
-- * @'withStateT' f m = 'modify' f >> m@
withStateT :: (s -> s) -> StateT s m a -> StateT s m a
withStateT f m = StateT $ runStateT m . f
{-# INLINE withStateT #-}
instance (Functor m) => Functor (StateT s m) where
fmap f m = StateT $ \ s ->
fmap (\ (a, s') -> (f a, s')) $ runStateT m s
{-# INLINE fmap #-}
instance (Functor m, Monad m) => Applicative (StateT s m) where
pure a = StateT $ \ s -> return (a, s)
{-# INLINE pure #-}
StateT mf <*> StateT mx = StateT $ \ s -> do
(f, s') <- mf s
(x, s'') <- mx s'
return (f x, s'')
{-# INLINE (<*>) #-}
m *> k = m >>= \_ -> k
{-# INLINE (*>) #-}
instance (Functor m, MonadPlus m) => Alternative (StateT s m) where
empty = StateT $ \ _ -> mzero
{-# INLINE empty #-}
StateT m <|> StateT n = StateT $ \ s -> m s `mplus` n s
{-# INLINE (<|>) #-}
instance (Monad m) => Monad (StateT s m) where
#if !(MIN_VERSION_base(4,8,0))
return a = StateT $ \ s -> return (a, s)
{-# INLINE return #-}
#endif
m >>= k = StateT $ \ s -> do
(a, s') <- runStateT m s
runStateT (k a) s'
{-# INLINE (>>=) #-}
#if !(MIN_VERSION_base(4,13,0))
fail str = StateT $ \ _ -> fail str
{-# INLINE fail #-}
#endif
#if MIN_VERSION_base(4,9,0)
instance (Fail.MonadFail m) => Fail.MonadFail (StateT s m) where
fail str = StateT $ \ _ -> Fail.fail str
{-# INLINE fail #-}
#endif
instance (MonadPlus m) => MonadPlus (StateT s m) where
mzero = StateT $ \ _ -> mzero
{-# INLINE mzero #-}
StateT m `mplus` StateT n = StateT $ \ s -> m s `mplus` n s
{-# INLINE mplus #-}
instance (MonadFix m) => MonadFix (StateT s m) where
mfix f = StateT $ \ s -> mfix $ \ ~(a, _) -> runStateT (f a) s
{-# INLINE mfix #-}
instance MonadTrans (StateT s) where
lift m = StateT $ \ s -> do
a <- m
return (a, s)
{-# INLINE lift #-}
instance (MonadIO m) => MonadIO (StateT s m) where
liftIO = lift . liftIO
{-# INLINE liftIO #-}
#if MIN_VERSION_base(4,12,0)
instance Contravariant m => Contravariant (StateT s m) where
contramap f m = StateT $ \s ->
contramap (\ (a, s') -> (f a, s')) $ runStateT m s
{-# INLINE contramap #-}
#endif
-- | Fetch the current value of the state within the monad.
get :: (Monad m) => StateT s m s
get = state $ \ s -> (s, s)
{-# INLINE get #-}
-- | @'put' s@ sets the state within the monad to @s@.
put :: (Monad m) => s -> StateT s m ()
put s = state $ \ _ -> ((), s)
{-# INLINE put #-}
-- | @'modify' f@ is an action that updates the state to the result of
-- applying @f@ to the current state.
--
-- * @'modify' f = 'get' >>= ('put' . f)@
modify :: (Monad m) => (s -> s) -> StateT s m ()
modify f = state $ \ s -> ((), f s)
{-# INLINE modify #-}
-- | A variant of 'modify' in which the computation is strict in the
-- new state.
--
-- * @'modify'' f = 'get' >>= (('$!') 'put' . f)@
--
-- Note that this is only strict in the top level of the state.
-- Lazy components of the state will not be evaluated unless @f@
-- evaluates them.
modify' :: (Monad m) => (s -> s) -> StateT s m ()
modify' f = do
s <- get
put $! f s
{-# INLINE modify' #-}
-- | A variant of 'modify' in which the new state is generated by a
-- monadic action.
modifyM :: (Monad m) => (s -> m s) -> StateT s m ()
modifyM f = StateT $ \ s -> do
s' <- f s
return ((), s')
{-# INLINE modifyM #-}
-- | Get a specific component of the state, using a projection function
-- supplied.
--
-- * @'gets' f = 'liftM' f 'get'@
gets :: (Monad m) => (s -> a) -> StateT s m a
gets f = state $ \ s -> (f s, s)
{-# INLINE gets #-}
-- | Uniform lifting of a @callCC@ operation to the new monad.
-- This version rolls back to the original state on entering the
-- continuation.
liftCallCC :: CallCC m (a,s) (b,s) -> CallCC (StateT s m) a b
liftCallCC callCC f = StateT $ \ s ->
callCC $ \ c ->
runStateT (f (\ a -> StateT $ \ _ -> c (a, s))) s
{-# INLINE liftCallCC #-}
-- | In-situ lifting of a @callCC@ operation to the new monad.
-- This version uses the current state on entering the continuation.
-- It does not satisfy the uniformity property (see "Control.Monad.Signatures").
liftCallCC' :: CallCC m (a,s) (b,s) -> CallCC (StateT s m) a b
liftCallCC' callCC f = StateT $ \ s ->
callCC $ \ c ->
runStateT (f (\ a -> StateT $ \ s' -> c (a, s'))) s
{-# INLINE liftCallCC' #-}
-- | Lift a @catchE@ operation to the new monad.
liftCatch :: Catch e m (a,s) -> Catch e (StateT s m) a
liftCatch catchE m h =
StateT $ \ s -> runStateT m s `catchE` \ e -> runStateT (h e) s
{-# INLINE liftCatch #-}
-- | Lift a @listen@ operation to the new monad.
liftListen :: (Monad m) => Listen w m (a,s) -> Listen w (StateT s m) a
liftListen listen m = StateT $ \ s -> do
((a, s'), w) <- listen (runStateT m s)
return ((a, w), s')
{-# INLINE liftListen #-}
-- | Lift a @pass@ operation to the new monad.
liftPass :: (Monad m) => Pass w m (a,s) -> Pass w (StateT s m) a
liftPass pass m = StateT $ \ s -> pass $ do
((a, f), s') <- runStateT m s
return ((a, s'), f)
{-# INLINE liftPass #-}
{- $examples
Parser from ParseLib with Hugs:
> type Parser a = StateT String [] a
> ==> StateT (String -> [(a,String)])
For example, item can be written as:
> item = do (x:xs) <- get
> put xs
> return x
>
> type BoringState s a = StateT s Identity a
> ==> StateT (s -> Identity (a,s))
>
> type StateWithIO s a = StateT s IO a
> ==> StateT (s -> IO (a,s))
>
> type StateWithErr s a = StateT s Maybe a
> ==> StateT (s -> Maybe (a,s))
-}
{- $counting
A function to increment a counter.
Taken from the paper \"Generalising Monads to Arrows\",
John Hughes (<http://www.cse.chalmers.se/~rjmh/>), November 1998:
> tick :: State Int Int
> tick = do n <- get
> put (n+1)
> return n
Add one to the given number using the state monad:
> plusOne :: Int -> Int
> plusOne n = execState tick n
A contrived addition example. Works only with positive numbers:
> plus :: Int -> Int -> Int
> plus n x = execState (sequence $ replicate n tick) x
-}
{- $labelling
An example from /The Craft of Functional Programming/, Simon
Thompson (<http://www.cs.kent.ac.uk/people/staff/sjt/>),
Addison-Wesley 1999: \"Given an arbitrary tree, transform it to a
tree of integers in which the original elements are replaced by
natural numbers, starting from 0. The same element has to be
replaced by the same number at every occurrence, and when we meet
an as-yet-unvisited element we have to find a \'new\' number to match
it with:\"
> data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show, Eq)
> type Table a = [a]
> numberTree :: Eq a => Tree a -> State (Table a) (Tree Int)
> numberTree Nil = return Nil
> numberTree (Node x t1 t2) = do
> num <- numberNode x
> nt1 <- numberTree t1
> nt2 <- numberTree t2
> return (Node num nt1 nt2)
> where
> numberNode :: Eq a => a -> State (Table a) Int
> numberNode x = do
> table <- get
> case elemIndex x table of
> Nothing -> do
> put (table ++ [x])
> return (length table)
> Just i -> return i
numTree applies numberTree with an initial state:
> numTree :: (Eq a) => Tree a -> Tree Int
> numTree t = evalState (numberTree t) []
> testTree = Node "Zero" (Node "One" (Node "Two" Nil Nil) (Node "One" (Node "Zero" Nil Nil) Nil)) Nil
> numTree testTree => Node 0 (Node 1 (Node 2 Nil Nil) (Node 1 (Node 0 Nil Nil) Nil)) Nil
-}
|