1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2004
*
* Canned Heap-Check and Stack-Check sequences.
*
* This file is written in a subset of C--, extended with various
* features specific to GHC. It is compiled by GHC directly. For the
* syntax of .cmm files, see the parser in ghc/compiler/GHC/Cmm/Parser.y.
*
* ---------------------------------------------------------------------------*/
#include "Cmm.h"
#include "Updates.h"
#include "SMPClosureOps.h"
#if defined(__PIC__)
import pthread_mutex_unlock;
#endif
import AcquireSRWLockExclusive;
import ReleaseSRWLockExclusives;
#if !defined(UnregisterisedCompiler)
import CLOSURE g0;
import CLOSURE large_alloc_lim;
import CLOSURE stg_MSG_THROWTO_info;
import CLOSURE stg_MVAR_DIRTY_info;
import CLOSURE stg_WHITEHOLE_info;
import CLOSURE stg_ap_stack_entries;
import CLOSURE stg_apply_interp_info;
import CLOSURE stg_arg_bitmaps;
import CLOSURE stg_block_putmvar_info;
import CLOSURE stg_block_readmvar_info;
import CLOSURE stg_block_takemvar_info;
import CLOSURE stg_block_throwto_info;
import CLOSURE stg_enter_info;
import CLOSURE stg_gc_fun_info;
import CLOSURE stg_gc_prim_p_ll_info;
import CLOSURE stg_gc_prim_pp_ll_info;
import CLOSURE stg_ret_d_info;
import CLOSURE stg_ret_f_info;
import CLOSURE stg_ret_l_info;
import CLOSURE stg_ret_n_info;
import CLOSURE stg_ret_p_info;
import CLOSURE stg_stack_save_entries;
#endif
/* Stack/Heap Check Failure
* ------------------------
*
* Both heap and stack check failures end up in the same place, so
* that we can share the code for the failure case when a proc needs
* both a stack check and a heap check (a common case).
*
* So when we get here, we have to tell the difference between a stack
* check failure and a heap check failure. The code for the checks
* looks like this:
if (Sp - 16 < SpLim) goto c1Tf;
Hp = Hp + 16;
if (Hp > HpLim) goto c1Th;
...
c1Th:
HpAlloc = 16;
goto c1Tf;
c1Tf: jump stg_gc_enter_1 ();
* Note that Sp is not decremented by the check, whereas Hp is. The
* reasons for this seem to be largely historic, I can't think of a
* good reason not to decrement Sp at the check too. (--SDM)
*
* Note that HpLim may be set to zero arbitrarily by the timer signal
* or another processor to trigger a context switch via heap check
* failure.
*
* The job of these fragments (stg_gc_enter_1 and friends) is to
* 1. Leave no slop in the heap, so Hp must be retreated if it was
* incremented by the check. No-slop is a requirement for LDV
* profiling, at least.
* 2. If a heap check failed, try to grab another heap block from
* the nursery and continue.
* 3. otherwise, return to the scheduler with StackOverflow,
* HeapOverflow, or ThreadYielding as appropriate.
*
* We can tell whether Hp was incremented, because HpAlloc is
* non-zero: HpAlloc is required to be zero at all times unless a
* heap-check just failed, which is why the stack-check failure case
* does not set HpAlloc (see code fragment above). So that covers (1).
* HpAlloc is zeroed in LOAD_THREAD_STATE().
*
* If Hp > HpLim, then either (a) we have reached the end of the
* current heap block, or (b) HpLim == 0 and we should yield. Hence
* check Hp > HpLim first, and then HpLim == 0 to decide whether to
* return ThreadYielding or try to grab another heap block from the
* nursery.
*
* If Hp <= HpLim, then this must be a StackOverflow. The scheduler
* will either increase the size of our stack, or raise an exception if
* the stack is already too big.
*/
// N.B. the access to what_next may synchronize with throwToMsg
#define PRE_RETURN(why,what_next) \
%relaxed StgTSO_what_next(CurrentTSO) = what_next::I16; \
StgRegTable_rRet(BaseReg) = why; \
R1 = BaseReg;
/* Remember that the return address is *removed* when returning to a
* ThreadRunGHC thread.
*/
stg_gc_noregs
{
W_ ret;
DEBUG_ONLY(foreign "C" heapCheckFail());
if (Hp > HpLim) {
Hp = Hp - HpAlloc/*in bytes*/;
if (HpLim == 0) {
ret = ThreadYielding;
goto sched;
}
if (HpAlloc <= BLOCK_SIZE
&& bdescr_link(CurrentNursery) != NULL) {
HpAlloc = 0;
CLOSE_NURSERY();
Capability_total_allocated(MyCapability()) =
Capability_total_allocated(MyCapability()) +
%zx64(BYTES_TO_WDS(bdescr_free(CurrentNursery) -
bdescr_start(CurrentNursery)));
CurrentNursery = bdescr_link(CurrentNursery);
bdescr_free(CurrentNursery) = bdescr_start(CurrentNursery);
OPEN_NURSERY();
CInt context_switch, interrupt;
context_switch = %relaxed Capability_context_switch(MyCapability());
interrupt = %relaxed Capability_interrupt(MyCapability());
if (context_switch != 0 :: CInt ||
interrupt != 0 :: CInt ||
(StgTSO_alloc_limit(CurrentTSO) `lt` (0::I64) &&
(TO_W_(StgTSO_flags(CurrentTSO)) & TSO_ALLOC_LIMIT) != 0)) {
ret = ThreadYielding;
goto sched;
} else {
jump %ENTRY_CODE(Sp(0)) [];
}
} else {
ret = HeapOverflow;
goto sched;
}
} else {
if (CHECK_GC()) {
ret = HeapOverflow;
} else {
ret = StackOverflow;
}
}
sched:
PRE_RETURN(ret,ThreadRunGHC);
jump stg_returnToSched [R1];
}
#define HP_GENERIC \
PRE_RETURN(HeapOverflow, ThreadRunGHC) \
jump stg_returnToSched [R1];
#define BLOCK_GENERIC \
PRE_RETURN(ThreadBlocked, ThreadRunGHC) \
jump stg_returnToSched [R1];
#define YIELD_GENERIC \
PRE_RETURN(ThreadYielding, ThreadRunGHC) \
jump stg_returnToSched [R1];
#define BLOCK_BUT_FIRST(c) \
PRE_RETURN(ThreadBlocked, ThreadRunGHC) \
R2 = c; \
jump stg_returnToSchedButFirst [R1,R2,R3];
#define YIELD_TO_INTERPRETER \
PRE_RETURN(ThreadYielding, ThreadInterpret) \
jump stg_returnToSchedNotPaused [R1];
/* -----------------------------------------------------------------------------
Heap checks in thunks/functions.
In these cases, node always points to the function closure. This gives
us an easy way to return to the function: just leave R1 on the top of
the stack, and have the scheduler enter it to return.
There are canned sequences for 'n' pointer values in registers.
-------------------------------------------------------------------------- */
INFO_TABLE_RET ( stg_enter, RET_SMALL, W_ info_ptr, P_ closure )
return (/* no return values */)
{
ENTER(closure);
}
__stg_gc_enter_1 (P_ node)
{
jump stg_gc_noregs (stg_enter_info, node) ();
}
/* -----------------------------------------------------------------------------
Canned heap checks for primitives.
We can't use stg_gc_fun because primitives are not functions, so
these fragments let us save some boilerplate heap-check-failure
code in a few common cases.
-------------------------------------------------------------------------- */
stg_gc_prim (W_ fun)
{
call stg_gc_noregs ();
jump fun();
}
stg_gc_prim_p (P_ arg, W_ fun)
{
call stg_gc_noregs ();
jump fun(arg);
}
stg_gc_prim_pp (P_ arg1, P_ arg2, W_ fun)
{
call stg_gc_noregs ();
jump fun(arg1,arg2);
}
stg_gc_prim_n (W_ arg, W_ fun)
{
call stg_gc_noregs ();
jump fun(arg);
}
INFO_TABLE_RET(stg_gc_prim_p_ll, RET_SMALL, W_ info, P_ arg, W_ fun)
/* explicit stack */
{
W_ fun;
P_ arg;
fun = Sp(2);
arg = Sp(1);
Sp_adj(3);
R1 = arg;
jump fun [R1];
}
stg_gc_prim_p_ll
{
W_ fun;
P_ arg;
fun = R2;
arg = R1;
Sp_adj(-3);
Sp(2) = fun;
Sp(1) = arg;
Sp(0) = stg_gc_prim_p_ll_info;
jump stg_gc_noregs [];
}
INFO_TABLE_RET(stg_gc_prim_pp_ll, RET_SMALL, W_ info, P_ arg1, P_ arg2, W_ fun)
/* explicit stack */
{
W_ fun;
P_ arg1, arg2;
fun = Sp(3);
arg2 = Sp(2);
arg1 = Sp(1);
Sp_adj(4);
R1 = arg1;
R2 = arg2;
jump fun [R1, R2];
}
stg_gc_prim_pp_ll
{
W_ fun;
P_ arg1, arg2;
fun = R3;
arg1 = R1;
arg2 = R2;
Sp_adj(-4);
Sp(3) = fun;
Sp(2) = arg2;
Sp(1) = arg1;
Sp(0) = stg_gc_prim_pp_ll_info;
jump stg_gc_noregs [];
}
/* -----------------------------------------------------------------------------
Info tables for returning values of various types. These are used
when we want to push a frame on the stack that will return a value
to the frame underneath it.
-------------------------------------------------------------------------- */
INFO_TABLE_RET ( stg_ret_v, RET_SMALL, W_ info_ptr )
return (/* no return values */)
{
return ();
}
INFO_TABLE_RET ( stg_ret_p, RET_SMALL, W_ info_ptr, P_ ptr )
return (/* no return values */)
{
return (ptr);
}
INFO_TABLE_RET ( stg_ret_n, RET_SMALL, W_ info_ptr, W_ nptr )
return (/* no return values */)
{
return (nptr);
}
INFO_TABLE_RET ( stg_ret_f, RET_SMALL, W_ info_ptr, F_ f )
return (/* no return values */)
{
return (f);
}
INFO_TABLE_RET ( stg_ret_d, RET_SMALL, W_ info_ptr, D_ d )
return (/* no return values */)
{
return (d);
}
INFO_TABLE_RET ( stg_ret_l, RET_SMALL, W_ info_ptr, L_ l )
return (/* no return values */)
{
return (l);
}
/* -----------------------------------------------------------------------------
Canned heap-check failures for case alts, where we have some values
in registers or on the stack according to the NativeReturn
convention.
-------------------------------------------------------------------------- */
/*-- void return ------------------------------------------------------------ */
/*-- R1 is a GC pointer, but we don't enter it ----------------------- */
stg_gc_unpt_r1 return (P_ ptr) /* NB. return convention */
{
jump stg_gc_noregs (stg_ret_p_info, ptr) ();
}
/*-- R1 is unboxed -------------------------------------------------- */
stg_gc_unbx_r1 return (W_ nptr) /* NB. return convention */
{
jump stg_gc_noregs (stg_ret_n_info, nptr) ();
}
/*-- F1 contains a float ------------------------------------------------- */
stg_gc_f1 return (F_ f)
{
jump stg_gc_noregs (stg_ret_f_info, f) ();
}
/*-- D1 contains a double ------------------------------------------------- */
stg_gc_d1 return (D_ d)
{
jump stg_gc_noregs (stg_ret_d_info, d) ();
}
/*-- L1 contains an int64 ------------------------------------------------- */
stg_gc_l1 return (L_ l)
{
jump stg_gc_noregs (stg_ret_l_info, l) ();
}
/*-- Unboxed tuples with multiple pointers -------------------------------- */
stg_gc_pp return (P_ arg1, P_ arg2)
{
call stg_gc_noregs();
return (arg1,arg2);
}
stg_gc_ppp return (P_ arg1, P_ arg2, P_ arg3)
{
call stg_gc_noregs();
return (arg1,arg2,arg3);
}
stg_gc_pppp return (P_ arg1, P_ arg2, P_ arg3, P_ arg4)
{
call stg_gc_noregs();
return (arg1,arg2,arg3,arg4);
}
/* -----------------------------------------------------------------------------
Generic function entry heap check code.
At a function entry point, the arguments are as per the calling convention,
i.e. some in regs and some on the stack. There may or may not be
a pointer to the function closure in R1 - if there isn't, then the heap
check failure code in the function will arrange to load it.
The function's argument types are described in its info table, so we
can just jump to this bit of generic code to save away all the
registers and return to the scheduler.
This code arranges the stack like this:
| .... |
| args |
+---------------------+
| f_closure |
+---------------------+
| size |
+---------------------+
| stg_gc_fun_info |
+---------------------+
The size is the number of words of arguments on the stack, and is cached
in the frame in order to simplify stack walking: otherwise the size of
this stack frame would have to be calculated by looking at f's info table.
-------------------------------------------------------------------------- */
__stg_gc_fun /* explicit stack */
{
W_ size;
W_ info;
W_ type;
info = %GET_FUN_INFO(UNTAG(R1));
// cache the size
type = TO_W_(StgFunInfoExtra_fun_type(info));
if (type == ARG_GEN) {
size = BITMAP_SIZE(StgFunInfoExtra_bitmap(info));
} else {
if (type == ARG_GEN_BIG) {
#if defined(TABLES_NEXT_TO_CODE)
// bitmap field holds an offset
size = StgLargeBitmap_size(
TO_W_(StgFunInfoExtraRev_bitmap_offset(info))
+ %GET_ENTRY(UNTAG(R1)) /* ### */ );
#else
size = StgLargeBitmap_size( StgFunInfoExtra_bitmap(info) );
#endif
} else {
size = BITMAP_SIZE(W_[stg_arg_bitmaps + WDS(type)]);
}
}
#if defined(NO_ARG_REGS)
// we don't have to save any registers away
Sp_adj(-3);
Sp(2) = R1;
Sp(1) = size;
Sp(0) = stg_gc_fun_info;
jump stg_gc_noregs [];
#else
W_ type;
type = TO_W_(StgFunInfoExtra_fun_type(info));
// cache the size
if (type == ARG_GEN || type == ARG_GEN_BIG) {
// regs already saved by the heap check code
Sp_adj(-3);
Sp(2) = R1;
Sp(1) = size;
Sp(0) = stg_gc_fun_info;
// DEBUG_ONLY(foreign "C" debugBelch("stg_fun_gc_gen(ARG_GEN)"););
jump stg_gc_noregs [];
} else {
jump W_[stg_stack_save_entries + WDS(type)] [*]; // all regs live
// jumps to stg_gc_noregs after saving stuff
}
#endif /* !NO_ARG_REGS */
}
/* -----------------------------------------------------------------------------
Generic Apply (return point)
The dual to stg_fun_gc_gen (above): this fragment returns to the
function, passing arguments in the stack and in registers
appropriately. The stack layout is given above.
-------------------------------------------------------------------------- */
INFO_TABLE_RET ( stg_gc_fun, RET_FUN )
/* explicit stack */
{
R1 = Sp(2);
Sp_adj(3);
#if defined(NO_ARG_REGS)
// Minor optimisation: there are no argument registers to load up,
// so we can just jump straight to the function's entry point.
jump %GET_ENTRY(UNTAG(R1)) [R1];
#else
W_ info;
W_ type;
info = %GET_FUN_INFO(UNTAG(R1));
type = TO_W_(StgFunInfoExtra_fun_type(info));
if (type == ARG_GEN || type == ARG_GEN_BIG) {
jump StgFunInfoExtra_slow_apply(info) [R1];
} else {
if (type == ARG_BCO) {
// cover this case just to be on the safe side
Sp_adj(-2);
Sp(1) = R1;
Sp(0) = stg_apply_interp_info;
jump stg_yield_to_interpreter [];
} else {
jump W_[stg_ap_stack_entries + WDS(type)] [R1];
}
}
#endif
}
/* -----------------------------------------------------------------------------
Yields
-------------------------------------------------------------------------- */
stg_yield_noregs
{
YIELD_GENERIC;
}
/* -----------------------------------------------------------------------------
Yielding to the interpreter... top of stack says what to do next.
-------------------------------------------------------------------------- */
stg_yield_to_interpreter
{
YIELD_TO_INTERPRETER;
}
/* -----------------------------------------------------------------------------
Blocks
-------------------------------------------------------------------------- */
stg_block_noregs
{
BLOCK_GENERIC;
}
/* -----------------------------------------------------------------------------
* takeMVar/putMVar-specific blocks
*
* Stack layout for a thread blocked in takeMVar/readMVar:
*
* ret. addr
* ptr to MVar (R1)
* stg_block_takemvar_info (or stg_block_readmvar_info)
*
* Stack layout for a thread blocked in putMVar:
*
* ret. addr
* ptr to Value (R2)
* ptr to MVar (R1)
* stg_block_putmvar_info
*
* See PrimOps.cmm for a description of the workings of take/putMVar.
*
* -------------------------------------------------------------------------- */
INFO_TABLE_RET ( stg_block_takemvar, RET_SMALL, W_ info_ptr, P_ mvar )
return ()
{
jump stg_takeMVarzh(mvar);
}
// code fragment executed just before we return to the scheduler
stg_block_takemvar_finally
{
W_ r1, r3;
r1 = R1;
r3 = R3;
unlockClosure(r3, stg_MVAR_DIRTY_info);
R1 = r1;
R3 = r3;
jump StgReturn [R1];
}
// Stack usage covered by RESERVED_STACK_WORDS
stg_block_takemvar /* mvar passed in R1 */
{
Sp_adj(-2);
Sp(1) = R1;
Sp(0) = stg_block_takemvar_info;
R3 = R1; // mvar communicated to stg_block_takemvar_finally in R3
BLOCK_BUT_FIRST(stg_block_takemvar_finally);
}
INFO_TABLE_RET ( stg_block_readmvar, RET_SMALL, W_ info_ptr, P_ mvar )
return ()
{
jump stg_readMVarzh(mvar);
}
// code fragment executed just before we return to the scheduler
stg_block_readmvar_finally
{
W_ r1, r3;
r1 = R1;
r3 = R3;
unlockClosure(r3, stg_MVAR_DIRTY_info);
R1 = r1;
R3 = r3;
jump StgReturn [R1];
}
stg_block_readmvar /* mvar passed in R1 */
{
Sp_adj(-2);
Sp(1) = R1;
Sp(0) = stg_block_readmvar_info;
R3 = R1; // mvar communicated to stg_block_readmvar_finally in R3
BLOCK_BUT_FIRST(stg_block_readmvar_finally);
}
INFO_TABLE_RET( stg_block_putmvar, RET_SMALL, W_ info_ptr,
P_ mvar, P_ val )
return ()
{
jump stg_putMVarzh(mvar, val);
}
// code fragment executed just before we return to the scheduler
stg_block_putmvar_finally
{
W_ r1, r3;
r1 = R1;
r3 = R3;
unlockClosure(r3, stg_MVAR_DIRTY_info);
R1 = r1;
R3 = r3;
jump StgReturn [R1];
}
stg_block_putmvar (P_ mvar, P_ val)
{
push (stg_block_putmvar_info, mvar, val) {
R3 = R1; // mvar communicated to stg_block_putmvar_finally in R3
BLOCK_BUT_FIRST(stg_block_putmvar_finally);
}
}
stg_block_blackhole (P_ node)
{
Sp_adj(-2);
Sp(1) = node;
Sp(0) = stg_enter_info;
BLOCK_GENERIC;
}
INFO_TABLE_RET ( stg_block_throwto, RET_SMALL, W_ info_ptr,
P_ tso, P_ exception )
return ()
{
jump stg_killThreadzh(tso, exception);
}
stg_block_throwto_finally
{
// unlock the throwto message, but only if it wasn't already
// unlocked. It may have been unlocked if we revoked the message
// due to an exception being raised during threadPaused().
if (StgHeader_info(StgTSO_block_info(CurrentTSO)) == stg_WHITEHOLE_info) {
W_ r1;
r1 = R1;
unlockClosure(StgTSO_block_info(CurrentTSO), stg_MSG_THROWTO_info);
R1 = r1;
}
jump StgReturn [R1];
}
stg_block_throwto (P_ tso, P_ exception)
{
push (stg_block_throwto_info, tso, exception) {
BLOCK_BUT_FIRST(stg_block_throwto_finally);
}
}
#if defined(mingw32_HOST_OS)
INFO_TABLE_RET ( stg_block_async, RET_SMALL, W_ info_ptr, W_ ares )
return ()
{
W_ len, errC;
len = TO_W_(StgAsyncIOResult_len(ares));
errC = TO_W_(StgAsyncIOResult_errCode(ares));
ccall free(ares "ptr");
return (len, errC);
}
stg_block_async
{
Sp_adj(-2);
Sp(0) = stg_block_async_info;
BLOCK_GENERIC;
}
/* Used by threadDelay implementation; it would be desirable to get rid of
* this free()'ing void return continuation.
*/
INFO_TABLE_RET ( stg_block_async_void, RET_SMALL, W_ info_ptr, W_ ares )
return ()
{
ccall free(ares "ptr");
return ();
}
stg_block_async_void
{
Sp_adj(-2);
Sp(0) = stg_block_async_void_info;
BLOCK_GENERIC;
}
#endif
/* -----------------------------------------------------------------------------
STM-specific waiting
-------------------------------------------------------------------------- */
stg_block_stmwait
{
// When blocking on an MVar we have to be careful to only release
// the lock on the MVar at the very last moment (using
// BLOCK_BUT_FIRST()), since when we release the lock another
// Capability can wake up the thread, which modifies its stack and
// other state. This is not a problem for STM, because STM
// wakeups are non-destructive; the waker simply calls
// tryWakeupThread() which sends a message to the owner
// Capability. So the moment we release this lock we might start
// getting wakeup messages, but that's perfectly harmless.
//
// Furthermore, we *must* release these locks, just in case an
// exception is raised in this thread by
// maybePerformBlockedException() while exiting to the scheduler,
// which will abort the transaction, which needs to obtain a lock
// on all the TVars to remove the thread from the queues.
//
ccall stmWaitUnlock(MyCapability() "ptr", R3 "ptr");
BLOCK_GENERIC;
}
|