1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2001
*
* API for invoking Haskell functions via the RTS
*
* --------------------------------------------------------------------------*/
#include "rts/PosixSource.h"
#include "Rts.h"
#include "RtsAPI.h"
#include "RtsFlags.h"
#include "HsFFI.h"
#include "RtsUtils.h"
#include "Prelude.h"
#include "Schedule.h"
#include "Capability.h"
#include "StableName.h"
#include "StablePtr.h"
#include "Threads.h"
#include "Weak.h"
#include "sm/NonMoving.h"
/* ----------------------------------------------------------------------------
Building Haskell objects from C datatypes.
------------------------------------------------------------------------- */
HaskellObj
rts_mkChar (Capability *cap, HsChar c)
{
StgClosure *p;
// See Note [Precomputed static closures]
if (c <= MAX_CHARLIKE) {
p = (StgClosure *)CHARLIKE_CLOSURE(c);
} else {
p = (StgClosure *)allocate(cap, CONSTR_sizeW(0,1));
SET_HDR(p, Czh_con_info, CCS_SYSTEM);
p->payload[0] = (StgClosure *)(StgWord)(StgChar)c;
}
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt (Capability *cap, HsInt i)
{
StgClosure *p;
// See Note [Precomputed static closures]
if (i >= MIN_INTLIKE && i <= MAX_INTLIKE) {
p = (StgClosure *)INTLIKE_CLOSURE(i);
} else {
p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, Izh_con_info, CCS_SYSTEM);
*(StgInt *)p->payload = i;
}
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt8 (Capability *cap, HsInt8 i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, I8zh_con_info, CCS_SYSTEM);
*(StgInt8 *)p->payload = i;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt16 (Capability *cap, HsInt16 i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, I16zh_con_info, CCS_SYSTEM);
*(StgInt16 *)p->payload = i;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt32 (Capability *cap, HsInt32 i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, I32zh_con_info, CCS_SYSTEM);
*(StgInt32 *)p->payload = i;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkInt64 (Capability *cap, HsInt64 i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,sizeofW(StgInt64)));
SET_HDR(p, I64zh_con_info, CCS_SYSTEM);
ASSIGN_Int64((P_)&(p->payload[0]), i);
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord (Capability *cap, HsWord i)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, Wzh_con_info, CCS_SYSTEM);
*(StgWord *)p->payload = i;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord8 (Capability *cap, HsWord8 w)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, W8zh_con_info, CCS_SYSTEM);
*(StgWord8 *)p->payload = w;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord16 (Capability *cap, HsWord16 w)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, W16zh_con_info, CCS_SYSTEM);
*(StgWord16 *)p->payload = w;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord32 (Capability *cap, HsWord32 w)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, W32zh_con_info, CCS_SYSTEM);
*(StgWord32 *)p->payload = w;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkWord64 (Capability *cap, HsWord64 w)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,sizeofW(StgWord64)));
SET_HDR(p, W64zh_con_info, CCS_SYSTEM);
ASSIGN_Word64((P_)&(p->payload[0]), w);
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkFloat (Capability *cap, HsFloat f)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1));
SET_HDR(p, Fzh_con_info, CCS_SYSTEM);
ASSIGN_FLT((P_)p->payload, (StgFloat)f);
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkDouble (Capability *cap, HsDouble d)
{
StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,sizeofW(StgDouble)));
SET_HDR(p, Dzh_con_info, CCS_SYSTEM);
ASSIGN_DBL((P_)p->payload, (StgDouble)d);
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkStablePtr (Capability *cap, HsStablePtr s)
{
StgClosure *p = (StgClosure *)allocate(cap,sizeofW(StgHeader)+1);
SET_HDR(p, StablePtr_con_info, CCS_SYSTEM);
p->payload[0] = (StgClosure *)s;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkPtr (Capability *cap, HsPtr a)
{
StgClosure *p = (StgClosure *)allocate(cap,sizeofW(StgHeader)+1);
SET_HDR(p, Ptr_con_info, CCS_SYSTEM);
p->payload[0] = (StgClosure *)a;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkFunPtr (Capability *cap, HsFunPtr a)
{
StgClosure *p = (StgClosure *)allocate(cap,sizeofW(StgHeader)+1);
SET_HDR(p, FunPtr_con_info, CCS_SYSTEM);
p->payload[0] = (StgClosure *)a;
return TAG_CLOSURE(1, p);
}
HaskellObj
rts_mkBool (Capability *cap STG_UNUSED, HsBool b)
{
if (b) {
return TAG_CLOSURE(2, (StgClosure *)True_closure);
} else {
return TAG_CLOSURE(1, (StgClosure *)False_closure);
}
}
HaskellObj
rts_mkString (Capability *cap, char *s)
{
return rts_apply(cap, (StgClosure *)unpackCString_closure, rts_mkPtr(cap,s));
}
HaskellObj
rts_apply (Capability *cap, HaskellObj f, HaskellObj arg)
{
StgThunk *ap;
ap = (StgThunk *)allocate(cap,sizeofW(StgThunk) + 2);
// Here we don't want to use CCS_SYSTEM, because it's a hidden cost centre,
// and evaluating Haskell code under a hidden cost centre leads to
// confusing profiling output. (#7753)
SET_HDR(ap, (StgInfoTable *)&stg_ap_2_upd_info, CCS_MAIN);
ap->payload[0] = f;
ap->payload[1] = arg;
return (StgClosure *)ap;
}
/* ----------------------------------------------------------------------------
Deconstructing Haskell objects
We would like to assert that we have the right kind of object in
each case, but this is problematic because in GHCi the info table
for the D# constructor (say) might be dynamically loaded. Hence we
omit these assertions for now.
------------------------------------------------------------------------- */
HsChar
rts_getChar (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Czh_con_info ||
// p->header.info == Czh_static_info);
return (StgChar)(StgWord)(UNTAG_CLOSURE(p)->payload[0]);
}
HsInt
rts_getInt (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Izh_con_info ||
// p->header.info == Izh_static_info);
return *(HsInt *)(UNTAG_CLOSURE(p)->payload);
}
HsInt8
rts_getInt8 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == I8zh_con_info ||
// p->header.info == I8zh_static_info);
return *(HsInt8 *)(UNTAG_CLOSURE(p)->payload);
}
HsInt16
rts_getInt16 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == I16zh_con_info ||
// p->header.info == I16zh_static_info);
return *(HsInt16 *)(UNTAG_CLOSURE(p)->payload);
}
HsInt32
rts_getInt32 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == I32zh_con_info ||
// p->header.info == I32zh_static_info);
return *(HsInt32 *)(UNTAG_CLOSURE(p)->payload);
}
HsInt64
rts_getInt64 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == I64zh_con_info ||
// p->header.info == I64zh_static_info);
return PK_Int64((P_)&(UNTAG_CLOSURE(p)->payload[0]));
}
HsWord
rts_getWord (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Wzh_con_info ||
// p->header.info == Wzh_static_info);
return *(HsWord *)(UNTAG_CLOSURE(p)->payload);
}
HsWord8
rts_getWord8 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == W8zh_con_info ||
// p->header.info == W8zh_static_info);
return *(HsWord8 *)(UNTAG_CLOSURE(p)->payload);
}
HsWord16
rts_getWord16 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == W16zh_con_info ||
// p->header.info == W16zh_static_info);
return *(HsWord16 *)(UNTAG_CLOSURE(p)->payload);
}
HsWord32
rts_getWord32 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == W32zh_con_info ||
// p->header.info == W32zh_static_info);
return *(HsWord32 *)(UNTAG_CLOSURE(p)->payload);
}
HsWord64
rts_getWord64 (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == W64zh_con_info ||
// p->header.info == W64zh_static_info);
return PK_Word64((P_)&(UNTAG_CLOSURE(p)->payload[0]));
}
HsFloat
rts_getFloat (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Fzh_con_info ||
// p->header.info == Fzh_static_info);
return (float)(PK_FLT((P_)UNTAG_CLOSURE(p)->payload));
}
HsDouble
rts_getDouble (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Dzh_con_info ||
// p->header.info == Dzh_static_info);
return (double)(PK_DBL((P_)UNTAG_CLOSURE(p)->payload));
}
HsStablePtr
rts_getStablePtr (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == StablePtr_con_info ||
// p->header.info == StablePtr_static_info);
return (StgStablePtr)(UNTAG_CLOSURE(p)->payload[0]);
}
HsPtr
rts_getPtr (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == Ptr_con_info ||
// p->header.info == Ptr_static_info);
return (Capability *)(UNTAG_CLOSURE(p)->payload[0]);
}
HsFunPtr
rts_getFunPtr (HaskellObj p)
{
// See comment above:
// ASSERT(p->header.info == FunPtr_con_info ||
// p->header.info == FunPtr_static_info);
return (void *)(UNTAG_CLOSURE(p)->payload[0]);
}
HsBool
rts_getBool (HaskellObj p)
{
const StgWord tag = GET_CLOSURE_TAG(p);
if (tag > 0) {
return tag - 1;
}
const StgInfoTable *info;
info = get_itbl((const StgClosure *)UNTAG_CONST_CLOSURE(p));
if (info->srt == 0) { // srt is the constructor tag
return 0;
} else {
return 1;
}
}
/* -----------------------------------------------------------------------------
Creating threads
-------------------------------------------------------------------------- */
INLINE_HEADER void pushClosure (StgTSO *tso, StgWord c) {
tso->stackobj->sp--;
tso->stackobj->sp[0] = (W_) c;
}
StgTSO *
createGenThread (Capability *cap, W_ stack_size, StgClosure *closure)
{
StgTSO *t;
t = createThread (cap, stack_size);
pushClosure(t, (W_)closure);
pushClosure(t, (W_)&stg_enter_info);
return t;
}
StgTSO *
createIOThread (Capability *cap, W_ stack_size, StgClosure *closure)
{
StgTSO *t;
t = createThread (cap, stack_size);
pushClosure(t, (W_)&stg_ap_v_info);
pushClosure(t, (W_)closure);
pushClosure(t, (W_)&stg_enter_info);
return t;
}
/*
* Same as above, but also evaluate the result of the IO action
* to whnf while we're at it.
*/
StgTSO *
createStrictIOThread(Capability *cap, W_ stack_size, StgClosure *closure)
{
StgTSO *t;
t = createThread(cap, stack_size);
pushClosure(t, (W_)&stg_forceIO_info);
pushClosure(t, (W_)&stg_ap_v_info);
pushClosure(t, (W_)closure);
pushClosure(t, (W_)&stg_enter_info);
return t;
}
/* ----------------------------------------------------------------------------
Evaluating Haskell expressions
The running task (capability->running_task) must be bounded i.e. you must
call newBoundTask() before calling these functions. Note that rts_lock() and
rts_pause() both call newBoundTask().
------------------------------------------------------------------------- */
void rts_eval (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret)
{
StgTSO *tso;
tso = createGenThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
scheduleWaitThread(tso,ret,cap);
}
void rts_eval_ (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* in */ unsigned int stack_size,
/* out */ HaskellObj *ret)
{
StgTSO *tso;
tso = createGenThread(*cap, stack_size, p);
scheduleWaitThread(tso,ret,cap);
}
/*
* rts_evalIO() evaluates a value of the form (IO a), forcing the action's
* result to WHNF before returning.
*/
void rts_evalIO (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret)
{
StgTSO* tso;
tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
scheduleWaitThread(tso,ret,cap);
}
/*
* rts_inCall() is similar to rts_evalIO, but expects to be called as an incall,
* and is not expected to be called by user code directly.
*/
void rts_inCall (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret)
{
StgTSO* tso;
tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
if ((*cap)->running_task->preferred_capability != -1) {
// enabled_capabilities should not change between here and waitCapability()
ASSERT((*cap)->no == ((*cap)->running_task->preferred_capability % enabled_capabilities));
// we requested explicit affinity; don't move this thread from now on.
tso->flags |= TSO_LOCKED;
}
scheduleWaitThread(tso,ret,cap);
}
/*
* rts_evalStableIOMain() is suitable for calling main Haskell thread
* stored in (StablePtr (IO a)) it calls rts_evalStableIO but wraps
* function in GHC.TopHandler.runMainIO that installs top_handlers.
* See #12903.
*/
void rts_evalStableIOMain(/* inout */ Capability **cap,
/* in */ HsStablePtr s,
/* out */ HsStablePtr *ret)
{
StgTSO* tso;
StgClosure *p, *r, *w;
SchedulerStatus stat;
p = (StgClosure *)deRefStablePtr(s);
w = rts_apply(*cap, &ghczminternal_GHCziInternalziTopHandler_runMainIO_closure, p);
tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, w);
// async exceptions are always blocked by default in the created
// thread. See #1048.
tso->flags |= TSO_BLOCKEX | TSO_INTERRUPTIBLE;
scheduleWaitThread(tso,&r,cap);
stat = rts_getSchedStatus(*cap);
if (stat == Success && ret != NULL) {
ASSERT(r != NULL);
*ret = getStablePtr((StgPtr)r);
}
}
/*
* rts_evalStableIO() is suitable for calling from Haskell. It
* evaluates a value of the form (StablePtr (IO a)), forcing the
* action's result to WHNF before returning. The result is returned
* in a StablePtr.
*/
void rts_evalStableIO (/* inout */ Capability **cap,
/* in */ HsStablePtr s,
/* out */ HsStablePtr *ret)
{
StgTSO* tso;
StgClosure *p, *r;
SchedulerStatus stat;
p = (StgClosure *)deRefStablePtr(s);
tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
// async exceptions are always blocked by default in the created
// thread. See #1048.
tso->flags |= TSO_BLOCKEX | TSO_INTERRUPTIBLE;
scheduleWaitThread(tso,&r,cap);
stat = rts_getSchedStatus(*cap);
if (stat == Success && ret != NULL) {
ASSERT(r != NULL);
*ret = getStablePtr((StgPtr)r);
}
}
/*
* Like rts_evalIO(), but doesn't force the action's result.
*/
void rts_evalLazyIO (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret)
{
StgTSO *tso;
tso = createIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p);
scheduleWaitThread(tso,ret,cap);
}
void rts_evalLazyIO_ (/* inout */ Capability **cap,
/* in */ HaskellObj p,
/* in */ unsigned int stack_size,
/* out */ HaskellObj *ret)
{
StgTSO *tso;
tso = createIOThread(*cap, stack_size, p);
scheduleWaitThread(tso,ret,cap);
}
/* Convenience function for decoding the returned status. */
void
rts_checkSchedStatus (char* site, Capability *cap)
{
SchedulerStatus rc = cap->running_task->incall->rstat;
switch (rc) {
case Success:
return;
case Killed:
errorBelch("%s: uncaught exception",site);
stg_exit(EXIT_FAILURE);
case Interrupted:
errorBelch("%s: interrupted", site);
#if defined(THREADED_RTS)
// The RTS is shutting down, and the process will probably
// soon exit. We don't want to preempt the shutdown
// by exiting the whole process here, so we just terminate the
// current thread. Don't forget to release the cap first though.
rts_unlock(cap);
shutdownThread();
#else
stg_exit(EXIT_FAILURE);
#endif
default:
errorBelch("%s: Return code (%d) not ok",(site),(rc));
stg_exit(EXIT_FAILURE);
}
}
SchedulerStatus
rts_getSchedStatus (Capability *cap)
{
return cap->running_task->incall->rstat;
}
#if defined(THREADED_RTS)
// The task that paused the RTS. The rts_pausing_task variable is owned by the
// task that owns all capabilities (there is at most one such task).
//
// It's possible to remove this and instead define the pausing task as whichever
// task owns all capabilities, but using `rts_pausing_task` leads to marginally
// cleaner code/API and better error messages.
Task * rts_pausing_task = NULL;
#endif
Capability *
rts_lock (void)
{
Capability *cap;
Task *task;
// Bound the current task. This is necessary to support rts_eval* functions.
task = newBoundTask();
if (task->running_finalizers) {
errorBelch("error: a C finalizer called back into Haskell.\n"
" This was previously allowed, but is disallowed in GHC 6.10.2 and later.\n"
" To create finalizers that may call back into Haskell, use\n"
" Foreign.Concurrent.newForeignPtr instead of Foreign.newForeignPtr.");
stg_exit(EXIT_FAILURE);
}
#if defined(THREADED_RTS)
if (rts_pausing_task == task) {
errorBelch("error: rts_lock: The RTS is already paused by this thread.\n"
" There is no need to call rts_lock if you have already called rts_pause.");
stg_exit(EXIT_FAILURE);
}
#endif
cap = NULL;
waitForCapability(&cap, task);
if (task->incall->prev_stack == NULL) {
// This is a new outermost call from C into Haskell land.
// Until the corresponding call to rts_unlock, this task
// is doing work on behalf of the RTS.
traceTaskCreate(task, cap);
}
return (Capability *)cap;
}
// Exiting the RTS: we hold a Capability that is not necessarily the
// same one that was originally returned by rts_lock(), because
// rts_evalIO() etc. may return a new one. Now that we have
// investigated the return value, we can release the Capability,
// and free the Task (in that order).
void
rts_unlock (Capability *cap)
{
Task *task;
task = cap->running_task;
ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
// Now release the Capability. With the capability released, GC
// may happen. NB. does not try to put the current Task on the
// worker queue.
// NB. keep cap->lock held while we call exitMyTask(). This
// is necessary during shutdown, where we want the invariant that
// after shutdownCapability(), all the Tasks associated with the
// Capability have completed their shutdown too. Otherwise we
// could have exitMyTask()/workerTaskStop() running at some
// random point in the future, which causes problems for
// freeTaskManager().
ACQUIRE_LOCK(&cap->lock);
releaseCapability_(cap,false);
// Finally, we can release the Task to the free list.
exitMyTask();
RELEASE_LOCK(&cap->lock);
if (task->incall == NULL) {
// This is the end of an outermost call from C into Haskell land.
// From here on, the task goes back to C land and we should not count
// it as doing work on behalf of the RTS.
traceTaskDelete(task);
}
}
struct PauseToken_ {
Capability *capability;
};
Capability *pauseTokenCapability(PauseToken *pauseToken) {
return pauseToken->capability;
}
#if defined(THREADED_RTS)
// See Note [Locking and Pausing the RTS]
PauseToken *rts_pause (void)
{
// Wait for any nonmoving collection to finish before pausing the RTS.
// The nonmoving collector needs to synchronise with the mutator,
// so pausing the mutator while a collection is ongoing might lead to deadlock or
// capabilities being prematurely re-awoken.
if (RtsFlags.GcFlags.useNonmoving) {
nonmovingBlockConcurrentMark(true);
}
// It is an error if this thread already paused the RTS. If another
// thread has paused the RTS, then rts_pause will block until rts_resume is
// called (and compete with other threads calling rts_pause). The blocking
// behavior is implied by the use of `stopAllCapabilities`.
Task * task = getMyTask();
if (rts_pausing_task == task)
{
// This task already passed the RTS.
errorBelch("error: rts_pause: This thread has already paused the RTS.");
stg_exit(EXIT_FAILURE);
}
// The current task must not own a capability. This is true for non-worker
// threads e.g. when making a safe FFI call. We allow pausing when
// `task->cap->running_task != task` because the capability can be taken by
// other capabilities. Doing this check is justified because rts_pause is a
// user facing function and we want good error reporting. We also don't
// expect rts_pause to be performance critical.
//
// N.B. we use a relaxed load since there is no easy way to synchronize
// here and this check is ultimately just a convenience for the user..
if (task->cap && RELAXED_LOAD(&task->cap->running_task) == task)
{
// This task owns a capability (and it can't be taken by other capabilities).
errorBelch(task->cap->in_haskell
? ("error: rts_pause: attempting to pause via an unsafe FFI call.\n"
" Perhaps a 'foreign import unsafe' should be 'safe'?")
: ("error: rts_pause: attempting to pause from a Task that owns a capability.\n"
" Have you already acquired a capability e.g. with rts_lock?"));
stg_exit(EXIT_FAILURE);
}
// Bound the current task. This is necessary to support rts_eval* functions.
task = newBoundTask();
stopAllCapabilities(NULL, task);
// Now we own all capabilities so we own rts_pausing_task and may set it.
rts_pausing_task = task;
PauseToken *token = stgMallocBytes(sizeof(PauseToken), "rts_pause");
token->capability = task->cap;
return token;
}
static void assert_isPausedOnMyTask(const char *functionName);
// See Note [Locking and Pausing the RTS]. The pauseToken argument is here just
// for symmetry with rts_pause and to match the pattern of rts_lock/rts_unlock.
void rts_resume (PauseToken *pauseToken)
{
assert_isPausedOnMyTask("rts_resume");
Task * task = getMyTask();
// Now we own all capabilities so we own rts_pausing_task and may write to
// it.
rts_pausing_task = NULL;
// releaseAllCapabilities will not block because the current task owns all
// capabilities.
releaseAllCapabilities(getNumCapabilities(), NULL, task);
exitMyTask();
stgFree(pauseToken);
if (RtsFlags.GcFlags.useNonmoving) {
nonmovingUnblockConcurrentMark();
}
}
// See RtsAPI.h
bool rts_isPaused(void)
{
return rts_pausing_task != NULL;
}
// Check that the rts_pause was called on this thread/task and this thread owns
// all capabilities. If not, outputs an error and exits with EXIT_FAILURE.
static void assert_isPausedOnMyTask(const char *functionName)
{
Task * task = getMyTask();
if (rts_pausing_task == NULL)
{
errorBelch (
"error: %s: the rts is not paused. Did you forget to call rts_pause?",
functionName);
stg_exit(EXIT_FAILURE);
}
if (task != rts_pausing_task)
{
// We don't have ownership of rts_pausing_task, so it may have changed
// just after the above read. Still, we are guaranteed that
// rts_pausing_task won't be set to the current task (because the
// current task is here now!), so the error messages are still correct.
errorBelch (
"error: %s: called from a different OS thread than rts_pause.",
functionName);
stg_exit(EXIT_FAILURE);
}
// Check that we own all capabilities.
for (unsigned int i = 0; i < getNumCapabilities(); i++)
{
Capability *cap = getCapability(i);
if (cap->running_task != task)
{
errorBelch (
"error: %s: the pausing thread does not own all capabilities.\n"
" Have you manually released a capability after calling rts_pause?",
functionName);
stg_exit(EXIT_FAILURE);
}
}
}
// See RtsAPI.h
void rts_listThreads(ListThreadsCb cb, void *user)
{
assert_isPausedOnMyTask("rts_listThreads");
// The rts is paused and can only be resumed by the current thread. Hence it
// is safe to read global thread data.
for (uint32_t g=0; g < RtsFlags.GcFlags.generations; g++) {
StgTSO *tso = generations[g].threads;
while (tso != END_TSO_QUEUE) {
cb(user, tso);
tso = tso->global_link;
}
}
}
struct list_roots_ctx {
ListRootsCb cb;
void *user;
};
// This is an evac_fn.
static void list_roots_helper(void *user, StgClosure **p) {
struct list_roots_ctx *ctx = (struct list_roots_ctx *) user;
ctx->cb(ctx->user, *p);
}
// See RtsAPI.h
void rts_listMiscRoots (ListRootsCb cb, void *user)
{
assert_isPausedOnMyTask("rts_listMiscRoots");
struct list_roots_ctx ctx;
ctx.cb = cb;
ctx.user = user;
threadStableNameTable(&list_roots_helper, (void *)&ctx);
threadStablePtrTable(&list_roots_helper, (void *)&ctx);
}
#else
PauseToken STG_NORETURN
*rts_pause (void)
{
errorBelch("Warning: Pausing the RTS is only possible for "
"multithreaded RTS.");
stg_exit(EXIT_FAILURE);
}
void STG_NORETURN
rts_resume (PauseToken *pauseToken STG_UNUSED)
{
errorBelch("Warning: Resuming the RTS is only possible for "
"multithreaded RTS.");
stg_exit(EXIT_FAILURE);
}
bool rts_isPaused(void)
{
errorBelch("Warning: Pausing/Resuming the RTS is only possible for "
"multithreaded RTS.");
return false;
}
// See RtsAPI.h
void rts_listThreads(ListThreadsCb cb STG_UNUSED, void *user STG_UNUSED)
{
errorBelch("Warning: rts_listThreads is only possible for multithreaded RTS.");
}
// See RtsAPI.h
void rts_listMiscRoots (ListRootsCb cb STG_UNUSED, void *user STG_UNUSED)
{
errorBelch("Warning: rts_listMiscRoots is only possible for multithreaded RTS.");
}
#endif
void rts_done (void)
{
freeMyTask();
}
/* -----------------------------------------------------------------------------
tryPutMVar from outside Haskell
The C call
hs_try_putmvar(cap, mvar)
is equivalent to the Haskell call
tryPutMVar mvar ()
but it is
* non-blocking: takes a bounded, short, amount of time
* asynchronous: the actual putMVar may be performed after the
call returns. That's why hs_try_putmvar() doesn't return a
result to say whether the put succeeded.
NOTE: this call transfers ownership of the StablePtr to the RTS, which will
free it after the tryPutMVar has taken place. The reason is that otherwise,
it would be very difficult for the caller to arrange to free the StablePtr
in all circumstances.
For more details, see the section "Waking up Haskell threads from C" in the
User's Guide.
-------------------------------------------------------------------------- */
void hs_try_putmvar (/* in */ int capability,
/* in */ HsStablePtr mvar)
{
Task *task = getMyTask();
Capability *cap;
Capability *task_old_cap USED_IF_THREADS;
if (capability < 0) {
capability = task->preferred_capability;
if (capability < 0) {
capability = 0;
}
}
cap = getCapability(capability % enabled_capabilities);
#if !defined(THREADED_RTS)
performTryPutMVar(cap, (StgMVar*)deRefStablePtr(mvar), Unit_closure);
freeStablePtr(mvar);
#else
ACQUIRE_LOCK(&cap->lock);
// If the capability is free, we can perform the tryPutMVar immediately
if (cap->running_task == NULL) {
cap->running_task = task;
task_old_cap = task->cap;
task->cap = cap;
RELEASE_LOCK(&cap->lock);
performTryPutMVar(cap, (StgMVar*)deRefStablePtr(mvar), Unit_closure);
freeStablePtr(mvar);
// Wake up the capability, which will start running the thread that we
// just awoke (if there was one).
releaseCapability(cap);
task->cap = task_old_cap;
} else {
PutMVar *p = stgMallocBytes(sizeof(PutMVar),"hs_try_putmvar");
// We cannot deref the StablePtr if we don't have a capability,
// so we have to store it and deref it later.
p->mvar = mvar;
p->link = cap->putMVars;
cap->putMVars = p;
RELEASE_LOCK(&cap->lock);
}
#endif
}
|