1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
|
/* ---------------------------------------------------------------------------
*
* (c) The GHC Team, 2006
*
* Thread-related functionality
*
* --------------------------------------------------------------------------*/
#include "rts/PosixSource.h"
#include "Rts.h"
#include "RtsFlags.h"
#include "Capability.h"
#include "Updates.h"
#include "Threads.h"
#include "STM.h"
#include "Schedule.h"
#include "Trace.h"
#include "ThreadLabels.h"
#include "Updates.h"
#include "Messages.h"
#include "RaiseAsync.h"
#include "Prelude.h"
#include "Printer.h"
#include "sm/Sanity.h"
#include "sm/Storage.h"
#include <string.h>
/* Next thread ID to allocate.
* LOCK: sched_mutex
*/
static StgThreadID next_thread_id = 1;
/* The smallest stack size that makes any sense is:
* RESERVED_STACK_WORDS (so we can get back from the stack overflow)
* + sizeofW(StgStopFrame) (the stg_stop_thread_info frame)
* + 1 (the closure to enter)
* + 1 (stg_ap_v_ret)
* + 1 (spare slot req'd by stg_ap_v_ret)
*
* A thread with this stack will bomb immediately with a stack
* overflow, which will increase its stack size.
*/
#define MIN_STACK_WORDS (RESERVED_STACK_WORDS + sizeofW(StgStopFrame) + 3)
/* ---------------------------------------------------------------------------
Create a new thread.
The new thread starts with the given stack size. Before the
scheduler can run, however, this thread needs to have a closure
(and possibly some arguments) pushed on its stack. See
pushClosure() in Schedule.h.
createGenThread() and createIOThread() (in SchedAPI.h) are
convenient packaged versions of this function.
------------------------------------------------------------------------ */
StgTSO *
createThread(Capability *cap, W_ size)
{
StgTSO *tso;
StgStack *stack;
uint32_t stack_size;
/* sched_mutex is *not* required */
/* catch ridiculously small stack sizes */
if (size < MIN_STACK_WORDS + sizeofW(StgStack) + sizeofW(StgTSO)) {
size = MIN_STACK_WORDS + sizeofW(StgStack) + sizeofW(StgTSO);
}
/* The size argument we are given includes all the per-thread
* overheads:
*
* - The TSO structure
* - The STACK header
*
* This is so that we can use a nice round power of 2 for the
* default stack size (e.g. 1k), and if we're allocating lots of
* threads back-to-back they'll fit nicely in a block. It's a bit
* of a benchmark hack, but it doesn't do any harm.
*/
stack_size = round_to_mblocks(size - sizeofW(StgTSO));
stack = (StgStack *)allocate(cap, stack_size);
TICK_ALLOC_STACK(stack_size);
SET_HDR(stack, &stg_STACK_info, cap->r.rCCCS);
stack->stack_size = stack_size - sizeofW(StgStack);
stack->sp = stack->stack + stack->stack_size;
stack->dirty = STACK_DIRTY;
stack->marking = 0;
tso = (StgTSO *)allocate(cap, sizeofW(StgTSO));
TICK_ALLOC_TSO(sizeofW(StgTSO));
SET_HDR(tso, &stg_TSO_info, CCS_SYSTEM);
// Always start with the compiled code evaluator
tso->what_next = ThreadRunGHC;
tso->block_info.closure = (StgClosure *)END_TSO_QUEUE;
tso->why_blocked = NotBlocked;
tso->blocked_exceptions = END_BLOCKED_EXCEPTIONS_QUEUE;
tso->bq = (StgBlockingQueue *)END_TSO_QUEUE;
tso->flags = 0;
tso->dirty = 1;
tso->_link = END_TSO_QUEUE;
tso->saved_errno = 0;
tso->bound = NULL;
tso->cap = cap;
tso->stackobj = stack;
tso->tot_stack_size = stack->stack_size;
ASSIGN_Int64((W_*)&(tso->alloc_limit), 0);
tso->trec = NO_TREC;
tso->label = NULL;
#if defined(PROFILING)
tso->prof.cccs = CCS_MAIN;
#endif
// put a stop frame on the stack
stack->sp -= sizeofW(StgStopFrame);
SET_HDR((StgClosure*)stack->sp,
(StgInfoTable *)&stg_stop_thread_info,CCS_SYSTEM);
/* Link the new thread on the global thread list.
*/
ACQUIRE_LOCK(&sched_mutex);
tso->id = next_thread_id++; // while we have the mutex
tso->global_link = g0->threads;
/* Mutations above need no memory barrier since this lock will provide
* a release barrier */
g0->threads = tso;
RELEASE_LOCK(&sched_mutex);
// ToDo: report the stack size in the event?
traceEventCreateThread(cap, tso);
return tso;
}
/* ---------------------------------------------------------------------------
* Equality on Thread ids.
*
* This is used from STG land in the implementation of the Eq instance
* for ThreadIds.
* ------------------------------------------------------------------------ */
bool
eq_thread(StgPtr tso1, StgPtr tso2)
{
return tso1 == tso2;
}
/* ---------------------------------------------------------------------------
* Comparing Thread ids.
*
* This is used from STG land in the implementation of the Ord instance
* for ThreadIds.
* ------------------------------------------------------------------------ */
int
cmp_thread(StgPtr tso1, StgPtr tso2)
{
if (tso1 == tso2) return 0;
StgThreadID id1 = ((StgTSO *)tso1)->id;
StgThreadID id2 = ((StgTSO *)tso2)->id;
ASSERT(id1 != id2);
return id1 < id2 ? -1 : 1;
}
/* ---------------------------------------------------------------------------
* Fetching the ThreadID from an StgTSO.
*
* This is used in the implementation of Show for ThreadIds.
* ------------------------------------------------------------------------ */
StgThreadID
rts_getThreadId(StgPtr tso)
{
return ((StgTSO *)tso)->id;
}
/* ---------------------------------------------------------------------------
* Enabling and disabling the thread allocation limit
* ------------------------------------------------------------------------ */
void rts_enableThreadAllocationLimit(StgPtr tso)
{
((StgTSO *)tso)->flags |= TSO_ALLOC_LIMIT;
}
void rts_disableThreadAllocationLimit(StgPtr tso)
{
((StgTSO *)tso)->flags &= ~TSO_ALLOC_LIMIT;
}
/* -----------------------------------------------------------------------------
Remove a thread from a queue.
Fails fatally if the TSO is not on the queue.
-------------------------------------------------------------------------- */
bool // returns true if we modified queue
removeThreadFromQueue (Capability *cap, StgTSO **queue, StgTSO *tso)
{
StgTSO *t, *prev;
prev = NULL;
for (t = *queue; t != END_TSO_QUEUE; prev = t, t = t->_link) {
if (t == tso) {
if (prev) {
setTSOLink(cap,prev,t->_link);
t->_link = END_TSO_QUEUE;
return false;
} else {
*queue = t->_link;
t->_link = END_TSO_QUEUE;
return true;
}
}
}
barf("removeThreadFromQueue: not found");
}
bool // returns true if we modified head or tail
removeThreadFromDeQueue (Capability *cap,
StgTSO **head, StgTSO **tail, StgTSO *tso)
{
StgTSO *t, *prev;
bool flag = false;
prev = NULL;
for (t = *head; t != END_TSO_QUEUE; prev = t, t = t->_link) {
if (t == tso) {
if (prev) {
setTSOLink(cap,prev,t->_link);
flag = false;
} else {
*head = t->_link;
flag = true;
}
t->_link = END_TSO_QUEUE;
if (*tail == tso) {
if (prev) {
*tail = prev;
} else {
*tail = END_TSO_QUEUE;
}
return true;
} else {
return flag;
}
}
}
barf("removeThreadFromDeQueue: not found");
}
/* ----------------------------------------------------------------------------
tryWakeupThread()
Attempt to wake up a thread. tryWakeupThread is idempotent: it is
always safe to call it too many times, but it is not safe in
general to omit a call.
------------------------------------------------------------------------- */
void
tryWakeupThread (Capability *cap, StgTSO *tso)
{
traceEventThreadWakeup (cap, tso, tso->cap->no);
#if defined(THREADED_RTS)
Capability *tso_owner = RELAXED_LOAD(&tso->cap);
if (tso_owner != cap)
{
MessageWakeup *msg;
msg = (MessageWakeup *)allocate(cap,sizeofW(MessageWakeup));
msg->tso = tso;
SET_HDR(msg, &stg_MSG_TRY_WAKEUP_info, CCS_SYSTEM);
sendMessage(cap, tso_owner, (Message*)msg);
debugTraceCap(DEBUG_sched, cap, "message: try wakeup thread %"
FMT_StgThreadID " on cap %d", tso->id, tso_owner->no);
return;
}
#endif
switch (ACQUIRE_LOAD(&tso->why_blocked))
{
case BlockedOnMVar:
case BlockedOnMVarRead:
{
if (tso->_link == END_TSO_QUEUE) {
tso->block_info.closure = (StgClosure*)END_TSO_QUEUE;
goto unblock;
} else {
return;
}
}
case BlockedOnMsgThrowTo:
{
const StgInfoTable *i;
i = lockClosure(tso->block_info.closure);
unlockClosure(tso->block_info.closure, i);
if (i != &stg_MSG_NULL_info) {
debugTraceCap(DEBUG_sched, cap, "thread %" FMT_StgThreadID " still "
"blocked on throwto (%p)", tso->id,
tso->block_info.throwto->header.info);
return;
}
// remove the block frame from the stack
ASSERT(tso->stackobj->sp[0] == (StgWord)&stg_block_throwto_info);
tso->stackobj->sp += 3;
goto unblock;
}
case BlockedOnSTM:
tso->block_info.closure = &stg_STM_AWOKEN_closure;
goto unblock;
case BlockedOnBlackHole:
case ThreadMigrating:
goto unblock;
default:
// otherwise, do nothing
return;
}
unblock:
// just run the thread now, if the BH is not really available,
// we'll block again.
tso->why_blocked = NotBlocked;
appendToRunQueue(cap,tso);
// We used to set the context switch flag here, which would
// trigger a context switch a short time in the future (at the end
// of the current nursery block). The idea is that we have just
// woken up a thread, so we may need to load-balance and migrate
// threads to other CPUs. On the other hand, setting the context
// switch flag here unfairly penalises the current thread by
// yielding its time slice too early.
//
// The synthetic benchmark nofib/smp/chan can be used to show the
// difference quite clearly.
// cap->context_switch = 1;
}
/* ----------------------------------------------------------------------------
migrateThread
------------------------------------------------------------------------- */
// Precondition: The caller must own the `from` capability.
void
migrateThread (Capability *from, StgTSO *tso, Capability *to)
{
// Sadly we can't assert this since migrateThread is called from
// scheduleDoGC, where we implicitly own all capabilities.
//ASSERT_FULL_CAPABILITY_INVARIANTS(from, getTask());
traceEventMigrateThread (from, tso, to->no);
// ThreadMigrating tells the target cap that it needs to be added to
// the run queue when it receives the MSG_TRY_WAKEUP.
tso->why_blocked = ThreadMigrating;
tso->cap = to;
tryWakeupThread(from, tso);
}
/* ----------------------------------------------------------------------------
awakenBlockedQueue
wakes up all the threads on the specified queue.
------------------------------------------------------------------------- */
static void
wakeBlockingQueue(Capability *cap, StgBlockingQueue *bq)
{
MessageBlackHole *msg;
const StgInfoTable *i;
ASSERT(bq->header.info == &stg_BLOCKING_QUEUE_DIRTY_info ||
bq->header.info == &stg_BLOCKING_QUEUE_CLEAN_info );
for (msg = bq->queue; msg != (MessageBlackHole*)END_TSO_QUEUE;
msg = msg->link) {
i = ACQUIRE_LOAD(&msg->header.info);
if (i != &stg_IND_info) {
ASSERT(i == &stg_MSG_BLACKHOLE_info);
tryWakeupThread(cap,msg->tso);
}
}
// overwrite the BQ with an indirection so it will be
// collected at the next GC.
OVERWRITE_INFO(bq, &stg_IND_info);
}
// If we update a closure that we know we BLACKHOLE'd, and the closure
// no longer points to the current TSO as its owner, then there may be
// an orphaned BLOCKING_QUEUE closure with blocked threads attached to
// it. We therefore traverse the BLOCKING_QUEUEs attached to the
// current TSO to see if any can now be woken up.
void
checkBlockingQueues (Capability *cap, StgTSO *tso)
{
StgBlockingQueue *bq, *next;
StgClosure *p;
debugTraceCap(DEBUG_sched, cap, "collision occurred; checking blocking "
"queues for thread %" FMT_StgThreadID, tso->id);
for (bq = tso->bq; bq != (StgBlockingQueue*)END_TSO_QUEUE; bq = next) {
next = bq->link;
const StgInfoTable *bqinfo = ACQUIRE_LOAD(&bq->header.info);
if (bqinfo == &stg_IND_info) {
// ToDo: could short it out right here, to avoid
// traversing this IND multiple times.
continue;
}
// We need to always ensure we untag bh. While it might seem a
// sensible assumption that bh will never be tagged, the GC could
// shortcut the indirection and put a tagged pointer into the
// indirection.
//
// This blew up on aarch64-darwin with misaligned access. bh pointing
// to an address that always ended in 0xa. Thus on architectures that
// are a little less strict about alignment, this would have read a
// garbage pinfo, which very, very unlikely would have been equal to
// stg_BLACKHOLE_info. Thus while the code would have done the wrong
// thing the result would be the same in almost all cases. See #20093.
p = UNTAG_CLOSURE(bq->bh);
const StgInfoTable *pinfo = ACQUIRE_LOAD(&p->header.info);
if (pinfo != &stg_BLACKHOLE_info ||
(RELAXED_LOAD(&((StgInd *)p)->indirectee) != (StgClosure*)bq))
{
wakeBlockingQueue(cap,bq);
}
}
}
/* ----------------------------------------------------------------------------
updateThunk
Update a thunk with a value. In order to do this, we need to know
which TSO owns (or is evaluating) the thunk, in case we need to
awaken any threads that are blocked on it.
------------------------------------------------------------------------- */
void
updateThunk (Capability *cap, StgTSO *tso, StgClosure *thunk, StgClosure *val)
{
StgClosure *v;
StgTSO *owner;
const StgInfoTable *i;
i = ACQUIRE_LOAD(&thunk->header.info);
if (i != &stg_BLACKHOLE_info &&
i != &stg_CAF_BLACKHOLE_info &&
i != &__stg_EAGER_BLACKHOLE_info &&
i != &stg_WHITEHOLE_info) {
updateWithIndirection(cap, thunk, val);
return;
}
v = UNTAG_CLOSURE(ACQUIRE_LOAD(&((StgInd*)thunk)->indirectee));
updateWithIndirection(cap, thunk, val);
// sometimes the TSO is locked when we reach here, so its header
// might be WHITEHOLE. Hence check for the correct owner using
// pointer equality first.
if ((StgTSO*)v == tso) {
return;
}
i = ACQUIRE_LOAD(&v->header.info);
if (i == &stg_TSO_info) {
checkBlockingQueues(cap, tso);
return;
}
if (i != &stg_BLOCKING_QUEUE_CLEAN_info &&
i != &stg_BLOCKING_QUEUE_DIRTY_info) {
checkBlockingQueues(cap, tso);
return;
}
owner = ((StgBlockingQueue*)v)->owner;
if (owner != tso) {
checkBlockingQueues(cap, tso);
} else {
wakeBlockingQueue(cap, (StgBlockingQueue*)v);
}
}
/* ---------------------------------------------------------------------------
* rtsSupportsBoundThreads(): is the RTS built to support bound threads?
* used by Control.Concurrent for error checking.
* ------------------------------------------------------------------------- */
HsBool
rtsSupportsBoundThreads(void)
{
#if defined(THREADED_RTS)
return HS_BOOL_TRUE;
#else
return HS_BOOL_FALSE;
#endif
}
/* ---------------------------------------------------------------------------
* isThreadBound(tso): check whether tso is bound to an OS thread.
* ------------------------------------------------------------------------- */
StgBool
isThreadBound(StgTSO* tso USED_IF_THREADS)
{
#if defined(THREADED_RTS)
return (tso->bound != NULL);
#endif
return false;
}
/* -----------------------------------------------------------------------------
Stack overflow
If the thread has reached its maximum stack size, then raise the
StackOverflow exception in the offending thread. Otherwise
relocate the TSO into a larger chunk of memory and adjust its stack
size appropriately.
-------------------------------------------------------------------------- */
void
threadStackOverflow (Capability *cap, StgTSO *tso)
{
StgStack *new_stack, *old_stack;
StgUnderflowFrame *frame;
W_ chunk_size;
IF_DEBUG(sanity,checkTSO(tso));
if (RtsFlags.GcFlags.maxStkSize > 0
&& tso->tot_stack_size >= RtsFlags.GcFlags.maxStkSize) {
// #3677: In a stack overflow situation, stack squeezing may
// reduce the stack size, but we don't know whether it has been
// reduced enough for the stack check to succeed if we try
// again. Fortunately stack squeezing is idempotent, so all we
// need to do is record whether *any* squeezing happened. If we
// are at the stack's absolute -K limit, and stack squeezing
// happened, then we try running the thread again. The
// TSO_SQUEEZED flag is set by threadPaused() to tell us whether
// squeezing happened or not.
if (tso->flags & TSO_SQUEEZED) {
return;
}
debugTrace(DEBUG_gc,
"threadStackOverflow of TSO %" FMT_StgThreadID " (%p): stack"
" too large (now %ld; max is %ld)", tso->id, tso,
(long)tso->stackobj->stack_size, RtsFlags.GcFlags.maxStkSize);
IF_DEBUG(gc,
/* If we're debugging, just print out the top of the stack */
printStackChunk(tso->stackobj->sp,
stg_min(tso->stackobj->stack + tso->stackobj->stack_size,
tso->stackobj->sp+64)));
// See Note [Throw to self when masked], also #767 and #8303.
throwToSelf(cap, tso, (StgClosure *)stackOverflow_closure);
return;
}
// We also want to avoid enlarging the stack if squeezing has
// already released some of it. However, we don't want to get into
// a pathological situation where a thread has a nearly full stack
// (near its current limit, but not near the absolute -K limit),
// keeps allocating a little bit, squeezing removes a little bit,
// and then it runs again. So to avoid this, if we squeezed *and*
// there is still less than BLOCK_SIZE_W words free, then we enlarge
// the stack anyway.
//
// NB: This reasoning only applies if the stack has been squeezed;
// if no squeezing has occurred, then BLOCK_SIZE_W free space does
// not mean there is enough stack to run; the thread may have
// requested a large amount of stack (see below). If the amount
// we squeezed is not enough to run the thread, we'll come back
// here (no squeezing will have occurred and thus we'll enlarge the
// stack.)
if ((tso->flags & TSO_SQUEEZED) &&
((W_)(tso->stackobj->sp - tso->stackobj->stack) >= BLOCK_SIZE_W)) {
return;
}
old_stack = tso->stackobj;
// If we used less than half of the previous stack chunk, then we
// must have failed a stack check for a large amount of stack. In
// this case we allocate a double-sized chunk to try to
// accommodate the large stack request. If that also fails, the
// next chunk will be 4x normal size, and so on.
//
// It would be better to have the mutator tell us how much stack
// was needed, as we do with heap allocations, but this works for
// now.
//
if (old_stack->sp > old_stack->stack + old_stack->stack_size / 2)
{
chunk_size = stg_max(2 * (old_stack->stack_size + sizeofW(StgStack)),
RtsFlags.GcFlags.stkChunkSize);
}
else
{
chunk_size = RtsFlags.GcFlags.stkChunkSize;
}
debugTraceCap(DEBUG_sched, cap,
"allocating new stack chunk of size %d bytes",
chunk_size * sizeof(W_));
// Charge the current thread for allocating stack. Stack usage is
// non-deterministic, because the chunk boundaries might vary from
// run to run, but accounting for this is better than not
// accounting for it, since a deep recursion will otherwise not be
// subject to allocation limits.
cap->r.rCurrentTSO = tso;
new_stack = (StgStack*) allocate(cap, chunk_size);
cap->r.rCurrentTSO = NULL;
SET_HDR(new_stack, &stg_STACK_info, old_stack->header.prof.ccs);
TICK_ALLOC_STACK(chunk_size);
new_stack->dirty = 0; // begin clean, we'll mark it dirty below
new_stack->marking = 0;
new_stack->stack_size = chunk_size - sizeofW(StgStack);
new_stack->sp = new_stack->stack + new_stack->stack_size;
tso->tot_stack_size += new_stack->stack_size;
{
StgWord *sp;
W_ chunk_words, size;
// find the boundary of the chunk of old stack we're going to
// copy to the new stack. We skip over stack frames until we
// reach the smaller of
//
// * the chunk buffer size (+RTS -kb)
// * the end of the old stack
//
for (sp = old_stack->sp;
sp < stg_min(old_stack->sp + RtsFlags.GcFlags.stkChunkBufferSize,
old_stack->stack + old_stack->stack_size); )
{
size = stack_frame_sizeW((StgClosure*)sp);
// if including this frame would exceed the size of the
// new stack (taking into account the underflow frame),
// then stop at the previous frame.
if (sp + size > old_stack->sp + (new_stack->stack_size -
sizeofW(StgUnderflowFrame))) {
break;
}
sp += size;
}
if (sp == old_stack->stack + old_stack->stack_size) {
//
// the old stack chunk is now empty, so we do *not* insert
// an underflow frame pointing back to it. There are two
// cases: either the old stack chunk was the last one, in
// which case it ends with a STOP_FRAME, or it is not the
// last one, and it already ends with an UNDERFLOW_FRAME
// pointing to the previous chunk. In the latter case, we
// will copy the UNDERFLOW_FRAME into the new stack chunk.
// In both cases, the old chunk will be subsequently GC'd.
//
// With the default settings, -ki1k -kb1k, this means the
// first stack chunk will be discarded after the first
// overflow, being replaced by a non-moving 32k chunk.
//
} else {
new_stack->sp -= sizeofW(StgUnderflowFrame);
frame = (StgUnderflowFrame*)new_stack->sp;
frame->info = &stg_stack_underflow_frame_info;
frame->next_chunk = old_stack;
}
// copy the stack chunk between tso->sp and sp to
// new_tso->sp + (tso->sp - sp)
chunk_words = sp - old_stack->sp;
memcpy(/* dest */ new_stack->sp - chunk_words,
/* source */ old_stack->sp,
/* size */ chunk_words * sizeof(W_));
old_stack->sp += chunk_words;
new_stack->sp -= chunk_words;
}
// No write barriers needed; all of the writes above are to structured
// owned by our capability.
tso->stackobj = new_stack;
// we're about to run it, better mark it dirty
dirty_STACK(cap, new_stack);
IF_DEBUG(sanity,checkTSO(tso));
// IF_DEBUG(scheduler,printTSO(new_tso));
}
/* ---------------------------------------------------------------------------
Stack underflow - called from the stg_stack_underflow_info frame
------------------------------------------------------------------------ */
W_ // returns offset to the return address
threadStackUnderflow (Capability *cap, StgTSO *tso)
{
StgStack *new_stack, *old_stack;
StgUnderflowFrame *frame;
uint32_t retvals;
debugTraceCap(DEBUG_sched, cap, "stack underflow");
old_stack = tso->stackobj;
frame = (StgUnderflowFrame*)(old_stack->stack + old_stack->stack_size
- sizeofW(StgUnderflowFrame));
ASSERT(frame->info == &stg_stack_underflow_frame_info);
new_stack = (StgStack*)frame->next_chunk;
tso->stackobj = new_stack;
retvals = (P_)frame - old_stack->sp;
if (retvals != 0)
{
// we have some return values to copy to the old stack
if ((W_)(new_stack->sp - new_stack->stack) < retvals)
{
barf("threadStackUnderflow: not enough space for return values");
}
memcpy(/* dest */ new_stack->sp - retvals,
/* src */ old_stack->sp,
/* size */ retvals * sizeof(W_));
}
// empty the old stack. The GC may still visit this object
// because it is on the mutable list.
old_stack->sp = old_stack->stack + old_stack->stack_size;
// restore the stack parameters, and update tot_stack_size
tso->tot_stack_size -= old_stack->stack_size;
// we're about to run it, better mark it dirty.
//
// N.B. the nonmoving collector may mark the stack, meaning that sp must
// point at a valid stack frame.
dirty_STACK(cap, new_stack);
new_stack->sp -= retvals;
return retvals;
}
/* ----------------------------------------------------------------------------
Implementation of tryPutMVar#
NOTE: this should be kept in sync with stg_tryPutMVarzh in PrimOps.cmm
------------------------------------------------------------------------- */
bool performTryPutMVar(Capability *cap, StgMVar *mvar, StgClosure *value)
{
const StgInfoTable *info;
const StgInfoTable *qinfo;
StgMVarTSOQueue *q;
StgTSO *tso;
info = lockClosure((StgClosure*)mvar);
if (mvar->value != &stg_END_TSO_QUEUE_closure) {
#if defined(THREADED_RTS)
unlockClosure((StgClosure*)mvar, info);
#endif
return false;
}
q = mvar->head;
loop:
if (q == (StgMVarTSOQueue*)&stg_END_TSO_QUEUE_closure) {
/* No further takes, the MVar is now full. */
if (info == &stg_MVAR_CLEAN_info) {
dirty_MVAR(&cap->r, (StgClosure*)mvar, mvar->value);
}
mvar->value = value;
unlockClosure((StgClosure*)mvar, &stg_MVAR_DIRTY_info);
return true;
}
qinfo = ACQUIRE_LOAD(&q->header.info);
if (qinfo == &stg_IND_info ||
qinfo == &stg_MSG_NULL_info) {
q = (StgMVarTSOQueue*) ACQUIRE_LOAD(&((StgInd*)q)->indirectee);
goto loop;
}
// There are takeMVar(s) waiting: wake up the first one
tso = q->tso;
mvar->head = q = q->link;
if (q == (StgMVarTSOQueue*)&stg_END_TSO_QUEUE_closure) {
mvar->tail = (StgMVarTSOQueue*)&stg_END_TSO_QUEUE_closure;
} else {
if (info == &stg_MVAR_CLEAN_info) {
// Resolve #18919.
dirty_MVAR(&cap->r, (StgClosure*)mvar, mvar->value);
info = &stg_MVAR_DIRTY_info;
}
}
// save why_blocked here, because waking up the thread destroys
// this information
StgWord why_blocked = ACQUIRE_LOAD(&tso->why_blocked);
ASSERT(why_blocked == BlockedOnMVarRead || why_blocked == BlockedOnMVar);
ASSERT(tso->block_info.closure == (StgClosure*)mvar);
// actually perform the takeMVar
StgStack* stack = tso->stackobj;
RELAXED_STORE(&stack->sp[1], (W_)value);
RELAXED_STORE(&stack->sp[0], (W_)&stg_ret_p_info);
// indicate that the MVar operation has now completed.
RELEASE_STORE(&tso->_link, (StgTSO*)&stg_END_TSO_QUEUE_closure);
if ((stack->dirty & STACK_DIRTY) == 0) {
dirty_STACK(cap, stack);
}
tryWakeupThread(cap, tso);
// If it was a readMVar, then we can still do work,
// so loop back. (XXX: This could take a while)
if (why_blocked == BlockedOnMVarRead)
goto loop;
ASSERT(why_blocked == BlockedOnMVar);
unlockClosure((StgClosure*)mvar, info);
return true;
}
StgMutArrPtrs *listThreads(Capability *cap)
{
ACQUIRE_LOCK(&sched_mutex);
// First count how many threads we have...
StgWord n_threads = 0;
for (unsigned g = 0; g < RtsFlags.GcFlags.generations; g++) {
for (StgTSO *t = generations[g].threads; t != END_TSO_QUEUE; t = t->global_link) {
n_threads++;
}
}
// Allocate a suitably-sized array...
const StgWord size = n_threads + mutArrPtrsCardTableSize(n_threads);
StgMutArrPtrs *arr =
(StgMutArrPtrs *)allocate(cap, sizeofW(StgMutArrPtrs) + size);
SET_HDR(arr, &stg_MUT_ARR_PTRS_DIRTY_info, CCS_SYSTEM);
TICK_ALLOC_PRIM(sizeofW(StgMutArrPtrs), size, 0);
arr->ptrs = n_threads;
arr->size = size;
// Populate it...
StgWord i = 0;
for (unsigned g = 0; g < RtsFlags.GcFlags.generations; g++) {
for (StgTSO *t = generations[g].threads; t != END_TSO_QUEUE; t = t->global_link) {
// It's possible that new threads have been created since we counted.
// Ignore them.
if (i == n_threads)
break;
arr->payload[i] = (StgClosure *) t;
i++;
}
}
CHECKM(i == n_threads, "listThreads: Found too few threads");
RELEASE_LOCK(&sched_mutex);
return arr;
}
/* ----------------------------------------------------------------------------
* Debugging: why is a thread blocked
* ------------------------------------------------------------------------- */
#if defined(DEBUG)
void
printThreadBlockage(StgTSO *tso)
{
switch (ACQUIRE_LOAD(&tso->why_blocked)) {
#if defined(mingw32_HOST_OS)
case BlockedOnDoProc:
debugBelch("is blocked on proc (request: %u)", tso->block_info.async_result->reqID);
break;
#endif
#if !defined(THREADED_RTS)
case BlockedOnRead:
debugBelch("is blocked on read from fd %d", (int)(tso->block_info.fd));
break;
case BlockedOnWrite:
debugBelch("is blocked on write to fd %d", (int)(tso->block_info.fd));
break;
case BlockedOnDelay:
debugBelch("is blocked until %ld", (long)(tso->block_info.target));
break;
#endif
break;
case BlockedOnMVar:
debugBelch("is blocked on an MVar @ %p", tso->block_info.closure);
break;
case BlockedOnMVarRead:
debugBelch("is blocked on atomic MVar read @ %p", tso->block_info.closure);
break;
break;
case BlockedOnBlackHole:
debugBelch("is blocked on a black hole %p",
((StgBlockingQueue*)tso->block_info.bh->bh));
break;
case BlockedOnMsgThrowTo:
debugBelch("is blocked on a throwto message");
break;
case NotBlocked:
debugBelch("is not blocked");
break;
case ThreadMigrating:
debugBelch("is runnable, but not on the run queue");
break;
case BlockedOnCCall:
debugBelch("is blocked on an external call");
break;
case BlockedOnCCall_Interruptible:
debugBelch("is blocked on an external call (but may be interrupted)");
break;
case BlockedOnSTM:
debugBelch("is blocked on an STM operation");
break;
default:
barf("printThreadBlockage: strange tso->why_blocked: %d for TSO %"
FMT_StgThreadID " (%p)", tso->why_blocked, tso->id, tso);
}
}
void
printThreadStatus(StgTSO *t)
{
debugBelch("\tthread %4lu @ %p ", (unsigned long)t->id, (void *)t);
if (t->label) {
debugBelch("[\"%.*s\"] ", (int)t->label->bytes, (char *)t->label->payload);
}
switch (t->what_next) {
case ThreadKilled:
debugBelch("has been killed");
break;
case ThreadComplete:
debugBelch("has completed");
break;
default:
printThreadBlockage(t);
}
if (t->dirty) {
debugBelch(" (TSO_DIRTY)");
}
debugBelch("\n");
}
void
printAllThreads(void)
{
StgTSO *t, *next;
uint32_t i, g;
Capability *cap;
debugBelch("all threads:\n");
for (i = 0; i < getNumCapabilities(); i++) {
cap = getCapability(i);
debugBelch("threads on capability %d:\n", cap->no);
for (t = cap->run_queue_hd; t != END_TSO_QUEUE; t = t->_link) {
printThreadStatus(t);
}
}
debugBelch("other threads:\n");
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
for (t = generations[g].threads; t != END_TSO_QUEUE; t = next) {
if (t->why_blocked != NotBlocked) {
printThreadStatus(t);
}
next = t->global_link;
}
}
}
void
printGlobalThreads(void)
{
for (uint32_t g = 0; g < RtsFlags.GcFlags.generations; g++) {
debugBelch("\ngen %d\n", g);
for (StgTSO *t = generations[g].threads; t != END_TSO_QUEUE; t = t->global_link) {
debugBelch("thread %p (id=%lu)\n", t, (unsigned long)t->id);
}
for (StgTSO *t = generations[g].old_threads; t != END_TSO_QUEUE; t = t->global_link) {
debugBelch("thread %p (id=%lu) (old)\n", t, (unsigned long)t->id);
}
}
}
// useful from gdb
void
printThreadQueue(StgTSO *t)
{
uint32_t i = 0;
for (; t != END_TSO_QUEUE; t = t->_link) {
printThreadStatus(t);
i++;
}
debugBelch("%d threads on queue\n", i);
}
#endif /* DEBUG */
|