1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1995-2005
*
* Interval timer service for profiling and pre-emptive scheduling.
*
* ---------------------------------------------------------------------------*/
/*
* The interval timer is used for profiling and for context switching in the
* threaded build.
*
* This file defines the platform-independent view of interval timing, relying
* on platform-specific services to install and run the timers.
*
*/
#include "rts/PosixSource.h"
#include "Rts.h"
#include "Timer.h"
#include "Proftimer.h"
#include "Schedule.h"
#include "Ticker.h"
#include "Capability.h"
#include "RtsSignals.h"
#include "rts/EventLogWriter.h"
// See Note [No timer on wasm32]
#if !defined(wasm32_HOST_ARCH)
#define HAVE_PREEMPTION
#endif
// This global counter is used to allow multiple threads to stop the
// timer temporarily with a stopTimer()/startTimer() pair. If
// timer_enabled == 0 timer is enabled
// timer_disabled == N, N > 0 timer is disabled by N threads
// When timer_enabled makes a transition to 0, we enable the timer,
// and when it makes a transition to non-0 we disable it.
static StgWord timer_disabled;
/* ticks left before next pre-emptive context switch */
static int ticks_to_ctxt_switch = 0;
/* ticks left before next next forced eventlog flush */
static int ticks_to_eventlog_flush = 0;
/*
Note [GC During Idle Time]
~~~~~~~~~~~~~~~~~~~~~~~~~~
In the threaded RTS, a major GC can be performed during idle time (i.e., when
no Haskell computations are ready to run). This can be beneficial for two
reasons. First, running the GC during idle time makes it less likely that a GC
will be triggered when the process is active, increasing apparent
responsiveness. Second, these idle time GCs allow finalizers to run,
preventing resources from being held indefinitely when the process is otherwise
idle for extended periods.
There are two runtime RTS options to control idle time GC timing. The primary
control is set by `-I<n>`, which specifies the minimum period of time the
process must be idle before a GC is automatically triggered. It defaults to
0.3 seconds for the threaded runtime and 0 (which disables idle GC entirely)
for the non-threaded runtime. For certain workflows, the 0.3 second delay for
the threaded RTS may be too small. If an application must process an extended
burst of short-lived requests occurring a couple of times a second, it may go
idle for >0.3 seconds frequently, resulting in potentially dozens of major
GCs triggered every minute (and resulting heavy CPU load) while the burst
lasts. Setting the `-I<n>` value higher will prevent this flurry of major GCs,
though there is a danger that setting the value too high will prevent automatic
GCs entirely, if the process never gets a chance to go idle for long enough to
meet the larger threshold.
In this case, the second control, set by `-Iw<n>` may be helpful. For example,
setting `-I0.3 -Iw30` triggers automatic GCs after only 0.3 seconds of idle
time, but subject to a minimum delay *between* automatic GCs of at least 30
seconds. This is likely to work well for applications that must process a
nearly constant stream of frequent, short-lived requests, ensuring that
automatic GCs are triggered promptly when the process goes idle while limiting
the overall frequency of such GCs. (The default is `-Iw0`, meaning no limit on
frequency of GCs.)
Automatic GC timing is implemented below using two count-down timers. The
`idle_ticks_to_gc` timer counts down the `-I<n>` setting: it is initialized
when the process goes idle and counts down idle time before an automatic GC
becomes possible. The `inter_gc_ticks_to_gc` counts down the `-Iw<n>` setting:
it is initialized when an automatic GC is actually performed, and holds off the
next automatic GC until its count expires, limiting the overall frequency of
automatic GCs. Both timers must expire before an automatic GC is triggered.
See issue #11134 for additional detail.
*/
/* - countdown for minimum idle time before we start a GC (set by -I) */
static int idle_ticks_to_gc = 0;
/* - countdown for minimum time *between* idle GCs (set by -Iw) */
static int inter_gc_ticks_to_gc = 0;
/*
* Function: handle_tick()
*
* At each occurrence of a tick, the OS timer will invoke
* handle_tick().
*/
static
void
handle_tick(int unused STG_UNUSED)
{
handleProfTick();
if (RtsFlags.ConcFlags.ctxtSwitchTicks > 0
&& SEQ_CST_LOAD_ALWAYS(&timer_disabled) == 0)
{
ticks_to_ctxt_switch--;
if (ticks_to_ctxt_switch <= 0) {
ticks_to_ctxt_switch = RtsFlags.ConcFlags.ctxtSwitchTicks;
contextSwitchAllCapabilities(); /* schedule a context switch */
}
}
if (eventLogStatus() == EVENTLOG_RUNNING
&& RtsFlags.TraceFlags.eventlogFlushTicks > 0) {
ticks_to_eventlog_flush--;
if (ticks_to_eventlog_flush <= 0) {
ticks_to_eventlog_flush = RtsFlags.TraceFlags.eventlogFlushTicks;
flushEventLog(NULL);
}
}
/*
* If we've been inactive for idleGCDelayTime (set by +RTS
* -I), tell the scheduler to wake up and do a GC, to check
* for threads that are deadlocked. However, ensure we wait
* at least interIdleGCWait (+RTS -Iw) between idle GCs.
*/
switch (getRecentActivity()) {
case ACTIVITY_YES:
setRecentActivity(ACTIVITY_MAYBE_NO);
idle_ticks_to_gc = RtsFlags.GcFlags.idleGCDelayTime /
RtsFlags.MiscFlags.tickInterval;
break;
case ACTIVITY_MAYBE_NO:
if (idle_ticks_to_gc == 0 && inter_gc_ticks_to_gc == 0) {
if (RtsFlags.GcFlags.doIdleGC) {
setRecentActivity(ACTIVITY_INACTIVE);
inter_gc_ticks_to_gc = RtsFlags.GcFlags.interIdleGCWait /
RtsFlags.MiscFlags.tickInterval;
#if defined(THREADED_RTS)
wakeUpRts();
// The scheduler will call stopTimer() when it has done
// the GC.
#endif
} else {
setRecentActivity(ACTIVITY_DONE_GC);
// disable timer signals (see #1623, #5991, #9105)
// but only if we're not profiling (e.g. passed -h or -p RTS
// flags). If we are profiling we need to keep the timer active
// so that samples continue to be collected.
#if defined(PROFILING)
if (!(RtsFlags.ProfFlags.doHeapProfile
|| RtsFlags.CcFlags.doCostCentres)) {
stopTimer();
}
#else
stopTimer();
#endif
}
} else {
if (idle_ticks_to_gc) idle_ticks_to_gc--;
if (inter_gc_ticks_to_gc) inter_gc_ticks_to_gc--;
}
break;
default:
break;
}
}
void
initTimer(void)
{
#if defined(HAVE_PREEMPTION)
initProfTimer();
if (RtsFlags.MiscFlags.tickInterval != 0) {
initTicker(RtsFlags.MiscFlags.tickInterval, handle_tick);
}
SEQ_CST_STORE_ALWAYS(&timer_disabled, 1);
#endif
}
void
startTimer(void)
{
#if defined(HAVE_PREEMPTION)
if (SEQ_CST_SUB_ALWAYS(&timer_disabled, 1) == 0) {
if (RtsFlags.MiscFlags.tickInterval != 0) {
startTicker();
}
}
#endif
}
void
stopTimer(void)
{
#if defined(HAVE_PREEMPTION)
if (SEQ_CST_ADD_ALWAYS(&timer_disabled, 1) == 1) {
if (RtsFlags.MiscFlags.tickInterval != 0) {
stopTicker();
}
}
#endif
}
void
exitTimer (bool wait)
{
#if defined(HAVE_PREEMPTION)
if (RtsFlags.MiscFlags.tickInterval != 0) {
exitTicker(wait);
}
#endif
}
|