1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2004
*
* API for invoking Haskell functions via the RTS
*
* To understand the structure of the RTS headers, see the wiki:
* https://gitlab.haskell.org/ghc/ghc/wikis/commentary/source-tree/includes
*
* --------------------------------------------------------------------------*/
#pragma once
#if defined(__cplusplus)
extern "C" {
#endif
#include "HsFFI.h"
#include "rts/Time.h"
#include "rts/Types.h"
/*
* Running the scheduler
*/
typedef enum {
NoStatus, /* not finished yet */
Success, /* completed successfully */
Killed, /* uncaught exception */
Interrupted, /* stopped in response to a call to interruptStgRts */
HeapExhausted /* out of memory */
} SchedulerStatus;
typedef struct StgClosure_ *HaskellObj;
/*
* An abstract type representing the token returned by rts_lock() and
* used when allocating objects and threads in the RTS.
*/
typedef struct Capability_ Capability;
/*
* An abstract type representing the token returned by rts_pause().
*/
typedef struct PauseToken_ PauseToken;
/*
* From a PauseToken, get a Capability token used when allocating objects and
* threads in the RTS.
*/
Capability *pauseTokenCapability(PauseToken *pauseToken);
/*
* The public view of a Capability: we can be sure it starts with
* these two components (but it may have more private fields).
*/
typedef struct CapabilityPublic_ {
StgFunTable f;
StgRegTable r;
} CapabilityPublic;
/* N.B. this needs the Capability declaration above. */
#include "rts/EventLogWriter.h"
/* ----------------------------------------------------------------------------
RTS configuration settings, for passing to hs_init_ghc()
------------------------------------------------------------------------- */
typedef enum {
RtsOptsNone, // +RTS causes an error
RtsOptsIgnore, // Ignore command line arguments
RtsOptsIgnoreAll, // Ignore command line and Environment arguments
RtsOptsSafeOnly, // safe RTS options allowed; others cause an error
RtsOptsAll // all RTS options allowed
} RtsOptsEnabledEnum;
struct GCDetails_;
// The RtsConfig struct is passed (by value) to hs_init_ghc(). The
// reason for using a struct is extensibility: we can add more
// fields to this later without breaking existing client code.
typedef struct {
// Whether to interpret +RTS options on the command line
RtsOptsEnabledEnum rts_opts_enabled;
// Whether to give RTS flag suggestions
HsBool rts_opts_suggestions;
// additional RTS options
const char *rts_opts;
// True if GHC was not passed -no-hs-main
HsBool rts_hs_main;
// Whether to retain CAFs (default: false)
HsBool keep_cafs;
// Writer a for eventlog.
const EventLogWriter *eventlog_writer;
// Called before processing command-line flags, so that default
// settings for RtsFlags can be provided.
void (* defaultsHook) (void);
// Called just before exiting
void (* onExitHook) (void);
// Called on a stack overflow, before exiting
void (* stackOverflowHook) (W_ stack_size);
// Called on heap overflow, before exiting
void (* outOfHeapHook) (W_ request_size, W_ heap_size);
// Called when malloc() fails, before exiting
void (* mallocFailHook) (W_ request_size /* in bytes */, const char *msg);
// Called for every GC
void (* gcDoneHook) (const struct GCDetails_ *stats);
// Called when GC sync takes too long (+RTS --long-gc-sync=<time>)
void (* longGCSync) (uint32_t this_cap, Time time_ns);
void (* longGCSyncEnd) (Time time_ns);
} RtsConfig;
// Clients should start with defaultRtsConfig and then customise it.
// Bah, I really wanted this to be a const struct value, but it seems
// you can't do that in C (it generates code).
extern const RtsConfig defaultRtsConfig;
/* -----------------------------------------------------------------------------
Statistics
-------------------------------------------------------------------------- */
//
// Stats about a single GC
//
typedef struct GCDetails_ {
// The generation number of this GC
uint32_t gen;
// Number of threads used in this GC
uint32_t threads;
// Number of bytes allocated since the previous GC
uint64_t allocated_bytes;
// Total amount of live data in the heap (includes large + compact data).
// Updated after every GC. Data in uncollected generations (in minor GCs)
// are considered live.
uint64_t live_bytes;
// Total amount of live data in large objects
uint64_t large_objects_bytes;
// Total amount of live data in compact regions
uint64_t compact_bytes;
// Total amount of slop (wasted memory)
uint64_t slop_bytes;
// Total amount of memory in use by the RTS
uint64_t mem_in_use_bytes;
// Total amount of data copied during this GC
uint64_t copied_bytes;
// Memory lost due to block fragmentation
uint64_t block_fragmentation_bytes;
// In parallel GC, the max amount of data copied by any one thread
uint64_t par_max_copied_bytes;
// In parallel GC, the amount of balanced data copied by all threads
uint64_t par_balanced_copied_bytes;
// The time elapsed during synchronisation before GC
Time sync_elapsed_ns;
// The CPU time used during GC itself
Time cpu_ns;
// The time elapsed during GC itself
Time elapsed_ns;
//
// Concurrent garbage collector
//
// The CPU time used during the post-mark pause phase of the concurrent
// nonmoving GC.
Time nonmoving_gc_sync_cpu_ns;
// The time elapsed during the post-mark pause phase of the concurrent
// nonmoving GC.
Time nonmoving_gc_sync_elapsed_ns;
// The total CPU time used by the nonmoving GC.
Time nonmoving_gc_cpu_ns;
// The total time elapsed during which there is a nonmoving GC active.
Time nonmoving_gc_elapsed_ns;
} GCDetails;
//
// Stats about the RTS currently, and since the start of execution
//
typedef struct _RTSStats {
// -----------------------------------
// Cumulative stats about memory use
// Total number of GCs
uint32_t gcs;
// Total number of major (oldest generation) GCs
uint32_t major_gcs;
// Total bytes allocated
uint64_t allocated_bytes;
// Maximum live data (including large objects + compact regions) in the
// heap. Updated after a major GC.
uint64_t max_live_bytes;
// Maximum live data in large objects
uint64_t max_large_objects_bytes;
// Maximum live data in compact regions
uint64_t max_compact_bytes;
// Maximum slop
uint64_t max_slop_bytes;
// Maximum memory in use by the RTS
uint64_t max_mem_in_use_bytes;
// Sum of live bytes across all major GCs. Divided by major_gcs
// gives the average live data over the lifetime of the program.
uint64_t cumulative_live_bytes;
// Sum of copied_bytes across all GCs
uint64_t copied_bytes;
// Sum of copied_bytes across all parallel GCs
uint64_t par_copied_bytes;
// Sum of par_max_copied_bytes across all parallel GCs
uint64_t cumulative_par_max_copied_bytes;
// Sum of par_balanced_copied_byes across all parallel GCs.
uint64_t cumulative_par_balanced_copied_bytes;
// -----------------------------------
// Cumulative stats about time use
// (we use signed values here because due to inaccuracies in timers
// the values can occasionally go slightly negative)
// Total CPU time used by the init phase
Time init_cpu_ns;
// Total elapsed time used by the init phase
Time init_elapsed_ns;
// Total CPU time used by the mutator
Time mutator_cpu_ns;
// Total elapsed time used by the mutator
Time mutator_elapsed_ns;
// Total CPU time used by the GC
Time gc_cpu_ns;
// Total elapsed time used by the GC
Time gc_elapsed_ns;
// Total CPU time (at the previous GC)
Time cpu_ns;
// Total elapsed time (at the previous GC)
Time elapsed_ns;
// -----------------------------------
// Stats about the most recent GC
GCDetails gc;
// -----------------------------------
// Internal Counters
uint64_t any_work;
// The number of times a GC thread has iterated it's outer loop across all
// parallel GCs
uint64_t scav_find_work;
uint64_t max_n_todo_overflow;
// ----------------------------------
// Concurrent garbage collector
// The total CPU time used during the post-mark pause phase of the
// concurrent nonmoving GC.
Time nonmoving_gc_sync_cpu_ns;
// The total time elapsed during the post-mark pause phase of the
// concurrent nonmoving GC.
Time nonmoving_gc_sync_elapsed_ns;
// The maximum time elapsed during the post-mark pause phase of the
// concurrent nonmoving GC.
Time nonmoving_gc_sync_max_elapsed_ns;
// The total CPU time used by the nonmoving GC.
Time nonmoving_gc_cpu_ns;
// The total time elapsed during which there is a nonmoving GC active.
Time nonmoving_gc_elapsed_ns;
// The maximum time elapsed during any nonmoving GC cycle.
Time nonmoving_gc_max_elapsed_ns;
} RTSStats;
void getRTSStats (RTSStats *s);
int getRTSStatsEnabled (void);
// Returns the total number of bytes allocated since the start of the program.
// TODO: can we remove this?
uint64_t getAllocations (void);
/* ----------------------------------------------------------------------------
Starting up and shutting down the Haskell RTS.
------------------------------------------------------------------------- */
/* DEPRECATED, use hs_init() or hs_init_ghc() instead */
extern void startupHaskell ( int argc, char *argv[],
void (*init_root)(void) );
/* DEPRECATED, use hs_exit() instead */
extern void shutdownHaskell ( void );
/* Like hs_init(), but allows rtsopts. For more complicated usage,
* use hs_init_ghc. */
extern void hs_init_with_rtsopts (int *argc, char **argv[]);
/*
* GHC-specific version of hs_init() that allows specifying whether
* +RTS ... -RTS options are allowed or not (default: only "safe"
* options are allowed), and allows passing an option string that is
* to be interpreted by the RTS only, not passed to the program.
*/
extern void hs_init_ghc (int *argc, char **argv[], // program arguments
RtsConfig rts_config); // RTS configuration
extern void shutdownHaskellAndExit (int exitCode, int fastExit)
STG_NORETURN;
#if !defined(mingw32_HOST_OS)
extern void shutdownHaskellAndSignal (int sig, int fastExit)
STG_NORETURN;
#endif
extern void getProgArgv ( int *argc, char **argv[] );
extern void setProgArgv ( int argc, char *argv[] );
extern void getFullProgArgv ( int *argc, char **argv[] );
extern void setFullProgArgv ( int argc, char *argv[] );
extern void freeFullProgArgv ( void ) ;
/* exit() override */
extern void (*exitFn)(int);
/* Note [Locking and Pausing the RTS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You have to surround all access to the RtsAPI with rts_lock/rts_unlock or
with rts_pause/rts_resume.
# rts_lock / rts_unlock
Use `rts_lock` to acquire a token which may be used to call other RtsAPI
functions and call `rts_unlock` to return the token. When locked, garbage
collection will not occur. As long as 1 or more capabilities are not locked,
haskell threads will continue to execute. If you want to pause execution of
all haskell threads then use rts_pause/rts_resume instead.
The implementation of `rts_lock` acquires a capability for this thread. Hence,
at most n locks can be held simultaneously, where n is the number of
capabilities. It is an error to call `rts_lock` when the rts is already
paused by the current OS thread (see rts_pause/rts_resume below).
# rts_pause / rts_resume
Use `rts_pause` to pause execution of all Haskell threads and `rts_resume` to
resume them. The implementation acquires all capabilities. `rts_resume`
must be called on the same thread as `rts_pause`. `rts_pause`, much like
rts_lock, returns a token. A `Capability` can be extracted from that token using
`pauseTokenCapability()`. The `Capability` can then be used to call other RtsAPI
functions.
* With the RTS paused, garbage collections will not occur and haskell threads
will not execute, allocate, nor mutate their stacks.
* Non-Haskell (i.e. non-worker) threads such as those running safe FFI calls
will NOT be paused and can still mutate pinned mutable data such as pinned
`MutableByteArray#`s.
* You may call `rts_pause` from within a non-worker OS thread.
* You may call `rts_pause` from within a *safe* FFI call. In this case, make
sure to call `rts_resume` within the same FFI call or the RTS will deadlock.
* Calling `rts_pause` from an *unsafe* FFI call will cause an error.
* On return, the rts will be fully paused: all haskell threads are stopped
and all capabilities are acquired by the current OS thread.
* Calling `rts_pause` in between rts_lock/rts_unlock on the same thread will
cause an error.
* Calling `rts_pause` results in an error if the RTS is already paused by the
current OS thread.
* Only one OS thread at a time can keep the rts paused.
* `rts_pause` will block while another thread is pausing the RTS, and
continue when the current thread is given exclusive permission to pause the
RTS.
## Note on implementation.
Thread safety is achieved almost entirely by the mechanism of acquiring and
releasing Capabilities, resulting in a sort of mutex / critical section pattern.
This has the following consequences:
* There are at most `n_capabilities` threads currently in a
rts_lock/rts_unlock section.
* There is at most 1 threads in a rts_pause/rts_resume section. In that case
there will be no threads in a rts_lock/rts_unlock section.
* rts_pause and rts_lock may block in order to enforce the above 2
invariants.
*/
// Acquires a token which may be used to create new objects and evaluate them.
// See Note [Locking and Pausing the RTS] for correct usage.
Capability *rts_lock (void);
// releases the token acquired with rts_lock().
// See Note [Locking and Pausing the RTS] for correct usage.
void rts_unlock (Capability *token);
// If you are in a context where you know you have a current capability but
// do not know what it is, then use this to get it. Basically this only
// applies to "unsafe" foreign calls (as unsafe foreign calls are made with
// the capability held).
//
// WARNING: There is *no* guarantee this returns anything sensible (eg NULL)
// when there is no current capability.
Capability *rts_unsafeGetMyCapability (void);
/* ----------------------------------------------------------------------------
Which cpu should the OS thread and Haskell thread run on?
1. Run the current thread on the given capability:
rts_setInCallCapability(cap, 0);
2. Run the current thread on the given capability and set the cpu affinity
for this thread:
rts_setInCallCapability(cap, 1);
3. Run the current thread on the given numa node:
rts_pinThreadToNumaNode(node);
4. Run the current thread on the given capability and on the given numa node:
rts_setInCallCapability(cap, 0);
rts_pinThreadToNumaNode(cap);
------------------------------------------------------------------------- */
// Specify the Capability that the current OS thread should run on when it calls
// into Haskell. The actual capability will be calculated as the supplied
// value modulo the number of enabled Capabilities.
//
// If affinity is non-zero, the current thread will be bound to
// specific CPUs according to the prevailing affinity policy for the
// specified capability, set by either +RTS -qa or +RTS --numa.
void rts_setInCallCapability (int preferred_capability, int affinity);
// Specify the CPU Node that the current OS thread should run on when it calls
// into Haskell. The argument can be either a node number or capability number.
// The actual node will be calculated as the supplied value modulo the number
// of numa nodes.
void rts_pinThreadToNumaNode (int node);
/* ----------------------------------------------------------------------------
Building Haskell objects from C datatypes.
------------------------------------------------------------------------- */
HaskellObj rts_mkChar ( Capability *, HsChar c );
HaskellObj rts_mkInt ( Capability *, HsInt i );
HaskellObj rts_mkInt8 ( Capability *, HsInt8 i );
HaskellObj rts_mkInt16 ( Capability *, HsInt16 i );
HaskellObj rts_mkInt32 ( Capability *, HsInt32 i );
HaskellObj rts_mkInt64 ( Capability *, HsInt64 i );
HaskellObj rts_mkWord ( Capability *, HsWord w );
HaskellObj rts_mkWord8 ( Capability *, HsWord8 w );
HaskellObj rts_mkWord16 ( Capability *, HsWord16 w );
HaskellObj rts_mkWord32 ( Capability *, HsWord32 w );
HaskellObj rts_mkWord64 ( Capability *, HsWord64 w );
HaskellObj rts_mkPtr ( Capability *, HsPtr a );
HaskellObj rts_mkFunPtr ( Capability *, HsFunPtr a );
HaskellObj rts_mkFloat ( Capability *, HsFloat f );
HaskellObj rts_mkDouble ( Capability *, HsDouble f );
HaskellObj rts_mkStablePtr ( Capability *, HsStablePtr s );
HaskellObj rts_mkBool ( Capability *, HsBool b );
HaskellObj rts_mkString ( Capability *, char *s );
HaskellObj rts_apply ( Capability *, HaskellObj, HaskellObj );
/* ----------------------------------------------------------------------------
Deconstructing Haskell objects
------------------------------------------------------------------------- */
HsChar rts_getChar ( HaskellObj );
HsInt rts_getInt ( HaskellObj );
HsInt8 rts_getInt8 ( HaskellObj );
HsInt16 rts_getInt16 ( HaskellObj );
HsInt32 rts_getInt32 ( HaskellObj );
HsInt64 rts_getInt64 ( HaskellObj );
HsWord rts_getWord ( HaskellObj );
HsWord8 rts_getWord8 ( HaskellObj );
HsWord16 rts_getWord16 ( HaskellObj );
HsWord32 rts_getWord32 ( HaskellObj );
HsWord64 rts_getWord64 ( HaskellObj );
HsPtr rts_getPtr ( HaskellObj );
HsFunPtr rts_getFunPtr ( HaskellObj );
HsFloat rts_getFloat ( HaskellObj );
HsDouble rts_getDouble ( HaskellObj );
HsStablePtr rts_getStablePtr ( HaskellObj );
HsBool rts_getBool ( HaskellObj );
/* ----------------------------------------------------------------------------
Evaluating Haskell expressions
The versions ending in '_' allow you to specify an initial stack size.
Note that these calls may cause Garbage Collection, so all HaskellObj
references are rendered invalid by these calls.
All of these functions take a (Capability **) - there is a
Capability pointer both input and output. We use an inout
parameter because this is less error-prone for the client than a
return value - the client could easily forget to use the return
value, whereas incorrectly using an inout parameter will usually
result in a type error.
------------------------------------------------------------------------- */
void rts_eval (/* inout */ Capability **,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret);
void rts_eval_ (/* inout */ Capability **,
/* in */ HaskellObj p,
/* in */ unsigned int stack_size,
/* out */ HaskellObj *ret);
void rts_evalIO (/* inout */ Capability **,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret);
void rts_evalStableIOMain (/* inout */ Capability **,
/* in */ HsStablePtr s,
/* out */ HsStablePtr *ret);
void rts_evalStableIO (/* inout */ Capability **,
/* in */ HsStablePtr s,
/* out */ HsStablePtr *ret);
void rts_evalLazyIO (/* inout */ Capability **,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret);
void rts_evalLazyIO_ (/* inout */ Capability **,
/* in */ HaskellObj p,
/* in */ unsigned int stack_size,
/* out */ HaskellObj *ret);
void rts_inCall (/* inout */ Capability **,
/* in */ HaskellObj p,
/* out */ HaskellObj *ret);
void rts_checkSchedStatus (char* site, Capability *);
SchedulerStatus rts_getSchedStatus (Capability *cap);
// Halt execution of all Haskell threads.
// See Note [Locking and Pausing the RTS] for correct usage.
PauseToken *rts_pause (void);
// Counterpart of rts_pause: Continue from a pause.
// See Note [Locking and Pausing the RTS] for correct usage.
// [in] pauseToken: the token returned by rts_pause.
void rts_resume (PauseToken *pauseToken);
// Returns true if the rts is paused. See rts_pause() and rts_resume().
bool rts_isPaused(void);
// List all live threads. The RTS must be paused and this must be called on the
// same thread that called rts_pause().
typedef void (*ListThreadsCb)(void *user, StgTSO *);
void rts_listThreads(ListThreadsCb cb, void *user);
// List all non-thread GC roots. The RTS must be paused and this must be called
// on the same thread that called rts_pause().
typedef void (*ListRootsCb)(void *user, StgClosure *);
void rts_listMiscRoots(ListRootsCb cb, void *user);
/*
* The RTS allocates some thread-local data when you make a call into
* Haskell using one of the rts_eval() functions. This data is not
* normally freed until hs_exit(). If you want to free it earlier
* than this, perhaps because the thread is about to exit, then call
* rts_done() from the thread.
*
* It is safe to make more rts_eval() calls after calling rts_done(),
* but the next one will cause allocation of the thread-local memory
* again.
*/
void rts_done (void);
/* --------------------------------------------------------------------------
Wrapper closures
These are used by foreign export and foreign import "wrapper" stubs.
----------------------------------------------------------------------- */
// When producing Windows DLLs the we need to know which symbols are in the
// local package/DLL vs external ones.
//
// Note that RtsAPI.h is also included by foreign export stubs in
// the base package itself.
//
#if defined(COMPILING_WINDOWS_DLL) && !defined(COMPILING_BASE_PACKAGE)
__declspec(dllimport) extern StgWord ghczminternal_GHCziInternalziTopHandler_runIO_closure[];
__declspec(dllimport) extern StgWord ghczminternal_GHCziInternalziTopHandler_runNonIO_closure[];
#else
extern StgWord ghczminternal_GHCziInternalziTopHandler_runIO_closure[];
extern StgWord ghczminternal_GHCziInternalziTopHandler_runNonIO_closure[];
#endif
#define runIO_closure ghczminternal_GHCziInternalziTopHandler_runIO_closure
#define runNonIO_closure ghczminternal_GHCziInternalziTopHandler_runNonIO_closure
/* ------------------------------------------------------------------------ */
// This is a public RTS API function that does its best to zero out
// unused RTS memory. rts_clearMemory() takes the storage manager
// lock. It's only safe to call rts_clearMemory() when all mutators
// have stopped and either minor/major garbage collection has just
// been run.
//
// rts_clearMemory() works for all RTS ways on all platforms, though
// the main intended use case is the pre-initialization of a
// wasm32-wasi reactor module (#22920). A reactor module is like
// shared library on other platforms, with foreign exported Haskell
// functions as entrypoints. At run-time, the user calls hs_init_ghc()
// to initialize the RTS, after that they can invoke Haskell
// computation by calling the exported Haskell functions, persisting
// the memory state across these invocations.
//
// Besides hs_init_ghc(), the user may want to invoke some Haskell
// function to initialize some global state in the user code, this
// global state is used by subsequent invocations. Now, it's possible
// to run hs_init_ghc() & custom init logic in Haskell, then snapshot
// the entire memory into a new wasm module! And the user can call the
// new wasm module's exports directly, thus eliminating the
// initialization overhead at run-time entirely.
//
// There's one problem though. After the custom init logic runs, the
// RTS memory contains a lot of garbage data in various places. These
// garbage data will be snapshotted into the new wasm module, causing
// a significant size bloat. Therefore, we need an RTS API function
// that zeros out unused RTS memory.
//
// At the end of the day, the custom init function will be a small C
// function that first calls hs_init_ghc(), then calls a foreign
// exported Haskell function to initialize whatever global state the
// other Haskell functions need, followed by a hs_perform_gc() call to
// do a major GC, and finally an rts_clearMemory() call to zero out
// the unused RTS memory.
//
// Why add rts_clearMemory(), where there's the -DZ RTS flag that
// zeros freed memory on GC? The -DZ flag actually fills freed memory
// with a garbage byte like 0xAA, and the flag only works in debug
// RTS. Why not add a new RTS flag that zeros freed memory on the go?
// Because it only makes sense to do the zeroing once before
// snapshotting the memory, but there's no point to pay for the
// zeroing overhead at the new module's run-time.
void rts_clearMemory(void);
#if defined(__cplusplus)
}
#endif
|