File: Main.hs

package info (click to toggle)
ghc 9.10.3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 169,076 kB
  • sloc: haskell: 713,554; ansic: 84,184; cpp: 30,255; javascript: 9,003; sh: 7,870; fortran: 3,527; python: 3,228; asm: 2,523; makefile: 2,324; yacc: 1,570; lisp: 532; xml: 196; perl: 111; csh: 2
file content (1153 lines) | stat: -rw-r--r-- 40,210 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
{-# LANGUAGE RecordWildCards #-}
{-# OPTIONS_GHC -fno-warn-missing-signatures #-}
{-# OPTIONS_GHC -fno-warn-overlapping-patterns #-}
{-# OPTIONS_GHC -fno-warn-name-shadowing #-}
-- The above warning suppression flags are a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     https://gitlab.haskell.org/ghc/ghc/wikis/commentary/coding-style#warnings
-- for details
module Main(main) where

import Prelude hiding ((<>))

import Text.PrettyPrint
import Data.Word
import Data.Bits
import Data.List        ( intersperse, nub, sort )
import System.Exit
import System.Environment
import System.IO
import Control.Arrow ((***))

{-

Note [How genapply gets target info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

genapply generates AutoApply.cmm for the target rts, so it needs
access to target constants like word size, MAX_REAL_VANILLA_REG, etc.
These constants are computed by the deriveConstants program, which
outputs:

1. DerivedConstants.h containing the constants
2. Constants.hs, which is the GHC.Platform.Constants module used by
   ghc to parse the header

It's quite tricky to import Constants.hs and reuse the same parsing
logic, therefore we take one step back and do our own parsing, while
still regarding DerivedConstants.h as the source of truth for target
info. The deriveConstants program will emit lines like these in the
header:

// MAX_Real_Vanilla_REG 10
// WORD_SIZE 4

They will be parsed by parseTargetInfo at runtime, the resulting
TargetInfo record is passed to other places in genapply. hadrian
passes the DerivedConstants.h path as genapply's command line
argument, while also ensuring that DerivedConstants.h is a dependency
of AutoApply.cmm, and only the header in the same stage's rts build
directory is passed.

In the past, genapply used to bake in these target constants at
compile-time via CPP. This is horrifically fragile when it comes to
cross-compilation! (See #24347) People invented hacks like making the
build system pass -I flags to override CPP include path and make it
favor the target headers, but host info may still leak into genapply
because ghc passes CPP flags like -Dx86_64_HOST_ARCH when building
genapply, and of course it should because genapply is meant to run on
the host. Should we add even more CPP hacks like passing flags like
-Ux86_64_HOST_ARCH to get it right? Please, no. Before we move
genapply logic into hadrian at some point, at least we should make it
less hacky by nuking all CPP logic in it from the orbit.

-}

data TargetInfo = TargetInfo
  { maxRealVanillaReg,
    maxRealFloatReg,
    maxRealDoubleReg,
    maxRealLongReg,
    wordSize,
    tagBits,
    tagBitsMax,
    bitmapBitsShift :: !Int
  }

parseTargetInfo :: FilePath -> IO TargetInfo
parseTargetInfo path = do
  header <- readFile path
  let tups = [ (k, read v) | '/':'/':' ':l <- lines header, let [k, v] = words l ]
      tups_get k = v where Just v = lookup k tups
      tag_bits = tups_get "TAG_BITS"
  pure TargetInfo {
    maxRealVanillaReg = tups_get "MAX_Real_Vanilla_REG",
    maxRealFloatReg = tups_get "MAX_Real_Float_REG",
    maxRealDoubleReg = tups_get "MAX_Real_Double_REG",
    maxRealLongReg = tups_get "MAX_Real_Long_REG",
    wordSize = tups_get "WORD_SIZE",
    tagBits = tag_bits,
    tagBitsMax = 1 `shiftL` tag_bits,
    bitmapBitsShift = tups_get "BITMAP_BITS_SHIFT"
  }

-- -----------------------------------------------------------------------------
-- Argument kinds (roughly equivalent to PrimRep)

data ArgRep
  = N   -- non-ptr
  | P   -- ptr
  | V   -- void
  | F   -- float
  | D   -- double
  | L   -- long (64-bit)
  | V16 -- 16-byte (128-bit) vectors
  | V32 -- 32-byte (256-bit) vectors
  | V64 -- 64-byte (512-bit) vectors

-- size of a value in *words*
argSize :: TargetInfo -> ArgRep -> Int
argSize _ N   = 1
argSize _ P   = 1
argSize _ V   = 0
argSize _ F   = 1
argSize TargetInfo {..} D   = 8 `quot` wordSize
argSize TargetInfo {..} L   = 8 `quot` wordSize
argSize TargetInfo {..} V16 = 16 `quot` wordSize
argSize TargetInfo {..} V32 = 32 `quot` wordSize
argSize TargetInfo {..} V64 = 64 `quot` wordSize

showArg :: ArgRep -> String
showArg N   = "n"
showArg P   = "p"
showArg V   = "v"
showArg F   = "f"
showArg D   = "d"
showArg L   = "l"
showArg V16 = "v16"
showArg V32 = "v32"
showArg V64 = "v64"

-- is a value a pointer?
isPtr :: ArgRep -> Bool
isPtr P = True
isPtr _ = False

-- -----------------------------------------------------------------------------
-- Registers

type Reg = String

availableRegs :: TargetInfo -> ([Reg],[Reg],[Reg],[Reg])
availableRegs TargetInfo {..} =
  ( vanillaRegs maxRealVanillaReg,
    floatRegs   maxRealFloatReg,
    doubleRegs  maxRealDoubleReg,
    longRegs    maxRealLongReg
  )

vanillaRegs, floatRegs, doubleRegs, longRegs :: Int -> [Reg]
vanillaRegs n = [ "R" ++ show m | m <- [2..n] ]  -- never use R1
floatRegs   n = [ "F" ++ show m | m <- [1..n] ]
doubleRegs  n = [ "D" ++ show m | m <- [1..n] ]
longRegs    n = [ "L" ++ show m | m <- [1..n] ]

-- -----------------------------------------------------------------------------
-- Loading/saving register arguments to the stack

loadRegArgs :: TargetInfo -> Int -> [ArgRep] -> (Doc,Int)
loadRegArgs targetInfo sp args
 = (loadRegOffs reg_locs, sp')
 where (reg_locs, _, sp') = assignRegs targetInfo sp args

loadRegOffs :: [(Reg,Int)] -> Doc
loadRegOffs = vcat . map (uncurry assign_stk_to_reg)

saveRegOffs :: [(Reg,Int)] -> Doc
saveRegOffs = vcat . map (uncurry assign_reg_to_stk)

assignRegs
        :: TargetInfo
        -> Int                  -- Sp of first arg
        -> [ArgRep]             -- args
        -> ([(Reg,Int)],        -- regs and offsets to load
            [ArgRep],           -- left-over args
            Int)                -- Sp of left-over args
assignRegs targetInfo sp args = assign targetInfo sp args (availableRegs targetInfo) []

assign _ sp [] _regs doc = (doc, [], sp)
assign targetInfo sp (V : args) regs doc = assign targetInfo sp args regs doc
assign targetInfo sp (arg : args) regs doc
 = case findAvailableReg arg regs of
    Just (reg, regs') -> assign targetInfo (sp + argSize targetInfo arg)  args regs'
                            ((reg, sp) : doc)
    Nothing -> (doc, (arg:args), sp)

findAvailableReg N (vreg:vregs, fregs, dregs, lregs) =
  Just (vreg, (vregs,fregs,dregs,lregs))
findAvailableReg P (vreg:vregs, fregs, dregs, lregs) =
  Just (vreg, (vregs,fregs,dregs,lregs))
findAvailableReg F (vregs, freg:fregs, dregs, lregs) =
  Just (freg, (vregs,fregs,dregs,lregs))
findAvailableReg D (vregs, fregs, dreg:dregs, lregs) =
  Just (dreg, (vregs,fregs,dregs,lregs))
findAvailableReg L (vregs, fregs, dregs, lreg:lregs) =
  Just (lreg, (vregs,fregs,dregs,lregs))
findAvailableReg _ _ = Nothing

assign_reg_to_stk reg sp
   = loadSpWordOff (regRep reg) sp <> text " = " <> text reg <> semi

assign_stk_to_reg reg sp
   = text reg <> text " = " <> loadSpWordOff (regRep reg) sp <> semi

regRep ('F':_) = "F_"
regRep ('D':_) = "D_"
regRep ('L':_) = "L_"
regRep _       = "W_"

loadSpWordOff :: String -> Int -> Doc
loadSpWordOff rep off = text rep <> text "[Sp+WDS(" <> int off <> text ")]"

-- Make a jump
mkJump :: TargetInfo
       -> Doc       -- Jump target
       -> [Reg]     -- Registers that are definitely live
       -> [ArgRep]  -- Jump arguments
       -> Doc
mkJump targetInfo jump live args =
    text "jump" <+> jump <+> brackets (hcat (punctuate comma liveRegs))
  where
    liveRegs = mkJumpLiveRegs targetInfo live args

-- Make a jump, saving CCCS and restoring it on return
mkJumpSaveCCCS :: TargetInfo
               -> Doc       -- Jump target
               -> [Reg]     -- Registers that are definitely live
               -> [ArgRep]  -- Jump arguments
               -> Doc
mkJumpSaveCCCS targetInfo jump live args =
    text "jump_SAVE_CCCS" <> parens (hcat (punctuate comma (jump : liveRegs)))
  where
    liveRegs = mkJumpLiveRegs targetInfo live args

-- Calculate live registers for a jump
mkJumpLiveRegs :: TargetInfo
               -> [Reg]     -- Registers that are definitely live
               -> [ArgRep]  -- Jump arguments
               -> [Doc]
mkJumpLiveRegs targetInfo live args =
    map text regs
  where
    (reg_locs, _, _) = assignRegs targetInfo 0 args
    regs             = (nub . sort) (live ++ map fst reg_locs)

-- make a ptr/non-ptr bitmap from a list of argument types
mkBitmap :: TargetInfo -> [ArgRep] -> Word32
mkBitmap targetInfo args = foldr f 0 args
 where f arg bm | isPtr arg = bm `shiftL` 1
                | otherwise = (bm `shiftL` size) .|. ((1 `shiftL` size) - 1)
                where size = argSize targetInfo arg

-- -----------------------------------------------------------------------------
-- Generating the application functions

-- A SUBTLE POINT about stg_ap functions (can't think of a better
-- place to put this comment --SDM):
--
-- The entry convention to an stg_ap_ function is as follows: all the
-- arguments are on the stack (we might revisit this at some point,
-- but it doesn't make any difference on x86), and THERE IS AN EXTRA
-- EMPTY STACK SLOT at the top of the stack.
--
-- Why?  Because in several cases, stg_ap_* will need an extra stack
-- slot, eg. to push a return address in the THUNK case, and this is a
-- way of pushing the stack check up into the caller which is probably
-- doing one anyway.  Allocating the extra stack slot in the caller is
-- also probably free, because it will be adjusting Sp after pushing
-- the args anyway (this might not be true of register-rich machines
-- when we start passing args to stg_ap_* in regs).

mkApplyName args
  = text "stg_ap_" <> text (concatMap showArg args)

mkApplyRetName args
  = mkApplyName args <> text "_ret"

mkApplyFastName args
  = mkApplyName args <> text "_fast"

mkApplyInfoName args
  = mkApplyName args <> text "_info"

mb_tag_node targetInfo arity | Just tag <- tagForArity targetInfo arity = mkTagStmt tag <> semi
                             | otherwise = empty

mkTagStmt tag = text ("R1 = R1 + "++ show tag)

type StackUsage = (Int, Int)  -- PROFILING, normal

maxStack :: [StackUsage] -> StackUsage
maxStack = (maximum *** maximum) . unzip

stackCheck
   :: TargetInfo
   -> [ArgRep]
   -> Bool       -- args in regs?
   -> Doc        -- fun_info_label
   -> StackUsage
   -> Doc
stackCheck targetInfo args args_in_regs fun_info_label (prof_sp, norm_sp) =
  let
     (reg_locs, _leftovers, sp_offset) = assignRegs targetInfo 1 args

     cmp_sp n
       | n > 0 =
          text "if (Sp - WDS(" <> int n <> text ") < SpLim) {" $$
          nest 4 (vcat [
            if args_in_regs
               then
                 text "Sp_adj" <> parens (int (-sp_offset)) <> semi $$
                 saveRegOffs reg_locs
               else
                 empty,
            text "Sp(0) = " <> fun_info_label <> char ';',
            mkJump targetInfo (text "__stg_gc_enter_1") ["R1"] [] <> semi
            ]) $$
          char '}'
       | otherwise = empty
  in
  vcat [ text "#if defined(PROFILING)",
         cmp_sp prof_sp,
         text "#else",
         cmp_sp norm_sp,
         text "#endif"
       ]

genMkPAP :: TargetInfo
         -> String    -- Macro
         -> String    -- Jump target
         -> [Reg]     -- Registers that are definitely live
         -> String    -- Ticker
         -> String    -- Disamb
         -> Bool      -- Don't load argument registers before jump if True
         -> Bool      -- Arguments already in registers if True
         -> Bool      -- Is a PAP if True
         -> [ArgRep]  -- Arguments
         -> Int       -- Size of all arguments
         -> Doc       -- info label
         -> Bool      -- Is a function
         -> (Doc, StackUsage)
genMkPAP targetInfo@TargetInfo {..} macro jump live _ticker disamb
        no_load_regs    -- don't load argument regs before jumping
        args_in_regs    -- arguments are already in regs
        is_pap args all_args_size fun_info_label
        is_fun_case
  = (doc, stack_usage)

  where
    doc = vcat smaller_arity_doc $$ exact_arity_case $$ larger_arity_doc

    stack_usage = maxStack (larger_arity_stack : smaller_arity_stack)

    n_args = length args

        -- offset of arguments on the stack at slow apply calls.
    stk_args_slow_offset = 1

    stk_args_offset
        | args_in_regs = 0
        | otherwise    = stk_args_slow_offset

-- The SMALLER ARITY cases:
--      if (arity == 1) {
--          Sp[0] = Sp[1];
--          Sp[1] = (W_)&stg_ap_1_info;
--          JMP_(GET_ENTRY(R1.cl));
    (smaller_arity_doc, smaller_arity_stack)
       = unzip [ smaller_arity i | i <- [1..n_args-1] ]

    smaller_arity arity = (doc, stack_usage)
      where
        (save_regs, stack_usage)
          | overflow_regs = save_extra_regs
          | otherwise     = shuffle_extra_args

        doc =
           text "if (arity == " <> int arity <> text ") {" $$
           nest 4 (vcat [
           --  text "TICK_SLOW_CALL_" <> text ticker <> text "_TOO_MANY();",

                -- load up regs for the call, if necessary
             load_regs,

                -- If we have more args in registers than are required
                -- for the call, then we must save some on the stack,
                -- and set up the stack for the follow-up call.
                -- If the extra arguments are on the stack, then we must
                -- instead shuffle them down to make room for the info
                -- table for the follow-on call.
             save_regs,

                -- for a PAP, we have to arrange that the stack contains a
                -- return address in the event that stg_PAP_entry fails its
                -- heap check.  See stg_PAP_entry in Apply.cmm for details.
             if is_pap
                then text "R2 = " <> mkApplyInfoName this_call_args <> semi

                else empty,
            if is_fun_case then mb_tag_node targetInfo arity else empty,
            if overflow_regs
                then mkJumpSaveCCCS targetInfo
                       (text jump) live (take arity args) <> semi
                else mkJump targetInfo (text jump) live (if no_load_regs then [] else args) <> semi
            ]) $$
           text "}"

           -- offsets in case we need to save regs:
        (reg_locs, _, _)
           = assignRegs targetInfo stk_args_offset args

           -- register assignment for *this function call*
        (reg_locs', reg_call_leftovers, reg_call_sp_stk_args)
           = assignRegs targetInfo stk_args_offset (take arity args)

        load_regs
           | no_load_regs || args_in_regs = empty
           | otherwise                    = loadRegOffs reg_locs'

        (this_call_args, rest_args) = splitAt arity args

           -- the offset of the stack args from initial Sp
        sp_stk_args
           | args_in_regs = stk_args_offset
           | no_load_regs = stk_args_offset
           | otherwise    = reg_call_sp_stk_args

           -- the stack args themselves
        this_call_stack_args
           | args_in_regs = reg_call_leftovers -- sp offsets are wrong
           | no_load_regs = this_call_args
           | otherwise    = reg_call_leftovers

        stack_args_size = sum (map (argSize targetInfo) this_call_stack_args)

        overflow_regs = args_in_regs && length reg_locs > length reg_locs'

        save_extra_regs = (doc, (size,size))
          where
             -- we have extra arguments in registers to save
              extra_reg_locs = drop (length reg_locs') (reverse reg_locs)
              adj_reg_locs = [ (reg, off - adj + 1) |
                               (reg,off) <- extra_reg_locs ]
              adj = case extra_reg_locs of
                      (reg, fst_off):_ -> fst_off
                      [] -> error "Impossible: genapply.hs : No extra register locations"
              size = snd (last adj_reg_locs) + 1

              doc =
                text "Sp_adj(" <> int (-size) <> text ");" $$
                saveRegOffs adj_reg_locs $$
                loadSpWordOff "W_" 0 <> text " = " <>
                             mkApplyInfoName rest_args <> semi

        shuffle_extra_args = (doc, (shuffle_prof_stack, shuffle_norm_stack))
          where
           doc = vcat [ text "#if defined(PROFILING)",
                        shuffle_prof_doc,
                        text "#else",
                        shuffle_norm_doc,
                        text "#endif"]

           (shuffle_prof_doc, shuffle_prof_stack) = shuffle True
           (shuffle_norm_doc, shuffle_norm_stack) = shuffle False

           -- Sadly here we have to insert an stg_restore_cccs frame
           -- just underneath the stg_ap_*_info frame if we're
           -- profiling; see Note [jump_SAVE_CCCS]
           shuffle prof = (doc, -sp_adj)
             where
             sp_adj = sp_stk_args - 1 - offset
             offset = if prof then 2 else 0
             doc =
               vcat (map (shuffle_down (offset+1))
                      [sp_stk_args .. sp_stk_args+stack_args_size-1]) $$
               (if prof
                 then
                   loadSpWordOff "W_" (sp_stk_args+stack_args_size-3)
                     <> text " = stg_restore_cccs_info;" $$
                   loadSpWordOff "W_" (sp_stk_args+stack_args_size-2)
                     <> text " = CCCS;"
                 else empty) $$
               loadSpWordOff "W_" (sp_stk_args+stack_args_size-1)
                     <> text " = "
                     <> mkApplyInfoName rest_args <> semi $$
               text "Sp_adj(" <> int sp_adj <> text ");"

        shuffle_down j i =
             loadSpWordOff "W_" (i-j) <> text " = " <>
             loadSpWordOff "W_" i <> semi


-- The EXACT ARITY case
--
--      if (arity == 1) {
--          Sp++;
--          JMP_(GET_ENTRY(R1.cl));

    exact_arity_case
        = text "if (arity == " <> int n_args <> text ") {" $$
          let
             (reg_doc, sp')
                | no_load_regs || args_in_regs = (empty, stk_args_offset)
                | otherwise    = loadRegArgs targetInfo stk_args_offset args
          in
          nest 4 (vcat [
--          text "TICK_SLOW_CALL_" <> text ticker <> text "_CORRECT();",
            reg_doc,
            text "Sp_adj(" <> int sp' <> text ");",
            if is_pap
                then text "R2 = " <> fun_info_label <> semi
                else empty,
            if is_fun_case then mb_tag_node targetInfo n_args else empty,
            mkJump targetInfo (text jump) live (if no_load_regs then [] else args) <> semi
          ])

-- The LARGER ARITY cases:
--
--      } else /* arity > 1 */ {
--          BUILD_PAP(1,0,(W_)&stg_ap_v_info);
--      }

    (larger_arity_doc, larger_arity_stack) = (doc, stack)
     where
       -- offsets in case we need to save regs:
       (reg_locs, _leftovers, sp_offset)
           = assignRegs targetInfo stk_args_slow_offset args
           -- BUILD_PAP assumes args start at offset 1

       stack | args_in_regs = (sp_offset, sp_offset)
             | otherwise    = (0,0)

       doc =
           text "} else {" $$
           let
             save_regs
                | args_in_regs =
                        text "Sp_adj(" <> int (-sp_offset) <> text ");" $$
                        saveRegOffs  reg_locs
                | otherwise =
                        empty
           in
           nest 4 (vcat [
--              text "TICK_SLOW_CALL_" <> text ticker <> text "_TOO_FEW();",
                save_regs,
                -- Before building the PAP, tag the function closure pointer
                if is_fun_case then
                  vcat [
                     text "if (arity < " <> int tagBitsMax <> text ") {",
                     text "  R1 = R1 + arity" <> semi,
                     text "}"
                   ]
                  else empty
                ,
                text macro <> char '(' <> int n_args <> comma <>
                                        int all_args_size <>
                                        text "," <> fun_info_label <>
                                        text "," <> text disamb <>
                                        text ");"
           ]) $$
           char '}'


-- Note [jump_SAVE_CCCS]
-- ~~~~~~~~~~~~~~~~~~~~~
-- When profiling, if we have some extra arguments to apply that we
-- save to the stack, we must also save the current cost centre stack
-- and restore it when applying the extra arguments.  This is all
-- handled by the macro jump_SAVE_CCCS(target), defined in
-- rts/AutoApply.h.
--
-- At the jump, the stack will look like this:
--
--      ... extra args ...
--      stg_ap_pp_info
--      CCCS
--      stg_restore_cccs_info

-- --------------------------------------
-- Examine tag bits of function pointer and enter it
-- directly if needed.
-- TODO: remove the redundant case in the original code.
enterFastPath targetInfo no_load_regs args_in_regs args
    | Just tag <- tagForArity targetInfo (length args)
    = enterFastPathHelper targetInfo tag no_load_regs args_in_regs args
enterFastPath _ _ _ _ = empty

tagForArity :: TargetInfo -> Int -> Maybe Int
tagForArity TargetInfo {..} i | i < tagBitsMax = Just i
                              | otherwise      = Nothing

enterFastPathHelper :: TargetInfo
                    -> Int
                    -> Bool
                    -> Bool
                    -> [ArgRep]
                    -> Doc
enterFastPathHelper targetInfo tag no_load_regs args_in_regs args =
  text "if (GETTAG(R1)==" <> int tag <> text ") {" $$
  nest 4 (vcat [
    reg_doc,
    text "Sp_adj(" <> int sp' <> text ");",
    -- enter, but adjust offset with tag
    mkJump targetInfo (text "%GET_ENTRY(R1-" <> int tag <> text ")") ["R1"] args <> semi
  ]) $$
  text "}"
  -- I don't totally understand this code, I copied it from
  -- exact_arity_case
  -- TODO: refactor
    where
        -- offset of arguments on the stack at slow apply calls.
    stk_args_slow_offset = 1

    stk_args_offset
        | args_in_regs = 0
        | otherwise    = stk_args_slow_offset

    (reg_doc, sp')
        | no_load_regs || args_in_regs = (empty, stk_args_offset)
        | otherwise    = loadRegArgs targetInfo stk_args_offset args

tickForArity targetInfo arity
    | True
    = empty
    | Just tag <- tagForArity targetInfo arity
    = vcat [
            text "W_[TOTAL_CALLS] = W_[TOTAL_CALLS] + 1;",
            text "W_[SLOW_CALLS_" <> int arity <> text "] = W_[SLOW_CALLS_" <> int arity <> text "] + 1;",
            text "if (TO_W_(StgFunInfoExtra_arity(%FUN_INFO(%INFO_PTR(UNTAG(R1))))) == " <> int arity <> text " ) {",
            text "  W_[RIGHT_ARITY_" <> int arity <> text "] = W_[RIGHT_ARITY_" <> int arity <> text "] + 1;",
            text "  if (GETTAG(R1)==" <> int tag <> text ") {",
            text "    W_[TAGGED_PTR_" <> int arity <> text "] = W_[TAGGED_PTR_" <> int arity <> text "] + 1;",
            text "  } else {",
            -- force a halt when not tagged!
--          text "    W_[0]=0;",
            text "  }",
            text "}"
          ]
tickForArity _ _ = text "W_[TOTAL_CALLS] = W_[TOTAL_CALLS] + 1;"

-- -----------------------------------------------------------------------------
-- generate an apply function

-- args is a list of 'p', 'n', 'f', 'd' or 'l'
formalParam :: ArgRep -> Int -> Doc
formalParam V _ = empty
formalParam arg n =
    formalParamType arg <> space <>
    text "arg" <> int n <> text ", "
formalParamType arg = argRep arg

argRep F   = text "F_"
argRep D   = text "D_"
argRep L   = text "L_"
argRep P   = text "gcptr"
argRep V16 = text "V16_"
argRep V32 = text "V32_"
argRep V64 = text "V64_"
argRep _   = text "W_"

genApply :: TargetInfo -> [ArgRep] -> Doc
genApply targetInfo args =
   let
    fun_ret_label  = mkApplyRetName args
    fun_info_label = mkApplyInfoName args
    all_args_size  = sum (map (argSize targetInfo) args)

    (bco_doc, bco_stack) =
       genMkPAP targetInfo "BUILD_PAP" "ENTRY_LBL(stg_BCO)" ["R1"] "FUN" "BCO"
             True{-stack apply-} False{-args on stack-} False{-not a PAP-}
             args all_args_size fun_info_label {- tag stmt -}False

    (fun_doc, fun_stack) =
       genMkPAP targetInfo "BUILD_PAP" "%GET_ENTRY(UNTAG(R1))" ["R1"] "FUN" "FUN"
             False{-reg apply-} False{-args on stack-} False{-not a PAP-}
             args all_args_size fun_info_label {- tag stmt -}True

    (pap_doc, pap_stack) =
       genMkPAP targetInfo "NEW_PAP" "stg_PAP_apply" ["R1", "R2"] "PAP" "PAP"
             True{-stack apply-} False{-args on stack-} True{-is a PAP-}
             args all_args_size fun_info_label {- tag stmt -}False

    stack_usage = maxStack [bco_stack, fun_stack, pap_stack]
   in
    vcat [
      text "INFO_TABLE_RET(" <> mkApplyName args <> text ", " <>
        text "RET_SMALL, W_ info_ptr, " <> (cat $ zipWith formalParam args [1..]) <>
        text ")\n{",
      nest 4 (vcat [
       text "W_ _unused;",
       text "W_ info;",
       text "W_ arity;",
       text "unwind Sp = Sp + WDS(" <> int (1+all_args_size) <> text ");",

--    if fast == 1:
--        print "static void *lbls[] ="
--        print "  { [FUN]             &&fun_lbl,"
--        print "    [FUN_1_0]         &&fun_lbl,"
--        print "    [FUN_0_1]        &&fun_lbl,"
--        print "    [FUN_2_0]        &&fun_lbl,"
--        print "    [FUN_1_1]        &&fun_lbl,"
--        print "    [FUN_0_2]        &&fun_lbl,"
--        print "    [FUN_STATIC]      &&fun_lbl,"
--        print "    [PAP]             &&pap_lbl,"
--        print "    [THUNK]           &&thunk_lbl,"
--        print "    [THUNK_1_0]              &&thunk_lbl,"
--        print "    [THUNK_0_1]              &&thunk_lbl,"
--        print "    [THUNK_2_0]              &&thunk_lbl,"
--        print "    [THUNK_1_1]              &&thunk_lbl,"
--        print "    [THUNK_0_2]              &&thunk_lbl,"
--        print "    [THUNK_STATIC]    &&thunk_lbl,"
--        print "    [THUNK_SELECTOR]  &&thunk_lbl,"
--        print "    [IND]            &&ind_lbl,"
--        print "    [IND_STATIC]      &&ind_lbl,"
--        print "  };"

       tickForArity targetInfo (length args),
       text "",
       text "IF_DEBUG(apply,foreign \"C\" debugBelch(\"" <> fun_ret_label <>
          text "... \", NULL); foreign \"C\" printClosure(R1 \"ptr\"));",

       text "IF_DEBUG(sanity,(_unused) = foreign \"C\" checkStackFrame(Sp+WDS(" <> int (1 + all_args_size)
        <> text ")\"ptr\"));",

--       text "IF_DEBUG(sanity,checkStackChunk(Sp+" <> int (1 + all_args_size) <>
--        text ", CurrentTSO->stack + CurrentTSO->stack_size));",

--       text "TICK_SLOW_CALL(" <> int (length args) <> text ");",

       let do_assert [] _ = []
           do_assert (arg:args) offset
                | isPtr arg = this : rest
                | otherwise = rest
                where this = text "ASSERT(LOOKS_LIKE_CLOSURE_PTR(Sp("
                                 <> int offset <> text ")));"
                      rest = do_assert args (offset + argSize targetInfo arg)
       in
       vcat (do_assert args 1),

       text  "again:",

       -- if pointer is tagged enter it fast!
       enterFastPath targetInfo False False args,

       stackCheck targetInfo args False{-args on stack-}
                  fun_info_label stack_usage,

       -- Functions can be tagged, so we untag them!
       text  "R1 = UNTAG(R1);",
       text  "info = %INFO_PTR(R1);",

--    if fast == 1:
--        print "    goto *lbls[info->type];";
--    else:
        text "switch [INVALID_OBJECT .. N_CLOSURE_TYPES] (TO_W_(%INFO_TYPE(%STD_INFO(info)))) {",
        nest 4 (vcat [

--    if fast == 1:
--        print "    bco_lbl:"
--    else:
        text "case BCO: {",
        nest 4 (vcat [
          text "arity = TO_W_(StgBCO_arity(R1));",
          text "ASSERT(arity > 0);",
          bco_doc
         ]),
        text "}",

--    if fast == 1:
--        print "    fun_lbl:"
--    else:
        text "case FUN,",
        text "     FUN_1_0,",
        text "     FUN_0_1,",
        text "     FUN_2_0,",
        text "     FUN_1_1,",
        text "     FUN_0_2,",
        text "     FUN_STATIC,",
        text "     CONTINUATION: {",
        nest 4 (vcat [
          text "arity = TO_W_(StgFunInfoExtra_arity(%FUN_INFO(info)));",
          text "ASSERT(arity > 0);",
          fun_doc
         ]),
        text "}",

--    if fast == 1:
--        print "    pap_lbl:"
--    else:

        text "case PAP: {",
        nest 4 (vcat [
          text "arity = TO_W_(StgPAP_arity(R1));",
          text "ASSERT(arity > 0);",
          pap_doc
         ]),
        text "}",

        text "",

--    if fast == 1:
--        print "    thunk_lbl:"
--    else:
        text "case AP,",
        text "     AP_STACK,",
        text "     BLACKHOLE,",
        text "     WHITEHOLE,",
        text "     THUNK,",
        text "     THUNK_1_0,",
        text "     THUNK_0_1,",
        text "     THUNK_2_0,",
        text "     THUNK_1_1,",
        text "     THUNK_0_2,",
        text "     THUNK_STATIC,",
        text "     THUNK_SELECTOR: {",
        nest 4 (vcat [
--          text "TICK_SLOW_CALL_UNEVALD(" <> int (length args) <> text ");",
          text "Sp(0) = " <> fun_info_label <> text ";",
          -- CAREFUL! in SMP mode, the info table may already have been
          -- overwritten by an indirection, so we must enter the original
          -- info pointer we read, don't read it again, because it might
          -- not be enterable any more.
          mkJumpSaveCCCS targetInfo
            (text "%ENTRY_CODE(info)") ["R1"] args <> semi,
            -- see Note [jump_SAVE_CCCS]
          text ""
         ]),
        text "}",

--    if fast == 1:
--        print "    ind_lbl:"
--    else:
        text "case IND,",
        text "     IND_STATIC: {",
        nest 4 (vcat [
          -- N.B. annoyingly the %acquire syntax must place its result in a local register
          -- as it is a Cmm prim call node.
          text "P_ p;",
          text "p = %acquire StgInd_indirectee(R1);",
          text "R1 = p;",
            -- An indirection node might contain a tagged pointer
          text "goto again;"
         ]),
        text "}",
        text "",

--    if fast == 0:

       text "default: {",
       nest 4 (
         text "foreign \"C\" barf(\"" <> fun_ret_label <> text "\", NULL) never returns;"
       ),
       text "}"

        ]),
       text "}"
      ]),

      text "}"
    ]

-- -----------------------------------------------------------------------------
-- Making a fast unknown application, args are in regs

genApplyFast :: TargetInfo -> [ArgRep] -> Doc
genApplyFast targetInfo args =
   let
    fun_fast_label = mkApplyFastName args
    fun_ret_label  = text "RET_LBL" <> parens (mkApplyName args)
    fun_info_label = mkApplyInfoName args
    all_args_size  = sum (map (argSize targetInfo) args)

    (fun_doc, fun_stack) =
       genMkPAP targetInfo "BUILD_PAP" "%GET_ENTRY(UNTAG(R1))" ["R1"] "FUN" "FUN"
            False{-reg apply-} True{-args in regs-} False{-not a PAP-}
            args all_args_size fun_info_label {- tag stmt -}True

    (reg_locs, _leftovers, sp_offset) = assignRegs targetInfo 1 args

    stack_usage = maxStack [fun_stack, (sp_offset,sp_offset)]
   in
    vcat [
     fun_fast_label,
     char '{',
     nest 4 (vcat [
        text "W_ info;",
        text "W_ arity;",

        tickForArity targetInfo (length args),

        -- if pointer is tagged enter it fast!
        enterFastPath targetInfo False True args,

        stackCheck targetInfo args True{-args in regs-}
                   fun_info_label stack_usage,

        -- Functions can be tagged, so we untag them!
        text  "R1 = UNTAG(R1);",
        text  "info = %GET_STD_INFO(R1);",
        text "switch [INVALID_OBJECT .. N_CLOSURE_TYPES] (TO_W_(%INFO_TYPE(info))) {",
        nest 4 (vcat [
          text "case FUN,",
          text "     FUN_1_0,",
          text "     FUN_0_1,",
          text "     FUN_2_0,",
          text "     FUN_1_1,",
          text "     FUN_0_2,",
          text "     FUN_STATIC,",
          text "     CONTINUATION: {",
          nest 4 (vcat [
            text "arity = TO_W_(StgFunInfoExtra_arity(%GET_FUN_INFO(R1)));",
            text "ASSERT(arity > 0);",
            fun_doc
           ]),
          char '}',

          text "default: {",
          nest 4 (vcat [
             text "Sp_adj" <> parens (int (-sp_offset)) <> semi,
             saveRegOffs reg_locs,
             mkJump targetInfo fun_ret_label [] args <> semi
          ]),
          char '}'
        ]),

       char '}'
     ]),
     char '}'
   ]

-- -----------------------------------------------------------------------------
-- Making a stack apply

-- These little functions are like slow entry points.  They provide
-- the layer between the PAP entry code and the function's fast entry
-- point: namely they load arguments off the stack into registers (if
-- available) and jump to the function's entry code.
--
-- On entry: R1 points to the function closure
--           arguments are on the stack starting at Sp
--
-- Invariant: the list of arguments never contains void.  Since we're only
-- interested in loading arguments off the stack here, we can ignore
-- void arguments.

mkStackApplyEntryLabel:: [ArgRep] -> Doc
mkStackApplyEntryLabel args = text "stg_ap_stk_" <> text (concatMap showArg args)

genStackApply :: TargetInfo -> [ArgRep] -> Doc
genStackApply targetInfo args =
  let fn_entry_label = mkStackApplyEntryLabel args in
  vcat [
    fn_entry_label,
    text "{", nest 4 body, text "}"
   ]
 where
   (assign_regs, sp') = loadRegArgs targetInfo 0 args
   body = vcat [assign_regs,
                text "Sp_adj" <> parens (int sp') <> semi,
                mkJump targetInfo (text "%GET_ENTRY(UNTAG(R1))") ["R1"] args <> semi
                ]

-- -----------------------------------------------------------------------------
-- Stack save entry points.
--
-- These code fragments are used to save registers on the stack at a heap
-- check failure in the entry code for a function.  We also have to save R1
-- and the return address (stg_gc_fun_info) on the stack.  See __stg_gc_fun
-- in HeapStackCheck.cmm for more details.

mkStackSaveEntryLabel :: [ArgRep] -> Doc
mkStackSaveEntryLabel args = text "stg_stk_save_" <> text (concatMap showArg args)

genStackSave :: TargetInfo -> [ArgRep] -> Doc
genStackSave targetInfo args =
  let fn_entry_label= mkStackSaveEntryLabel args in
  vcat [
    fn_entry_label,
    text "{", nest 4 body, text "}"
   ]
 where
   body = vcat [text "Sp_adj" <> parens (int (-sp_offset)) <> semi,
                saveRegOffs reg_locs,
                text "Sp(2) = R1;",
                text "Sp(1) =" <+> int stk_args <> semi,
                text "Sp(0) = stg_gc_fun_info;",
                text "jump stg_gc_noregs [];"
                ]

   std_frame_size = 3 -- the std bits of the frame. See StgRetFun in Closures.h,
                      -- and the comment on stg_fun_gc_gen
                      -- in HeapStackCheck.cmm.
   (reg_locs, leftovers, sp_offset) = assignRegs targetInfo std_frame_size args

   -- number of words of arguments on the stack.
   stk_args = sum (map (argSize targetInfo) leftovers) + sp_offset - std_frame_size

-- -----------------------------------------------------------------------------
-- The prologue...

main = do
  [path] <- getArgs
  targetInfo <- parseTargetInfo path
  let the_code = vcat [
                text "// DO NOT EDIT!",
                text "// Automatically generated by utils/genapply/Main.hs",
                text "",
                text "#include \"Cmm.h\"",
                text "#include \"AutoApply.h\"",
                text "#if !defined(UnregisterisedCompiler)",
                text "import CLOSURE ALLOC_RTS_ctr;",
                text "import CLOSURE ALLOC_RTS_tot;",
                text "import CLOSURE HEAP_CHK_ctr;",
                text "import CLOSURE RtsFlags;",
                text "import CLOSURE stg_PAP_info;",
                text "import CLOSURE stg_ap_d_info;",
                text "import CLOSURE stg_ap_f_info;",
                text "import CLOSURE stg_ap_l_info;",
                text "import CLOSURE stg_ap_n_info;",
                text "import CLOSURE stg_ap_p_info;",
                text "import CLOSURE stg_ap_pp_info;",
                text "import CLOSURE stg_ap_ppp_info;",
                text "import CLOSURE stg_ap_pppp_info;",
                text "import CLOSURE stg_ap_ppppp_info;",
                text "import CLOSURE stg_ap_pppppp_info;",
                text "import CLOSURE stg_ap_pppv_info;",
                text "import CLOSURE stg_ap_ppv_info;",
                text "import CLOSURE stg_ap_pv_info;",
                text "import CLOSURE stg_ap_v16_info;",
                text "import CLOSURE stg_ap_v32_info;",
                text "import CLOSURE stg_ap_v64_info;",
                text "import CLOSURE stg_ap_v_info;",
                text "import CLOSURE stg_gc_fun_info;",
                text "import CLOSURE stg_restore_cccs_info;",
                text "#endif",
                text "",

                vcat (intersperse (text "") $
                   map (genApply targetInfo) applyTypes),
                vcat (intersperse (text "") $
                   map (genStackFns targetInfo) stackApplyTypes),

                vcat (intersperse (text "") $
                   map (genApplyFast targetInfo) applyTypes),

                genStackApplyArray stackApplyTypes,
                genStackSaveArray stackApplyTypes,
                genBitmapArray targetInfo stackApplyTypes,

                text ""  -- add a newline at the end of the file
            ]
  -- in
  putStr (render the_code)

-- These have been shown to cover about 99% of cases in practice...
applyTypes = [
        [V],
        [F],
        [D],
        [L],
        [V16],
        [V32],
        [V64],
        [N],
        [P],
        [P,V],
        [P,P],
        [P,P,V],
        [P,P,P],
        [P,P,P,V],
        [P,P,P,P],
        [P,P,P,P,P],
        [P,P,P,P,P,P]
   ]

-- No need for V args in the stack apply cases.
-- ToDo: the stack apply and stack save code doesn't make a distinction
-- between N and P (they both live in the same register), only the bitmap
-- changes, so we could share the apply/save code between lots of cases.
--
--  NOTE: other places to change if you change stackApplyTypes:
--       - rts/include/rts/storage/FunTypes.h
--       - GHC.StgToCmm.Layout: stdPattern
stackApplyTypes = [
        [],
        [N],
        [P],
        [F],
        [D],
        [L],
        [V16],
        [V32],
        [V64],
        [N,N],
        [N,P],
        [P,N],
        [P,P],
        [N,N,N],
        [N,N,P],
        [N,P,N],
        [N,P,P],
        [P,N,N],
        [P,N,P],
        [P,P,N],
        [P,P,P],
        [P,P,P,P],
        [P,P,P,P,P],
        [P,P,P,P,P,P],
        [P,P,P,P,P,P,P],
        [P,P,P,P,P,P,P,P]
   ]

genStackFns targetInfo args
  =  genStackApply targetInfo args
  $$ genStackSave targetInfo args


genStackApplyArray types =
  vcat [
    text "section \"relrodata\" {",
    text "stg_ap_stack_entries:",
    text "W_ 0; W_ 0; W_ 0;", -- ARG_GEN, ARG_GEN_BIG, ARG_BCO
    vcat (map arr_ent types),
    text "}"
  ]
 where
  arr_ent ty = text "W_" <+> mkStackApplyEntryLabel ty <> semi

genStackSaveArray types =
  vcat [
    text "section \"relrodata\" {",
    text "stg_stack_save_entries:",
    text "W_ 0; W_ 0; W_ 0;", -- ARG_GEN, ARG_GEN_BIG, ARG_BCO
    vcat (map arr_ent types),
    text "}"
  ]
 where
  arr_ent ty = text "W_" <+> mkStackSaveEntryLabel ty <> semi

genBitmapArray :: TargetInfo -> [[ArgRep]] -> Doc
genBitmapArray targetInfo@TargetInfo {..} types =
  vcat [
    text "section \"rodata\" {",
    text "stg_arg_bitmaps:",
    text "W_ 0; W_ 0; W_ 0;", -- ARG_GEN, ARG_GEN_BIG, ARG_BCO
    vcat (map gen_bitmap types),
    text "}"
  ]
  where
   gen_bitmap ty = text "W_" <+> int bitmap_val <> semi
        where bitmap_val =
                (fromIntegral (mkBitmap targetInfo ty) `shiftL` bitmapBitsShift)
                 .|. sum (map (argSize targetInfo) ty)