| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 
 | --
-- Copyright (c) 2014 Joachim Breitner
--
{-# LANGUAGE BangPatterns #-}
module GHC.Core.Opt.CallArity
    ( callArityAnalProgram
    , callArityRHS -- for testing
    ) where
import GHC.Prelude
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Types.Basic
import GHC.Core
import GHC.Types.Id
import GHC.Core.Opt.Arity ( typeArity )
import GHC.Core.Utils ( exprIsCheap, exprIsTrivial )
import GHC.Data.Graph.UnVar
import GHC.Types.Demand
import GHC.Utils.Misc
import Control.Arrow ( first, second )
{-
%************************************************************************
%*                                                                      *
              Call Arity Analysis
%*                                                                      *
%************************************************************************
Note [Call Arity: The goal]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The goal of this analysis is to find out if we can eta-expand a local function
based on how it is being called. The motivating example is this code,
which comes up when we implement foldl using foldr, and do list fusion:
    let go = \x -> let d = case ... of
                              False -> go (x+1)
                              True  -> id
                   in \z -> d (x + z)
    in go 1 0
If we do not eta-expand `go` to have arity 2, we are going to allocate a lot of
partial function applications, which would be bad.
The function `go` has a type of arity two, but only one lambda is manifest.
Furthermore, an analysis that only looks at the RHS of go cannot be sufficient
to eta-expand go: If `go` is ever called with one argument (and the result used
multiple times), we would be doing the work in `...` multiple times.
So `callArityAnalProgram` looks at the whole let expression to figure out if
all calls are nice, i.e. have a high enough arity. It then stores the result in
the `calledArity` field of the `IdInfo` of `go`, which the next simplifier
phase will eta-expand.
The specification of the `calledArity` field is:
    No work will be lost if you eta-expand me to the arity in `calledArity`.
What we want to know for a variable
-----------------------------------
For every let-bound variable we'd like to know:
  1. A lower bound on the arity of all calls to the variable, and
  2. whether the variable is being called at most once or possibly multiple
     times.
It is always okay to lower the arity, or pretend that there are multiple calls.
In particular, "Minimum arity 0 and possibly called multiple times" is always
correct.
What we want to know from an expression
---------------------------------------
In order to obtain that information for variables, we analyze expression and
obtain bits of information:
 I.  The arity analysis:
     For every variable, whether it is absent, or called,
     and if called, with what arity.
 II. The Co-Called analysis:
     For every two variables, whether there is a possibility that both are being
     called.
     We obtain as a special case: For every variable, whether there is a
     possibility that it is being called twice.
For efficiency reasons, we gather this information only for a set of
*interesting variables*, to avoid spending time on, e.g., variables from pattern matches.
The two analysis are not completely independent, as a higher arity can improve
the information about what variables are being called once or multiple times.
Note [Analysis I: The arity analysis]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The arity analysis is quite straightforward: The information about an
expression is an
    VarEnv Arity
where absent variables are bound to Nothing and otherwise to a lower bound to
their arity.
When we analyze an expression, we analyze it with a given context arity.
Lambdas decrease and applications increase the incoming arity. Analysing a
variable will put that arity in the environment. In `let`s or `case`s all the
results from the various subexpressions are lub'd, which takes the point-wise
minimum (considering Nothing an infinity).
Note [Analysis II: The Co-Called analysis]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The second part is more sophisticated. For reasons explained below, it is not
sufficient to simply know how often an expression evaluates a variable. Instead
we need to know which variables are possibly called together.
The data structure here is an undirected graph of variables, which is provided
by the abstract
    UnVarGraph
It is safe to return a larger graph, i.e. one with more edges. The worst case
(i.e. the least useful and always correct result) is the complete graph on all
free variables, which means that anything can be called together with anything
(including itself).
Notation for the following:
C(e)  is the co-called result for e.
G₁∪G₂ is the union of two graphs
fv    is the set of free variables (conveniently the domain of the arity analysis result)
S₁×S₂ is the complete bipartite graph { {a,b} | a ∈ S₁, b ∈ S₂ }
S²    is the complete graph on the set of variables S, S² = S×S
C'(e) is a variant for bound expression:
      If e is called at most once, or it is and stays a thunk (after the analysis),
      it is simply C(e). Otherwise, the expression can be called multiple times
      and we return (fv e)²
The interesting cases of the analysis:
 * Var v:
   No other variables are being called.
   Return {} (the empty graph)
 * Lambda v e, under arity 0:
   This means that e can be evaluated many times and we cannot get
   any useful co-call information.
   Return (fv e)²
 * Case alternatives alt₁,alt₂,...:
   Only one can be executed, so
   Return (alt₁ ∪ alt₂ ∪...)
 * App e₁ e₂ (and analogously Case scrut alts), with non-trivial e₂:
   We get the results from both sides, with the argument evaluated at most once.
   Additionally, anything called by e₁ can possibly be called with anything
   from e₂.
   Return: C(e₁) ∪ C(e₂) ∪ (fv e₁) × (fv e₂)
 * App e₁ x:
   As this is already in A-normal form, CorePrep will not separately lambda
   bind (and hence share) x. So we conservatively assume multiple calls to x here
   Return: C(e₁) ∪ (fv e₁) × {x} ∪ {(x,x)}
 * Let v = rhs in body:
   In addition to the results from the subexpressions, add all co-calls from
   everything that the body calls together with v to everything that is called
   by v.
   Return: C'(rhs) ∪ C(body) ∪ (fv rhs) × {v'| {v,v'} ∈ C(body)}
 * Letrec v₁ = rhs₁ ... vₙ = rhsₙ in body
   Tricky.
   We assume that it is really mutually recursive, i.e. that every variable
   calls one of the others, and that this is strongly connected (otherwise we
   return an over-approximation, so that's ok), see Note [Recursion and fixpointing].
   Let V = {v₁,...vₙ}.
   Assume that the vs have been analysed with an incoming demand and
   cardinality consistent with the final result (this is the fixed-pointing).
   Again we can use the results from all subexpressions.
   In addition, for every variable vᵢ, we need to find out what it is called
   with (call this set Sᵢ). There are two cases:
    * If vᵢ is a function, we need to go through all right-hand-sides and bodies,
      and collect every variable that is called together with any variable from V:
      Sᵢ = {v' | j ∈ {1,...,n},      {v',vⱼ} ∈ C'(rhs₁) ∪ ... ∪ C'(rhsₙ) ∪ C(body) }
    * If vᵢ is a thunk, then its rhs is evaluated only once, so we need to
      exclude it from this set:
      Sᵢ = {v' | j ∈ {1,...,n}, j≠i, {v',vⱼ} ∈ C'(rhs₁) ∪ ... ∪ C'(rhsₙ) ∪ C(body) }
   Finally, combine all this:
   Return: C(body) ∪
           C'(rhs₁) ∪ ... ∪ C'(rhsₙ) ∪
           (fv rhs₁) × S₁) ∪ ... ∪ (fv rhsₙ) × Sₙ)
Using the result: Eta-Expansion
-------------------------------
We use the result of these two analyses to decide whether we can eta-expand the
rhs of a let-bound variable.
If the variable is already a function (exprIsCheap), and all calls to the
variables have a higher arity than the current manifest arity (i.e. the number
of lambdas), expand.
If the variable is a thunk we must be careful: Eta-Expansion will prevent
sharing of work, so this is only safe if there is at most one call to the
function. Therefore, we check whether {v,v} ∈ G.
    Example:
        let n = case .. of .. -- A thunk!
        in n 0 + n 1
    vs.
        let n = case .. of ..
        in case .. of T -> n 0
                      F -> n 1
    We are only allowed to eta-expand `n` if it is going to be called at most
    once in the body of the outer let. So we need to know, for each variable
    individually, that it is going to be called at most once.
Why the co-call graph?
----------------------
Why is it not sufficient to simply remember which variables are called once and
which are called multiple times? It would be in the previous example, but consider
        let n = case .. of ..
        in case .. of
            True -> let go = \y -> case .. of
                                     True -> go (y + n 1)
                                     False > n
                    in go 1
            False -> n
vs.
        let n = case .. of ..
        in case .. of
            True -> let go = \y -> case .. of
                                     True -> go (y+1)
                                     False > n
                    in go 1
            False -> n
In both cases, the body and the rhs of the inner let call n at most once.
But only in the second case that holds for the whole expression! The
crucial difference is that in the first case, the rhs of `go` can call
*both* `go` and `n`, and hence can call `n` multiple times as it recurses,
while in the second case find out that `go` and `n` are not called together.
Why co-call information for functions?
--------------------------------------
Although for eta-expansion we need the information only for thunks, we still
need to know whether functions are being called once or multiple times, and
together with what other functions.
    Example:
        let n = case .. of ..
            f x = n (x+1)
        in f 1 + f 2
    vs.
        let n = case .. of ..
            f x = n (x+1)
        in case .. of T -> f 0
                      F -> f 1
    Here, the body of f calls n exactly once, but f itself is being called
    multiple times, so eta-expansion is not allowed.
Note [Analysis type signature]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The workhorse of the analysis is the function `callArityAnal`, with the
following type:
    type CallArityRes = (UnVarGraph, VarEnv Arity)
    callArityAnal ::
        Arity ->  -- The arity this expression is called with
        VarSet -> -- The set of interesting variables
        CoreExpr ->  -- The expression to analyse
        (CallArityRes, CoreExpr)
and the following specification:
  ((coCalls, callArityEnv), expr') = callArityEnv arity interestingIds expr
                            <=>
  Assume the expression `expr` is being passed `arity` arguments. Then it holds that
    * The domain of `callArityEnv` is a subset of `interestingIds`.
    * Any variable from `interestingIds` that is not mentioned in the `callArityEnv`
      is absent, i.e. not called at all.
    * Every call from `expr` to a variable bound to n in `callArityEnv` has at
      least n value arguments.
    * For two interesting variables `v1` and `v2`, they are not adjacent in `coCalls`,
      then in no execution of `expr` both are being called.
  Furthermore, expr' is expr with the callArity field of the `IdInfo` updated.
Note [Which variables are interesting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The analysis would quickly become prohibitive expensive if we would analyse all
variables; for most variables we simply do not care about how often they are
called, i.e. variables bound in a pattern match. So interesting are variables that are
 * top-level or let bound
 * and possibly functions (typeArity > 0)
Note [Taking boring variables into account]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we decide that the variable bound in `let x = e1 in e2` is not interesting,
the analysis of `e2` will not report anything about `x`. To ensure that
`callArityBind` does still do the right thing we have to take that into account
every time we would be lookup up `x` in the analysis result of `e2`.
  * Instead of calling lookupCallArityRes, we return (0, True), indicating
    that this variable might be called many times with no arguments.
  * Instead of checking `calledWith x`, we assume that everything can be called
    with it.
  * In the recursive case, when calclulating the `cross_calls`, if there is
    any boring variable in the recursive group, we ignore all co-call-results
    and directly go to a very conservative assumption.
The last point has the nice side effect that the relatively expensive
integration of co-call results in a recursive groups is often skipped. This
helped to avoid the compile time blowup in some real-world code with large
recursive groups (#10293).
Note [Recursion and fixpointing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For a mutually recursive let, we begin by
 1. analysing the body, using the same incoming arity as for the whole expression.
 2. Then we iterate, memoizing for each of the bound variables the last
    analysis call, i.e. incoming arity, whether it is called once, and the CallArityRes.
 3. We combine the analysis result from the body and the memoized results for
    the arguments (if already present).
 4. For each variable, we find out the incoming arity and whether it is called
    once, based on the current analysis result. If this differs from the
    memoized results, we re-analyse the rhs and update the memoized table.
 5. If nothing had to be reanalyzed, we are done.
    Otherwise, repeat from step 3.
Note [Thunks in recursive groups]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We never eta-expand a thunk in a recursive group, on the grounds that if it is
part of a recursive group, then it will be called multiple times.
This is not necessarily true, e.g.  it would be safe to eta-expand t2 (but not
t1) in the following code:
  let go x = t1
      t1 = if ... then t2 else ...
      t2 = if ... then go 1 else ...
  in go 0
Detecting this would require finding out what variables are only ever called
from thunks. While this is certainly possible, we yet have to see this to be
relevant in the wild.
Note [Analysing top-level binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can eta-expand top-level-binds if they are not exported, as we see all calls
to them. The plan is as follows: Treat the top-level binds as nested lets around
a body representing “all external calls”, which returns a pessimistic
CallArityRes (the co-call graph is the complete graph, all arityies 0).
Note [Trimming arity]
~~~~~~~~~~~~~~~~~~~~~
In the Call Arity papers, we are working on an untyped lambda calculus with no
other id annotations, where eta-expansion is always possible. But this is not
the case for Core!
 1. We need to ensure the invariant
      callArity e <= typeArity (exprType e)
    for the same reasons that exprArity needs this invariant (see Note
    [typeArity invariants] in GHC.Core.Opt.Arity).
    If we are not doing that, a too-high arity annotation will be stored with
    the id, confusing the simplifier later on.
 2. Eta-expanding a right hand side might invalidate existing annotations. In
    particular, if an id has a strictness annotation of <...><...>b, then
    passing two arguments to it will definitely bottom out, so the simplifier
    will throw away additional parameters. This conflicts with Call Arity! So
    we ensure that we never eta-expand such a value beyond the number of
    arguments mentioned in the strictness signature.
    See #10176 for a real-world-example.
Note [What is a thunk]
~~~~~~~~~~~~~~~~~~~~~~
Originally, everything that is not in WHNF (`exprIsWHNF`) is considered a
thunk, not eta-expanded, to avoid losing any sharing. This is also how the
published papers on Call Arity describe it.
In practice, there are thunks that do a just little work, such as
pattern-matching on a variable, and the benefits of eta-expansion likely
outweigh the cost of doing that repeatedly. Therefore, this implementation of
Call Arity considers everything that is not cheap (`exprIsCheap`) as a thunk.
Note [Call Arity and Join Points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Call Arity analysis does not care about join points, and treats them just
like normal functions. This is ok.
The analysis *could* make use of the fact that join points are always evaluated
in the same context as the join-binding they are defined in and are always
one-shot, and handle join points separately, as suggested in
https://gitlab.haskell.org/ghc/ghc/issues/13479#note_134870.
This *might* be more efficient (for example, join points would not have to be
considered interesting variables), but it would also add redundant code. So for
now we do not do that.
The simplifier never eta-expands join points (it instead pushes extra arguments from
an eta-expanded context into the join point’s RHS), so the call arity
annotation on join points is not actually used. As it would be equally valid
(though less efficient) to eta-expand join points, this is the simplifier's
choice, and hence Call Arity sets the call arity for join points as well.
-}
-- Main entry point
callArityAnalProgram :: CoreProgram -> CoreProgram
callArityAnalProgram binds = binds'
  where
    (_, binds') = callArityTopLvl [] emptyVarSet binds
-- See Note [Analysing top-level binds]
callArityTopLvl :: [Var] -> VarSet -> [CoreBind] -> (CallArityRes, [CoreBind])
callArityTopLvl exported _ []
    = ( calledMultipleTimes $ (emptyUnVarGraph, mkVarEnv $ [(v, 0) | v <- exported])
      , [] )
callArityTopLvl exported int1 (b:bs)
    = (ae2, b':bs')
  where
    int2 = bindersOf b
    exported' = filter isExportedId int2 ++ exported
    int' = int1 `addInterestingBinds` b
    (ae1, bs') = callArityTopLvl exported' int' bs
    (ae2, b')  = callArityBind (boringBinds b) ae1 int1 b
callArityRHS :: CoreExpr -> CoreExpr
callArityRHS = snd . callArityAnal 0 emptyVarSet
-- The main analysis function. See Note [Analysis type signature]
callArityAnal ::
    Arity ->  -- The arity this expression is called with
    VarSet -> -- The set of interesting variables
    CoreExpr ->  -- The expression to analyse
    (CallArityRes, CoreExpr)
        -- How this expression uses its interesting variables
        -- and the expression with IdInfo updated
-- The trivial base cases
callArityAnal _     _   e@(Lit _)
    = (emptyArityRes, e)
callArityAnal _     _   e@(Type _)
    = (emptyArityRes, e)
callArityAnal _     _   e@(Coercion _)
    = (emptyArityRes, e)
-- The transparent cases
callArityAnal arity int (Tick t e)
    = second (Tick t) $ callArityAnal arity int e
callArityAnal arity int (Cast e co)
    = second (\e -> Cast e co) $ callArityAnal arity int e
-- The interesting case: Variables, Lambdas, Lets, Applications, Cases
callArityAnal arity int e@(Var v)
    | v `elemVarSet` int
    = (unitArityRes v arity, e)
    | otherwise
    = (emptyArityRes, e)
-- Non-value lambdas are ignored
callArityAnal arity int (Lam v e) | not (isId v)
    = second (Lam v) $ callArityAnal arity (int `delVarSet` v) e
-- We have a lambda that may be called multiple times, so its free variables
-- can all be co-called.
callArityAnal 0     int (Lam v e)
    = (ae', Lam v e')
  where
    (ae, e') = callArityAnal 0 (int `delVarSet` v) e
    ae' = calledMultipleTimes ae
-- We have a lambda that we are calling. decrease arity.
callArityAnal arity int (Lam v e)
    = (ae, Lam v e')
  where
    (ae, e') = callArityAnal (arity - 1) (int `delVarSet` v) e
-- Application. Increase arity for the called expression, nothing to know about
-- the second
callArityAnal arity int (App e (Type t))
    = second (\e -> App e (Type t)) $ callArityAnal arity int e
callArityAnal arity int (App e1 e2)
    = (final_ae, App e1' e2')
  where
    (ae1, e1') = callArityAnal (arity + 1) int e1
    (ae2, e2') = callArityAnal 0           int e2
    -- If the argument is trivial (e.g. a variable), then it will _not_ be
    -- let-bound in the Core to STG transformation (CorePrep actually),
    -- so no sharing will happen here, and we have to assume many calls.
    ae2' | exprIsTrivial e2 = calledMultipleTimes ae2
         | otherwise        = ae2
    final_ae = ae1 `both` ae2'
-- Case expression.
callArityAnal arity int (Case scrut bndr ty alts)
    = -- pprTrace "callArityAnal:Case"
      --          (vcat [ppr scrut, ppr final_ae])
      (final_ae, Case scrut' bndr ty alts')
  where
    (alt_aes, alts') = unzip $ map go alts
    go (Alt dc bndrs e) = let (ae, e') = callArityAnal arity (int `delVarSetList` (bndr:bndrs)) e
                          in  (ae, Alt dc bndrs e')
    alt_ae = lubRess alt_aes
    (scrut_ae, scrut') = callArityAnal 0 int scrut
    final_ae = scrut_ae `both` alt_ae
-- For lets, use callArityBind
callArityAnal arity int (Let bind e)
  = -- pprTrace "callArityAnal:Let"
    --          (vcat [ppr v, ppr arity, ppr n, ppr final_ae ])
    (final_ae, Let bind' e')
  where
    int_body = int `addInterestingBinds` bind
    (ae_body, e') = callArityAnal arity int_body e
    (final_ae, bind') = callArityBind (boringBinds bind) ae_body int bind
-- Which bindings should we look at?
-- See Note [Which variables are interesting]
isInteresting :: Var -> Bool
isInteresting v = typeArity (idType v) > 0
interestingBinds :: CoreBind -> [Var]
interestingBinds = filter isInteresting . bindersOf
boringBinds :: CoreBind -> VarSet
boringBinds = mkVarSet . filter (not . isInteresting) . bindersOf
addInterestingBinds :: VarSet -> CoreBind -> VarSet
addInterestingBinds int bind
    = int `delVarSetList`    bindersOf bind -- Possible shadowing
          `extendVarSetList` interestingBinds bind
-- Used for both local and top-level binds
-- Second argument is the demand from the body
callArityBind :: VarSet -> CallArityRes -> VarSet -> CoreBind -> (CallArityRes, CoreBind)
-- Non-recursive let
callArityBind boring_vars ae_body int (NonRec v rhs)
  | otherwise
  = -- pprTrace "callArityBind:NonRec"
    --          (vcat [ppr v, ppr ae_body, ppr int, ppr ae_rhs, ppr safe_arity])
    (final_ae, NonRec v' rhs')
  where
    is_thunk = not (exprIsCheap rhs) -- see Note [What is a thunk]
    -- If v is boring, we will not find it in ae_body, but always assume (0, False)
    boring = v `elemVarSet` boring_vars
    (arity, called_once)
        | boring    = (0, False) -- See Note [Taking boring variables into account]
        | otherwise = lookupCallArityRes ae_body v
    safe_arity | called_once = arity
               | is_thunk    = 0      -- A thunk! Do not eta-expand
               | otherwise   = arity
    -- See Note [Trimming arity]
    trimmed_arity = trimArity v safe_arity
    (ae_rhs, rhs') = callArityAnal trimmed_arity int rhs
    ae_rhs'| called_once     = ae_rhs
           | safe_arity == 0 = ae_rhs -- If it is not a function, its body is evaluated only once
           | otherwise       = calledMultipleTimes ae_rhs
    called_by_v = domRes ae_rhs'
    called_with_v
        | boring    = domRes ae_body
        | otherwise = calledWith ae_body v `delUnVarSet` v
    final_ae = addCrossCoCalls called_by_v called_with_v $ ae_rhs' `lubRes` resDel v ae_body
    v' = v `setIdCallArity` trimmed_arity
-- Recursive let. See Note [Recursion and fixpointing]
callArityBind boring_vars ae_body int b@(Rec binds)
  = -- (if length binds > 300 then
    -- pprTrace "callArityBind:Rec"
    --           (vcat [ppr (Rec binds'), ppr ae_body, ppr int, ppr ae_rhs]) else id) $
    (final_ae, Rec binds')
  where
    -- See Note [Taking boring variables into account]
    any_boring = any (`elemVarSet` boring_vars) [ i | (i, _) <- binds]
    int_body = int `addInterestingBinds` b
    (ae_rhs, binds') = fix initial_binds
    final_ae = bindersOf b `resDelList` ae_rhs
    initial_binds = [(i,Nothing,e) | (i,e) <- binds]
    fix :: [(Id, Maybe (Bool, Arity, CallArityRes), CoreExpr)] -> (CallArityRes, [(Id, CoreExpr)])
    fix ann_binds
        | -- pprTrace "callArityBind:fix" (vcat [ppr ann_binds, ppr any_change, ppr ae]) $
          any_change
        = fix ann_binds'
        | otherwise
        = (ae, map (\(i, _, e) -> (i, e)) ann_binds')
      where
        aes_old = [ (i,ae) | (i, Just (_,_,ae), _) <- ann_binds ]
        ae = callArityRecEnv any_boring aes_old ae_body
        rerun (i, mbLastRun, rhs)
            | i `elemVarSet` int_body && not (i `elemUnVarSet` domRes ae)
            -- No call to this yet, so do nothing
            = (False, (i, Nothing, rhs))
            | Just (old_called_once, old_arity, _) <- mbLastRun
            , called_once == old_called_once
            , new_arity == old_arity
            -- No change, no need to re-analyze
            = (False, (i, mbLastRun, rhs))
            | otherwise
            -- We previously analyzed this with a different arity (or not at all)
            = let is_thunk = not (exprIsCheap rhs) -- see Note [What is a thunk]
                  safe_arity | is_thunk    = 0  -- See Note [Thunks in recursive groups]
                             | otherwise   = new_arity
                  -- See Note [Trimming arity]
                  trimmed_arity = trimArity i safe_arity
                  (ae_rhs, rhs') = callArityAnal trimmed_arity int_body rhs
                  ae_rhs' | called_once     = ae_rhs
                          | safe_arity == 0 = ae_rhs -- If it is not a function, its body is evaluated only once
                          | otherwise       = calledMultipleTimes ae_rhs
                  i' = i `setIdCallArity` trimmed_arity
              in (True, (i', Just (called_once, new_arity, ae_rhs'), rhs'))
          where
            -- See Note [Taking boring variables into account]
            (new_arity, called_once) | i `elemVarSet` boring_vars = (0, False)
                                     | otherwise                  = lookupCallArityRes ae i
        (changes, ann_binds') = unzip $ map rerun ann_binds
        any_change = or changes
-- Combining the results from body and rhs, (mutually) recursive case
-- See Note [Analysis II: The Co-Called analysis]
callArityRecEnv :: Bool -> [(Var, CallArityRes)] -> CallArityRes -> CallArityRes
callArityRecEnv any_boring ae_rhss ae_body
    = -- (if length ae_rhss > 300 then pprTrace "callArityRecEnv" (vcat [ppr ae_rhss, ppr ae_body, ppr ae_new]) else id) $
      ae_new
  where
    vars = map fst ae_rhss
    ae_combined = lubRess (map snd ae_rhss) `lubRes` ae_body
    cross_calls
        -- See Note [Taking boring variables into account]
        | any_boring               = completeGraph (domRes ae_combined)
        -- Also, calculating cross_calls is expensive. Simply be conservative
        -- if the mutually recursive group becomes too large.
        | lengthExceeds ae_rhss 25 = completeGraph (domRes ae_combined)
        | otherwise                = unionUnVarGraphs $ map cross_call ae_rhss
    cross_call (v, ae_rhs) = completeBipartiteGraph called_by_v called_with_v
      where
        is_thunk = idCallArity v == 0
        -- What rhs are relevant as happening before (or after) calling v?
        --    If v is a thunk, everything from all the _other_ variables
        --    If v is not a thunk, everything can happen.
        ae_before_v | is_thunk  = lubRess (map snd $ filter ((/= v) . fst) ae_rhss) `lubRes` ae_body
                    | otherwise = ae_combined
        -- What do we want to know from these?
        -- Which calls can happen next to any recursive call.
        called_with_v
            = unionUnVarSets $ map (calledWith ae_before_v) vars
        called_by_v = domRes ae_rhs
    ae_new = first (cross_calls `unionUnVarGraph`) ae_combined
-- See Note [Trimming arity]
trimArity :: Id -> Arity -> Arity
trimArity v a = minimum [a, max_arity_by_type, max_arity_by_strsig]
  where
    max_arity_by_type = typeArity (idType v)
    max_arity_by_strsig
        | isDeadEndDiv result_info = length demands
        | otherwise = a
    (demands, result_info) = splitDmdSig (idDmdSig v)
---------------------------------------
-- Functions related to CallArityRes --
---------------------------------------
-- Result type for the two analyses.
-- See Note [Analysis I: The arity analysis]
-- and Note [Analysis II: The Co-Called analysis]
type CallArityRes = (UnVarGraph, VarEnv Arity)
emptyArityRes :: CallArityRes
emptyArityRes = (emptyUnVarGraph, emptyVarEnv)
unitArityRes :: Var -> Arity -> CallArityRes
unitArityRes v arity = (emptyUnVarGraph, unitVarEnv v arity)
resDelList :: [Var] -> CallArityRes -> CallArityRes
resDelList vs ae = foldl' (flip resDel) ae vs
resDel :: Var -> CallArityRes -> CallArityRes
resDel v (!g, !ae) = (g `delNode` v, ae `delVarEnv` v)
domRes :: CallArityRes -> UnVarSet
domRes (_, ae) = varEnvDomain ae
-- In the result, find out the minimum arity and whether the variable is called
-- at most once.
lookupCallArityRes :: CallArityRes -> Var -> (Arity, Bool)
lookupCallArityRes (g, ae) v
    = case lookupVarEnv ae v of
        Just a -> (a, not (g `hasLoopAt` v))
        Nothing -> (0, False)
calledWith :: CallArityRes -> Var -> UnVarSet
calledWith (g, _) v = neighbors g v
addCrossCoCalls :: UnVarSet -> UnVarSet -> CallArityRes -> CallArityRes
addCrossCoCalls set1 set2 = first (completeBipartiteGraph set1 set2 `unionUnVarGraph`)
-- Replaces the co-call graph by a complete graph (i.e. no information)
calledMultipleTimes :: CallArityRes -> CallArityRes
calledMultipleTimes res = first (const (completeGraph (domRes res))) res
-- Used for application and cases
both :: CallArityRes -> CallArityRes -> CallArityRes
both r1 r2 = addCrossCoCalls (domRes r1) (domRes r2) $ r1 `lubRes` r2
-- Used when combining results from alternative cases; take the minimum
lubRes :: CallArityRes -> CallArityRes -> CallArityRes
lubRes (g1, ae1) (g2, ae2) = (g1 `unionUnVarGraph` g2, ae1 `lubArityEnv` ae2)
lubArityEnv :: VarEnv Arity -> VarEnv Arity -> VarEnv Arity
lubArityEnv = plusVarEnv_C min
lubRess :: [CallArityRes] -> CallArityRes
lubRess = foldl' lubRes emptyArityRes
 |