1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
|
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ < 905
{-# LANGUAGE PatternSynonyms #-}
#endif
{-
ToDo [Oct 2013]
~~~~~~~~~~~~~~~
1. Nuke ForceSpecConstr for good (it is subsumed by GHC.Types.SPEC in ghc-prim)
2. Nuke NoSpecConstr
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[SpecConstr]{Specialise over constructors}
-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module GHC.Core.Opt.SpecConstr(
specConstrProgram,
SpecConstrAnnotation(..)
) where
import GHC.Prelude
import GHC.Driver.Session ( DynFlags(..), GeneralFlag( Opt_SpecConstrKeen )
, gopt, hasPprDebug )
import GHC.Core
import GHC.Core.Subst
import GHC.Core.Utils
import GHC.Core.Unfold
import GHC.Core.FVs ( exprsFreeVarsList, exprFreeVars )
import GHC.Core.Opt.Monad
import GHC.Core.Opt.WorkWrap.Utils
import GHC.Core.Opt.OccurAnal( scrutBinderSwap_maybe )
import GHC.Core.DataCon
import GHC.Core.Class( classTyVars )
import GHC.Core.Coercion hiding( substCo )
import GHC.Core.Rules
import GHC.Core.Predicate ( typeDeterminesValue )
import GHC.Core.Type hiding ( substTy )
import GHC.Core.TyCon (TyCon, tyConName )
import GHC.Core.Multiplicity
import GHC.Core.Ppr ( pprParendExpr )
import GHC.Core.Make ( mkImpossibleExpr )
import GHC.Unit.Module
import GHC.Unit.Module.ModGuts
import GHC.Types.Literal ( litIsLifted )
import GHC.Types.Id
import GHC.Types.Id.Info ( IdDetails(..) )
import GHC.Types.Id.Make ( voidArgId, voidPrimId )
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Name
import GHC.Types.Tickish
import GHC.Types.Basic
import GHC.Types.Demand
import GHC.Types.Cpr
import GHC.Types.Unique.Supply
import GHC.Types.Unique.FM
import GHC.Types.Unique( hasKey )
import GHC.Data.Maybe ( orElse, catMaybes, isJust, isNothing )
import GHC.Data.Pair
import GHC.Data.FastString
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic.Plain
import GHC.Utils.Panic
import GHC.Utils.Constants (debugIsOn)
import GHC.Utils.Monad
import GHC.Builtin.Names ( specTyConKey )
import GHC.Exts( SpecConstrAnnotation(..) )
import GHC.Serialized ( deserializeWithData )
import Control.Monad ( zipWithM )
import Data.List (nubBy, sortBy, partition, dropWhileEnd, mapAccumL )
import Data.Maybe( mapMaybe )
import Data.Ord( comparing )
import Data.Tuple
{-
-----------------------------------------------------
Game plan
-----------------------------------------------------
Consider
drop n [] = []
drop 0 xs = []
drop n (x:xs) = drop (n-1) xs
After the first time round, we could pass n unboxed. This happens in
numerical code too. Here's what it looks like in Core:
drop n xs = case xs of
[] -> []
(y:ys) -> case n of
I# n# -> case n# of
0 -> []
_ -> drop (I# (n# -# 1#)) xs
Notice that the recursive call has an explicit constructor as argument.
Noticing this, we can make a specialised version of drop
RULE: drop (I# n#) xs ==> drop' n# xs
drop' n# xs = let n = I# n# in ...orig RHS...
Now the simplifier will apply the specialisation in the rhs of drop', giving
drop' n# xs = case xs of
[] -> []
(y:ys) -> case n# of
0 -> []
_ -> drop' (n# -# 1#) xs
Much better!
We'd also like to catch cases where a parameter is carried along unchanged,
but evaluated each time round the loop:
f i n = if i>0 || i>n then i else f (i*2) n
Here f isn't strict in n, but we'd like to avoid evaluating it each iteration.
In Core, by the time we've w/wd (f is strict in i) we get
f i# n = case i# ># 0 of
False -> I# i#
True -> case n of { I# n# ->
case i# ># n# of
False -> I# i#
True -> f (i# *# 2#) n
At the call to f, we see that the argument, n is known to be (I# n#),
and n is evaluated elsewhere in the body of f, so we can play the same
trick as above.
Note [Reboxing]
~~~~~~~~~~~~~~~
We must be careful not to allocate the same constructor twice. Consider
f p = (...(case p of (a,b) -> e)...p...,
...let t = (r,s) in ...t...(f t)...)
At the recursive call to f, we can see that t is a pair. But we do NOT want
to make a specialised copy:
f' a b = let p = (a,b) in (..., ...)
because now t is allocated by the caller, then r and s are passed to the
recursive call, which allocates the (r,s) pair again.
This happens if
(a) the argument p is used in other than a case-scrutinisation way.
(b) the argument to the call is not a 'fresh' tuple; you have to
look into its unfolding to see that it's a tuple
Hence the "OR" part of Note [Good arguments] below.
ALTERNATIVE 2: pass both boxed and unboxed versions. This no longer saves
allocation, but does perhaps save evals. In the RULE we'd have
something like
f (I# x#) = f' (I# x#) x#
If at the call site the (I# x) was an unfolding, then we'd have to
rely on CSE to eliminate the duplicate allocation.... This alternative
doesn't look attractive enough to pursue.
ALTERNATIVE 3: ignore the reboxing problem. The trouble is that
the conservative reboxing story prevents many useful functions from being
specialised. Example:
foo :: Maybe Int -> Int -> Int
foo (Just m) 0 = 0
foo x@(Just m) n = foo x (n-m)
Here the use of 'x' will clearly not require boxing in the specialised function.
The strictness analyser has the same problem, in fact. Example:
f p@(a,b) = ...
If we pass just 'a' and 'b' to the worker, it might need to rebox the
pair to create (a,b). A more sophisticated analysis might figure out
precisely the cases in which this could happen, but the strictness
analyser does no such analysis; it just passes 'a' and 'b', and hopes
for the best.
So my current choice is to make SpecConstr similarly aggressive, and
ignore the bad potential of reboxing.
Note [Good arguments]
~~~~~~~~~~~~~~~~~~~~~
So we look for
* A self-recursive function. Ignore mutual recursion for now,
because it's less common, and the code is simpler for self-recursion.
* EITHER
a) At a recursive call, one or more parameters is an explicit
constructor application
AND
That same parameter is scrutinised by a case somewhere in
the RHS of the function
OR
b) At a recursive call, one or more parameters has an unfolding
that is an explicit constructor application
AND
That same parameter is scrutinised by a case somewhere in
the RHS of the function
AND
Those are the only uses of the parameter (see Note [Reboxing])
What to abstract over
~~~~~~~~~~~~~~~~~~~~~
There's a bit of a complication with type arguments. If the call
site looks like
f p = ...f ((:) [a] x xs)...
then our specialised function look like
f_spec x xs = let p = (:) [a] x xs in ....as before....
This only makes sense if either
a) the type variable 'a' is in scope at the top of f, or
b) the type variable 'a' is an argument to f (and hence fs)
Actually, (a) may hold for value arguments too, in which case
we may not want to pass them. Suppose 'x' is in scope at f's
defn, but xs is not. Then we'd like
f_spec xs = let p = (:) [a] x xs in ....as before....
Similarly (b) may hold too. If x is already an argument at the
call, no need to pass it again.
Finally, if 'a' is not in scope at the call site, we could abstract
it as we do the term variables:
f_spec a x xs = let p = (:) [a] x xs in ...as before...
So the grand plan is:
* abstract the call site to a constructor-only pattern
e.g. C x (D (f p) (g q)) ==> C s1 (D s2 s3)
* Find the free variables of the abstracted pattern
* Pass these variables, less any that are in scope at
the fn defn. But see Note [Shadowing] below.
NOTICE that we only abstract over variables that are not in scope,
so we're in no danger of shadowing variables used in "higher up"
in f_spec's RHS.
Note [Shadowing]
~~~~~~~~~~~~~~~~
In this pass we gather up usage information that may mention variables
that are bound between the usage site and the definition site; or (more
seriously) may be bound to something different at the definition site.
For example:
f x = letrec g y v = let x = ...
in ...(g (a,b) x)...
Since 'x' is in scope at the call site, we may make a rewrite rule that
looks like
RULE forall a,b. g (a,b) x = ...
But this rule will never match, because it's really a different 'x' at
the call site -- and that difference will be manifest by the time the
simplifier gets to it. [A worry: the simplifier doesn't *guarantee*
no-shadowing, so perhaps it may not be distinct?]
Anyway, the rule isn't actually wrong, it's just not useful. One possibility
is to run deShadowBinds before running SpecConstr, but instead we run the
simplifier. That gives the simplest possible program for SpecConstr to
chew on; and it virtually guarantees no shadowing.
Note [Specialising for constant parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This one is about specialising on a *constant* (but not necessarily
constructor) argument
foo :: Int -> (Int -> Int) -> Int
foo 0 f = 0
foo m f = foo (f m) (+1)
It produces
lvl_rmV :: GHC.Base.Int -> GHC.Base.Int
lvl_rmV =
\ (ds_dlk :: GHC.Base.Int) ->
case ds_dlk of wild_alH { GHC.Base.I# x_alG ->
GHC.Base.I# (GHC.Prim.+# x_alG 1)
T.$wfoo :: GHC.Prim.Int# -> (GHC.Base.Int -> GHC.Base.Int) ->
GHC.Prim.Int#
T.$wfoo =
\ (ww_sme :: GHC.Prim.Int#) (w_smg :: GHC.Base.Int -> GHC.Base.Int) ->
case ww_sme of ds_Xlw {
__DEFAULT ->
case w_smg (GHC.Base.I# ds_Xlw) of w1_Xmo { GHC.Base.I# ww1_Xmz ->
T.$wfoo ww1_Xmz lvl_rmV
};
0 -> 0
}
The recursive call has lvl_rmV as its argument, so we could create a specialised copy
with that argument baked in; that is, not passed at all. Now it can perhaps be inlined.
When is this worth it? Call the constant 'lvl'
- If 'lvl' has an unfolding that is a constructor, see if the corresponding
parameter is scrutinised anywhere in the body.
- If 'lvl' has an unfolding that is a inlinable function, see if the corresponding
parameter is applied (...to enough arguments...?)
Also do this is if the function has RULES?
Also
Note [Specialising for lambda parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
foo :: Int -> (Int -> Int) -> Int
foo 0 f = 0
foo m f = foo (f m) (\n -> n-m)
This is subtly different from the previous one in that we get an
explicit lambda as the argument:
T.$wfoo :: GHC.Prim.Int# -> (GHC.Base.Int -> GHC.Base.Int) ->
GHC.Prim.Int#
T.$wfoo =
\ (ww_sm8 :: GHC.Prim.Int#) (w_sma :: GHC.Base.Int -> GHC.Base.Int) ->
case ww_sm8 of ds_Xlr {
__DEFAULT ->
case w_sma (GHC.Base.I# ds_Xlr) of w1_Xmf { GHC.Base.I# ww1_Xmq ->
T.$wfoo
ww1_Xmq
(\ (n_ad3 :: GHC.Base.Int) ->
case n_ad3 of wild_alB { GHC.Base.I# x_alA ->
GHC.Base.I# (GHC.Prim.-# x_alA ds_Xlr)
})
};
0 -> 0
}
I wonder if SpecConstr couldn't be extended to handle this? After all,
lambda is a sort of constructor for functions and perhaps it already
has most of the necessary machinery?
Furthermore, there's an immediate win, because you don't need to allocate the lambda
at the call site; and if perchance it's called in the recursive call, then you
may avoid allocating it altogether. Just like for constructors.
Looks cool, but probably rare...but it might be easy to implement.
Note [SpecConstr for casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data family T a :: *
data instance T Int = T Int
foo n = ...
where
go (T 0) = 0
go (T n) = go (T (n-1))
The recursive call ends up looking like
go (T (I# ...) `cast` g)
So we want to spot the constructor application inside the cast.
That's why we have the Cast case in argToPat
Note [Seeding recursive groups]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For a recursive group that is either
* nested, or
* top-level, but with no exported Ids
we can see all the calls to the function, so we seed the specialisation
loop from the calls in the body, and /not/ from the calls in the RHS.
Consider:
bar m n = foo n (n,n) (n,n) (n,n) (n,n)
where
foo n p q r s
| n == 0 = m
| n > 3000 = case p of { (p1,p2) -> foo (n-1) (p2,p1) q r s }
| n > 2000 = case q of { (q1,q2) -> foo (n-1) p (q2,q1) r s }
| n > 1000 = case r of { (r1,r2) -> foo (n-1) p q (r2,r1) s }
| otherwise = case s of { (s1,s2) -> foo (n-1) p q r (s2,s1) }
If we start with the RHSs of 'foo', we get lots and lots of specialisations,
most of which are not needed. But if we start with the (single) call
in the rhs of 'bar' we get exactly one fully-specialised copy, and all
the recursive calls go to this fully-specialised copy. Indeed, the original
function is later collected as dead code. This is very important in
specialising the loops arising from stream fusion, for example in NDP where
we were getting literally hundreds of (mostly unused) specialisations of
a local function.
In a case like the above we end up never calling the original un-specialised
function. (Although we still leave its code around just in case.)
Wrinkles
* Boring calls. If we find any boring calls in the body, including
*unsaturated* ones, such as
letrec foo x y = ....foo...
in map foo xs
then we will end up calling the un-specialised function, so then we
*should* use the calls in the un-specialised RHS as seeds. We call
these "boring call patterns", and callsToNewPats reports if it finds
any of these. Then 'specialise' unleashes the usage info from the
un-specialised RHS.
* Exported Ids. `specialise` /also/ unleashes `si_mb_unspec`
for exported Ids. That way we are sure to generate usage info from
the /un-specialised/ RHS of an exported function.
More precisely:
* Always start from the calls in the body of the let or (for top level)
calls in the rest of the module. See the body_calls in the call to
`specialise` in `specNonRec`, and to `go` in `specRec`.
* si_mb_unspec holds the usage from the unspecialised RHS.
See `initSpecInfo`.
* `specialise` will unleash si_mb_unspec, if
- `callsToNewPats` reports "boring calls found", or
- this is a top-level exported Id.
Historical note. At an earlier point, if a top-level Id was exported,
we used only seeds from the RHS, and /not/from the body. But Dimitrios
had an example where using call patterns from the body (the other defns
in the module) was crucial. And doing so improved nofib allocation results:
multiplier: 4% better
minimax: 2.8% better
In any case, it is easier to do!
Note [Do not specialise diverging functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Specialising a function that just diverges is a waste of code.
Furthermore, it broke GHC (simpl014) thus:
{-# STR Sb #-}
f = \x. case x of (a,b) -> f x
If we specialise f we get
f = \x. case x of (a,b) -> fspec a b
But fspec doesn't have decent strictness info. As it happened,
(f x) :: IO t, so the state hack applied and we eta expanded fspec,
and hence f. But now f's strictness is less than its arity, which
breaks an invariant.
Note [Forcing specialisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With stream fusion and in other similar cases, we want to fully
specialise some (but not necessarily all!) loops regardless of their
size and the number of specialisations.
We allow a library to do this, in one of two ways (one which is
deprecated):
1) Add a parameter of type GHC.Types.SPEC (from ghc-prim) to the loop body.
2) (Deprecated) Annotate a type with ForceSpecConstr from GHC.Exts,
and then add *that* type as a parameter to the loop body
The reason #2 is deprecated is because it requires GHCi, which isn't
available for things like a cross compiler using stage1.
Here's a (simplified) example from the `vector` package. You may bring
the special 'force specialization' type into scope by saying:
import GHC.Types (SPEC(..))
or by defining your own type (again, deprecated):
data SPEC = SPEC | SPEC2
{-# ANN type SPEC ForceSpecConstr #-}
(Note this is the exact same definition of GHC.Types.SPEC, just
without the annotation.)
After that, you say:
foldl :: (a -> b -> a) -> a -> Stream b -> a
{-# INLINE foldl #-}
foldl f z (Stream step s _) = foldl_loop SPEC z s
where
foldl_loop !sPEC z s = case step s of
Yield x s' -> foldl_loop sPEC (f z x) s'
Skip -> foldl_loop sPEC z s'
Done -> z
SpecConstr will spot the SPEC parameter and always fully specialise
foldl_loop. Note that
* We have to prevent the SPEC argument from being removed by
w/w which is why (a) SPEC is a sum type, and (b) we have to seq on
the SPEC argument.
* And lastly, the SPEC argument is ultimately eliminated by
SpecConstr itself so there is no runtime overhead.
This is all quite ugly; we ought to come up with a better design.
ForceSpecConstr arguments are spotted in scExpr' and scTopBinds which then set
sc_force to True when calling specLoop. This flag does four things:
* Ignore specConstrThreshold, to specialise functions of arbitrary size
(see scTopBind)
* Ignore specConstrCount, to make arbitrary numbers of specialisations
(see specialise)
* Specialise even for arguments that are not scrutinised in the loop
(see argToPat; #4448)
* Only specialise on recursive types a finite number of times
(see is_too_recursive; #5550; Note [Limit recursive specialisation])
The flag holds only for specialising a single binding group, and NOT
for nested bindings. (So really it should be passed around explicitly
and not stored in ScEnv.) #14379 turned out to be caused by
f SPEC x = let g1 x = ...
in ...
We force-specialise f (because of the SPEC), but that generates a specialised
copy of g1 (as well as the original). Alas g1 has a nested binding g2; and
in each copy of g1 we get an unspecialised and specialised copy of g2; and so
on. Result, exponential. So the force-spec flag now only applies to one
level of bindings at a time.
Mechanism for this one-level-only thing:
- Switch it on at the call to specRec, in scExpr and scTopBinds
- Switch it off when doing the RHSs;
this can be done very conveniently in decreaseSpecCount
What alternatives did I consider?
* Annotating the loop itself doesn't work because (a) it is local and
(b) it will be w/w'ed and having w/w propagating annotations somehow
doesn't seem like a good idea. The types of the loop arguments
really seem to be the most persistent thing.
* Annotating the types that make up the loop state doesn't work,
either, because (a) it would prevent us from using types like Either
or tuples here, (b) we don't want to restrict the set of types that
can be used in Stream states and (c) some types are fixed by the
user (e.g., the accumulator here) but we still want to specialise as
much as possible.
Alternatives to ForceSpecConstr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instead of giving the loop an extra argument of type SPEC, we
also considered *wrapping* arguments in SPEC, thus
data SPEC a = SPEC a | SPEC2
loop = \arg -> case arg of
SPEC state ->
case state of (x,y) -> ... loop (SPEC (x',y')) ...
S2 -> error ...
The idea is that a SPEC argument says "specialise this argument
regardless of whether the function case-analyses it". But this
doesn't work well:
* SPEC must still be a sum type, else the strictness analyser
eliminates it
* But that means that 'loop' won't be strict in its real payload
This loss of strictness in turn screws up specialisation, because
we may end up with calls like
loop (SPEC (case z of (p,q) -> (q,p)))
Without the SPEC, if 'loop' were strict, the case would move out
and we'd see loop applied to a pair. But if 'loop' isn't strict
this doesn't look like a specialisable call.
Note [Limit recursive specialisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is possible for ForceSpecConstr to cause an infinite loop of specialisation.
Because there is no limit on the number of specialisations, a recursive call with
a recursive constructor as an argument (for example, list cons) will generate
a specialisation for that constructor. If the resulting specialisation also
contains a recursive call with the constructor, this could proceed indefinitely.
For example, if ForceSpecConstr is on:
loop :: [Int] -> [Int] -> [Int]
loop z [] = z
loop z (x:xs) = loop (x:z) xs
this example will create a specialisation for the pattern
loop (a:b) c = loop' a b c
loop' a b [] = (a:b)
loop' a b (x:xs) = loop (x:(a:b)) xs
and a new pattern is found:
loop (a:(b:c)) d = loop'' a b c d
which can continue indefinitely.
Roman's suggestion to fix this was to stop after a couple of times on recursive types,
but still specialising on non-recursive types as much as possible.
To implement this, we count the number of times we have gone round the
"specialise recursively" loop ('go' in 'specRec'). Once have gone round
more than N times (controlled by -fspec-constr-recursive=N) we check
- If sc_force is off, and sc_count is (Just max) then we don't
need to do anything: trim_pats will limit the number of specs
- Otherwise check if any function has now got more than (sc_count env)
specialisations. If sc_count is "no limit" then we arbitrarily
choose 10 as the limit (ugh).
See #5550. Also #13623, where this test had become over-aggressive,
and we lost a wonderful specialisation that we really wanted!
Note [NoSpecConstr]
~~~~~~~~~~~~~~~~~~~
The ignoreDataCon stuff allows you to say
{-# ANN type T NoSpecConstr #-}
to mean "don't specialise on arguments of this type". It was added
before we had ForceSpecConstr. Lacking ForceSpecConstr we specialised
regardless of size; and then we needed a way to turn that *off*. Now
that we have ForceSpecConstr, this NoSpecConstr is probably redundant.
(Used only for PArray, TODO: remove?)
Note [SpecConstr and strict fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We treat strict fields in SpecConstr the same way we do in W/W.
That is we make the specialized function strict in arguments
representing strict fields. See Note [Call-by-value for worker args]
for why we do this.
Note [Specialising on dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In #21386, SpecConstr saw this call:
$wgo 100# @.. ($fMonadStateT @.. @.. $fMonadIdentity)
where $wgo :: Int# -> forall m. Monad m => blah
You might think that the type-class Specialiser would have specialised
this, but there are good reasons why not: the Specialiser ran too early.
But regardless, SpecConstr can and should! It's easy:
* isValue: treat ($fblah d1 .. dn)
like a constructor application.
* scApp: treat (op_sel d), a class method selection,
like a case expression
* Float that dictionary application to top level, thus
lvl = $fMonadStateT @.. @.. $fMonadIdentity
so the call looks like
($wgo 100# @.. lvl)
Why? This way dictionaries will appear as top level binders which we
can trivially match in rules. (CSE runs before SpecConstr, so we
may hope to common-up duplicate top-level dictionaries.)
For the floating part, see the "Arguments" case of Note
[Floating to the top] in GHC.Core.Opt.SetLevels.
We could be more clever, perhaps, and generate a RULE like
$wgo _ @.. ($fMonadStateT @.. @.. $fMonadIdentity) = $s$wgo ...
but that would mean making argToPat able to spot dfun applications as
well as constructor applications.
Wrinkles:
* This should all work perfectly fine for newtype classes. Mind you,
currently newtype classes are inlined fairly agressively, but we
may change that. And it would take extra code to exclude them, as
well as being unnecessary.
* In isValue, we (mis-) use LambdaVal for this ($fblah d1 .. dn)
because ConVal requires us to list the data constructor and
fields, and that is (a) inconvenient and (b) unnecessary for
class methods.
-----------------------------------------------------
Stuff not yet handled
-----------------------------------------------------
Here are notes arising from Roman's work that I don't want to lose.
Example 1
~~~~~~~~~
data T a = T !a
foo :: Int -> T Int -> Int
foo 0 t = 0
foo x t | even x = case t of { T n -> foo (x-n) t }
| otherwise = foo (x-1) t
SpecConstr does no specialisation, because the second recursive call
looks like a boxed use of the argument. A pity.
$wfoo_sFw :: GHC.Prim.Int# -> T.T GHC.Base.Int -> GHC.Prim.Int#
$wfoo_sFw =
\ (ww_sFo [Just L] :: GHC.Prim.Int#) (w_sFq [Just L] :: T.T GHC.Base.Int) ->
case ww_sFo of ds_Xw6 [Just L] {
__DEFAULT ->
case GHC.Prim.remInt# ds_Xw6 2 of wild1_aEF [Dead Just A] {
__DEFAULT -> $wfoo_sFw (GHC.Prim.-# ds_Xw6 1) w_sFq;
0 ->
case w_sFq of wild_Xy [Just L] { T.T n_ad5 [Just U(L)] ->
case n_ad5 of wild1_aET [Just A] { GHC.Base.I# y_aES [Just L] ->
$wfoo_sFw (GHC.Prim.-# ds_Xw6 y_aES) wild_Xy
} } };
0 -> 0
Example 2
~~~~~~~~~
data a :*: b = !a :*: !b
data T a = T !a
foo :: (Int :*: T Int) -> Int
foo (0 :*: t) = 0
foo (x :*: t) | even x = case t of { T n -> foo ((x-n) :*: t) }
| otherwise = foo ((x-1) :*: t)
Very similar to the previous one, except that the parameters are now in
a strict tuple. Before SpecConstr, we have
$wfoo_sG3 :: GHC.Prim.Int# -> T.T GHC.Base.Int -> GHC.Prim.Int#
$wfoo_sG3 =
\ (ww_sFU [Just L] :: GHC.Prim.Int#) (ww_sFW [Just L] :: T.T
GHC.Base.Int) ->
case ww_sFU of ds_Xws [Just L] {
__DEFAULT ->
case GHC.Prim.remInt# ds_Xws 2 of wild1_aEZ [Dead Just A] {
__DEFAULT ->
case ww_sFW of tpl_B2 [Just L] { T.T a_sFo [Just A] ->
$wfoo_sG3 (GHC.Prim.-# ds_Xws 1) tpl_B2 -- $wfoo1
};
0 ->
case ww_sFW of wild_XB [Just A] { T.T n_ad7 [Just S(L)] ->
case n_ad7 of wild1_aFd [Just L] { GHC.Base.I# y_aFc [Just L] ->
$wfoo_sG3 (GHC.Prim.-# ds_Xws y_aFc) wild_XB -- $wfoo2
} } };
0 -> 0 }
We get two specialisations:
"SC:$wfoo1" [0] __forall {a_sFB :: GHC.Base.Int sc_sGC :: GHC.Prim.Int#}
Foo.$wfoo sc_sGC (Foo.T @ GHC.Base.Int a_sFB)
= Foo.$s$wfoo1 a_sFB sc_sGC ;
"SC:$wfoo2" [0] __forall {y_aFp :: GHC.Prim.Int# sc_sGC :: GHC.Prim.Int#}
Foo.$wfoo sc_sGC (Foo.T @ GHC.Base.Int (GHC.Base.I# y_aFp))
= Foo.$s$wfoo y_aFp sc_sGC ;
But perhaps the first one isn't good. After all, we know that tpl_B2 is
a T (I# x) really, because T is strict and Int has one constructor. (We can't
unbox the strict fields, because T is polymorphic!)
************************************************************************
* *
\subsection{Top level wrapper stuff}
* *
************************************************************************
-}
specConstrProgram :: ModGuts -> CoreM ModGuts
specConstrProgram guts
= do { env0 <- initScEnv guts
; us <- getUniqueSupplyM
; let (_usg, binds') = initUs_ us $
scTopBinds env0 (mg_binds guts)
; return (guts { mg_binds = binds' }) }
scTopBinds :: ScEnv -> [InBind] -> UniqSM (ScUsage, [OutBind])
scTopBinds _env [] = return (nullUsage, [])
scTopBinds env (b:bs) = do { (usg, b', bs') <- scBind TopLevel env b $
(\env -> scTopBinds env bs)
; return (usg, b' ++ bs') }
{-
************************************************************************
* *
\subsection{Environment: goes downwards}
* *
************************************************************************
Note [Work-free values only in environment]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The sc_vals field keeps track of in-scope value bindings, so
that if we come across (case x of Just y ->...) we can reduce the
case from knowing that x is bound to a pair.
But only *work-free* values are ok here. For example if the envt had
x -> Just (expensive v)
then we do NOT want to expand to
let y = expensive v in ...
because the x-binding still exists and we've now duplicated (expensive v).
This seldom happens because let-bound constructor applications are
ANF-ised, but it can happen as a result of on-the-fly transformations in
SpecConstr itself. Here is #7865:
let {
a'_shr =
case xs_af8 of _ {
[] -> acc_af6;
: ds_dgt [Dmd=<L,A>] ds_dgu [Dmd=<L,A>] ->
(expensive x_af7, x_af7
} } in
let {
ds_sht =
case a'_shr of _ { (p'_afd, q'_afe) ->
TSpecConstr_DoubleInline.recursive
(GHC.Types.: @ GHC.Types.Int x_af7 wild_X6) (q'_afe, p'_afd)
} } in
When processed knowing that xs_af8 was bound to a cons, we simplify to
a'_shr = (expensive x_af7, x_af7)
and we do NOT want to inline that at the occurrence of a'_shr in ds_sht.
(There are other occurrences of a'_shr.) No no no.
It would be possible to do some on-the-fly ANF-ising, so that a'_shr turned
into a work-free value again, thus
a1 = expensive x_af7
a'_shr = (a1, x_af7)
but that's more work, so until its shown to be important I'm going to
leave it for now.
Note [Making SpecConstr keener]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this, in (perf/should_run/T9339)
last (filter odd [1..1000])
After optimisation, including SpecConstr, we get:
f :: Int# -> Int -> Int
f x y = case remInt# x 2# of
__DEFAULT -> case x of
__DEFAULT -> f (+# wild_Xp 1#) (I# x)
1000000# -> ...
0# -> case x of
__DEFAULT -> f (+# wild_Xp 1#) y
1000000# -> y
Not good! We build an (I# x) box every time around the loop.
SpecConstr (as described in the paper) does not specialise f, despite
the call (f ... (I# x)) because 'y' is not scrutinised in the body.
But it is much better to specialise f for the case where the argument
is of form (I# x); then we build the box only when returning y, which
is on the cold path.
Another example:
f x = ...(g x)....
Here 'x' is not scrutinised in f's body; but if we did specialise 'f'
then the call (g x) might allow 'g' to be specialised in turn.
So sc_keen controls whether or not we take account of whether argument is
scrutinised in the body. True <=> ignore that, and specialise whenever
the function is applied to a data constructor.
-}
-- | Options for Specializing over constructors in Core.
data SpecConstrOpts = SpecConstrOpts
{ sc_max_args :: !Int
-- ^ The threshold at which a worker-wrapper transformation used as part of
-- this pass will no longer happen, measured in the number of arguments.
, sc_debug :: !Bool
-- ^ Whether to print debug information
, sc_uf_opts :: !UnfoldingOpts
-- ^ Unfolding options
, sc_module :: !Module
-- ^ The name of the module being processed
, sc_size :: !(Maybe Int)
-- ^ Size threshold: Nothing => no limit
, sc_count :: !(Maybe Int)
-- ^ Max # of specialisations for any one function. Nothing => no limit.
-- See Note [Avoiding exponential blowup] and decreaseSpecCount
, sc_recursive :: !Int
-- ^ Max # of specialisations over recursive type. Stops
-- ForceSpecConstr from diverging.
, sc_keen :: !Bool
-- ^ Specialise on arguments that are known constructors, even if they are
-- not scrutinised in the body. See Note [Making SpecConstr keener].
}
data ScEnv = SCE { sc_opts :: !SpecConstrOpts,
sc_force :: Bool, -- Force specialisation?
-- See Note [Forcing specialisation]
sc_subst :: Subst, -- Current substitution
-- Maps InIds to OutExprs
sc_how_bound :: HowBoundEnv,
-- Binds interesting non-top-level variables
-- Domain is OutVars (*after* applying the substitution)
sc_vals :: ValueEnv,
-- Domain is OutIds (*after* applying the substitution)
-- Used even for top-level bindings (but not imported ones)
-- The range of the ValueEnv is *work-free* values
-- such as (\x. blah), or (Just v)
-- but NOT (Just (expensive v))
-- See Note [Work-free values only in environment]
sc_annotations :: UniqFM Name SpecConstrAnnotation
}
---------------------
type HowBoundEnv = VarEnv HowBound -- Domain is OutVars
---------------------
type ValueEnv = IdEnv Value -- Domain is OutIds
data Value = ConVal AltCon [CoreArg] -- _Saturated_ constructors
-- The AltCon is never DEFAULT
| LambdaVal -- Inlinable lambdas or PAPs
instance Outputable Value where
ppr (ConVal con args) = ppr con <+> interpp'SP args
ppr LambdaVal = text "<Lambda>"
---------------------
initScOpts :: DynFlags -> Module -> SpecConstrOpts
initScOpts dflags this_mod = SpecConstrOpts
{ sc_max_args = maxWorkerArgs dflags,
sc_debug = hasPprDebug dflags,
sc_uf_opts = unfoldingOpts dflags,
sc_module = this_mod,
sc_size = specConstrThreshold dflags,
sc_count = specConstrCount dflags,
sc_recursive = specConstrRecursive dflags,
sc_keen = gopt Opt_SpecConstrKeen dflags
}
initScEnv :: ModGuts -> CoreM ScEnv
initScEnv guts
= do { dflags <- getDynFlags
; (_, anns) <- getFirstAnnotations deserializeWithData guts
; this_mod <- getModule
; return (SCE { sc_opts = initScOpts dflags this_mod,
sc_force = False,
sc_subst = init_subst,
sc_how_bound = emptyVarEnv,
sc_vals = emptyVarEnv,
sc_annotations = anns }) }
where
init_subst = mkEmptySubst $ mkInScopeSetBndrs (mg_binds guts)
-- Acccount for top-level bindings that are not in dependency order;
-- see Note [Glomming] in GHC.Core.Opt.OccurAnal
-- Easiest thing is to bring all the top level binders into scope at once,
-- as if at once, as if all the top-level decls were mutually recursive.
data HowBound = RecFun -- These are the recursive functions for which
-- we seek interesting call patterns
| RecArg -- These are those functions' arguments, or their sub-components;
-- we gather occurrence information for these
instance Outputable HowBound where
ppr RecFun = text "RecFun"
ppr RecArg = text "RecArg"
scForce :: ScEnv -> Bool -> ScEnv
scForce env b = env { sc_force = b }
lookupHowBound :: ScEnv -> OutId -> Maybe HowBound
lookupHowBound env id = lookupVarEnv (sc_how_bound env) id
scSubstId :: ScEnv -> InId -> OutExpr
scSubstId env v = lookupIdSubst (sc_subst env) v
-- Solo is only defined in base starting from ghc-9.2
#if !(MIN_VERSION_base(4, 16, 0))
data Solo a = Solo a
#endif
-- The Solo constructor was renamed to MkSolo in ghc 9.5
#if __GLASGOW_HASKELL__ < 905
pattern MkSolo :: a -> Solo a
pattern MkSolo a = Solo a
#endif
-- The !subst ensures that we force the selection `(sc_subst env)`, which avoids
-- retaining all of `env` when we only need `subst`. The `Solo` means that the
-- substitution itself is lazy, because that type is often discarded.
-- The callers of `scSubstTy` always force the result (to unpack the `Solo`)
-- so we get the desired effect: we leave a thunk, but retain only the subst,
-- not the whole env.
--
-- Fully forcing the result of `scSubstTy` regresses performance (#22102)
scSubstTy :: ScEnv -> InType -> Solo OutType
scSubstTy env ty =
let !subst = sc_subst env
in MkSolo (substTyUnchecked subst ty)
scSubstCo :: ScEnv -> Coercion -> Coercion
scSubstCo env co = substCo (sc_subst env) co
zapScSubst :: ScEnv -> ScEnv
zapScSubst env = env { sc_subst = zapSubst (sc_subst env) }
extendScInScope :: ScEnv -> [Var] -> ScEnv
-- Bring the quantified variables into scope
extendScInScope env qvars
= env { sc_subst = extendSubstInScopeList (sc_subst env) qvars }
-- Extend the substitution
extendScSubst :: ScEnv -> Var -> OutExpr -> ScEnv
extendScSubst env var expr = env { sc_subst = extendSubst (sc_subst env) var expr }
extendScSubstList :: ScEnv -> [(Var,OutExpr)] -> ScEnv
extendScSubstList env prs = env { sc_subst = extendSubstList (sc_subst env) prs }
extendHowBound :: ScEnv -> [Var] -> HowBound -> ScEnv
extendHowBound env bndrs how_bound
= env { sc_how_bound = extendVarEnvList (sc_how_bound env)
[(bndr,how_bound) | bndr <- bndrs] }
extendBndrsWith :: HowBound -> ScEnv -> [Var] -> (ScEnv, [Var])
extendBndrsWith how_bound env bndrs
= (env { sc_subst = subst', sc_how_bound = hb_env' }, bndrs')
where
(subst', bndrs') = substBndrs (sc_subst env) bndrs
hb_env' = sc_how_bound env `extendVarEnvList`
[(bndr,how_bound) | bndr <- bndrs']
extendBndrWith :: HowBound -> ScEnv -> Var -> (ScEnv, Var)
extendBndrWith how_bound env bndr
= (env { sc_subst = subst', sc_how_bound = hb_env' }, bndr')
where
(subst', bndr') = substBndr (sc_subst env) bndr
hb_env' = extendVarEnv (sc_how_bound env) bndr' how_bound
extendRecBndrs :: ScEnv -> [Var] -> (ScEnv, [Var])
extendRecBndrs env bndrs = (env { sc_subst = subst' }, bndrs')
where
(subst', bndrs') = substRecBndrs (sc_subst env) bndrs
extendBndrs :: ScEnv -> [Var] -> (ScEnv, [Var])
extendBndrs env bndrs = mapAccumL extendBndr env bndrs
extendBndr :: ScEnv -> Var -> (ScEnv, Var)
extendBndr env bndr = (env { sc_subst = subst' }, bndr')
where
(subst', bndr') = substBndr (sc_subst env) bndr
extendValEnv :: ScEnv -> Id -> Maybe Value -> ScEnv
extendValEnv env _ Nothing = env
extendValEnv env id (Just cv)
| valueIsWorkFree cv -- Don't duplicate work!! #7865
= env { sc_vals = extendVarEnv (sc_vals env) id cv }
extendValEnv env _ _ = env
extendCaseBndrs :: ScEnv -> OutExpr -> OutId -> AltCon -> [Var] -> (ScEnv, [Var])
-- When we encounter
-- case scrut of b
-- C x y -> ...
-- we want to bind b, to (C x y)
-- NB1: Extends only the sc_vals part of the envt
-- NB2: Kill the dead-ness info on the pattern binders x,y, since
-- they are potentially made alive by the [b -> C x y] binding
extendCaseBndrs env scrut case_bndr con alt_bndrs
= (env2, alt_bndrs')
where
live_case_bndr = not (isDeadBinder case_bndr)
env1 | Just (v, mco) <- scrutBinderSwap_maybe scrut
, isReflMCo mco = extendValEnv env v cval
| otherwise = env -- See Note [Add scrutinee to ValueEnv too]
env2 | live_case_bndr = extendValEnv env1 case_bndr cval
| otherwise = env1
alt_bndrs' | case scrut of { Var {} -> True; _ -> live_case_bndr }
= map zap alt_bndrs
| otherwise
= alt_bndrs
cval = case con of
DEFAULT -> Nothing
LitAlt {} -> Just (ConVal con [])
DataAlt {} -> Just (ConVal con vanilla_args)
where
vanilla_args = map Type (tyConAppArgs (idType case_bndr)) ++
varsToCoreExprs alt_bndrs
zap v | isTyVar v = v -- See NB2 above
| otherwise = zapIdOccInfo v
decreaseSpecCount :: ScEnv -> Int -> ScEnv
-- See Note [Avoiding exponential blowup]
decreaseSpecCount env _n_specs
= env { sc_force = False -- See Note [Forcing specialisation]
, sc_opts = opts { sc_count = case sc_count opts of
Nothing -> Nothing
Just n -> Just $! dec n
}
}
where
opts = sc_opts env
dec n = n `div` 2 -- See Note [Avoiding exponential blowup]
-- Or: n `div` (n_specs + 1)
-- See the historical note part of Note [Avoiding exponential blowup]
-- The "+1" takes account of the original function;
---------------------------------------------------
-- See Note [Forcing specialisation]
ignoreType :: ScEnv -> Type -> Bool
ignoreDataCon :: ScEnv -> DataCon -> Bool
forceSpecBndr :: ScEnv -> Var -> Bool
ignoreDataCon env dc = ignoreTyCon env (dataConTyCon dc)
ignoreType env ty
= case tyConAppTyCon_maybe ty of
Just tycon -> ignoreTyCon env tycon
_ -> False
ignoreTyCon :: ScEnv -> TyCon -> Bool
ignoreTyCon env tycon
= lookupUFM (sc_annotations env) (tyConName tycon) == Just NoSpecConstr
forceSpecBndr env var = forceSpecFunTy env . snd . splitForAllTyCoVars . varType $ var
forceSpecFunTy :: ScEnv -> Type -> Bool
forceSpecFunTy env = any (forceSpecArgTy env) . map scaledThing . fst . splitFunTys
forceSpecArgTy :: ScEnv -> Type -> Bool
forceSpecArgTy env ty
| isFunTy ty
= False
| Just (tycon, tys) <- splitTyConApp_maybe ty
= tycon `hasKey` specTyConKey
|| lookupUFM (sc_annotations env) (tyConName tycon) == Just ForceSpecConstr
|| any (forceSpecArgTy env) tys
forceSpecArgTy _ _ = False
{-
Note [Add scrutinee to ValueEnv too]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
case x of y
(a,b) -> case b of c
I# v -> ...(f y)...
By the time we get to the call (f y), the ValueEnv
will have a binding for y, and for c
y -> (a,b)
c -> I# v
BUT that's not enough! Looking at the call (f y) we
see that y is pair (a,b), but we also need to know what 'b' is.
So in extendCaseBndrs we must *also* add the binding
b -> I# v
else we lose a useful specialisation for f. This is necessary even
though the simplifier has systematically replaced uses of 'x' with 'y'
and 'b' with 'c' in the code. The use of 'b' in the ValueEnv came
from outside the case. See #4908 for the live example.
It's very like the binder-swap story, so we use scrutBinderSwap_maybe
to identify suitable scrutinees -- but only if there is no cast
(isReflMCo) because that's all that the ValueEnv allows.
Note [Avoiding exponential blowup]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The sc_count field of the ScEnv says how many times we are prepared to
duplicate a single function. But we must take care with recursive
specialisations. Consider
let $j1 = let $j2 = let $j3 = ...
in
...$j3...
in
...$j2...
in
...$j1...
If we specialise $j1 then in each specialisation (as well as the original)
we can specialise $j2, and similarly $j3. Even if we make just *one*
specialisation of each, because we also have the original we'll get 2^n
copies of $j3, which is not good.
So when recursively specialising we divide the sc_count (the maximum
number of specialisations, in the ScEnv) by two. You might think that
gives us n*(n/2)*(n/4)... copies of the innnermost thing, which is
still exponential the depth. But we use integer division, rounding
down, so if the starting sc_count is 3, we'll get 3 -> 1 -> 0, and
stop. In fact, simply subtracting 1 would be good enough, for the same
reason.
Historical note: in the past we divided by (n_specs+1), where n_specs
is the number of specialisations at this level; but that gets us down
to zero jolly quickly, which I found led to some regressions. (An
example is nofib/spectral/fibheaps, the getMin' function inside the
outer function $sfibToList, which has several interesting call
patterns.)
************************************************************************
* *
\subsection{Usage information: flows upwards}
* *
************************************************************************
-}
data ScUsage
= SCU {
scu_calls :: CallEnv, -- Calls
-- The functions are a subset of the
-- RecFuns in the ScEnv
scu_occs :: !(IdEnv ArgOcc) -- Information on argument occurrences
} -- The domain is OutIds
type CallEnv = IdEnv [Call] -- Domain is OutIds
data Call = Call OutId [CoreArg] ValueEnv
-- The arguments of the call, together with the
-- env giving the constructor bindings at the call site
-- We keep the function mainly for debug output
--
-- The call is not necessarily saturated; we just put
-- in however many args are visible at the call site
instance Outputable ScUsage where
ppr (SCU { scu_calls = calls, scu_occs = occs })
= text "SCU" <+> braces (sep [ text "calls =" <+> ppr calls
, text "occs =" <+> ppr occs ])
instance Outputable Call where
ppr (Call fn args _) = ppr fn <+> fsep (map pprParendExpr args)
nullUsage :: ScUsage
nullUsage = SCU { scu_calls = emptyVarEnv, scu_occs = emptyVarEnv }
combineCalls :: CallEnv -> CallEnv -> CallEnv
combineCalls = plusVarEnv_C (++)
delCallsFor :: ScUsage -> [Var] -> ScUsage
delCallsFor env bndrs = env { scu_calls = scu_calls env `delVarEnvList` bndrs }
combineUsage :: ScUsage -> ScUsage -> ScUsage
combineUsage u1 u2 = SCU { scu_calls = combineCalls (scu_calls u1) (scu_calls u2),
scu_occs = plusVarEnv_C combineOcc (scu_occs u1) (scu_occs u2) }
combineUsages :: [ScUsage] -> ScUsage
combineUsages [] = nullUsage
combineUsages us = foldr1 combineUsage us
lookupOccs :: ScUsage -> [OutVar] -> (ScUsage, [ArgOcc])
lookupOccs (SCU { scu_calls = sc_calls, scu_occs = sc_occs }) bndrs
= (SCU {scu_calls = sc_calls, scu_occs = delVarEnvList sc_occs bndrs},
[lookupVarEnv sc_occs b `orElse` NoOcc | b <- bndrs])
data ArgOcc = NoOcc -- Doesn't occur at all; or a type argument
| UnkOcc -- Used in some unknown way
| ScrutOcc -- See Note [ScrutOcc]
(DataConEnv [ArgOcc])
-- [ArgOcc]: how the sub-components are used
deadArgOcc :: ArgOcc -> Bool
deadArgOcc (ScrutOcc {}) = False
deadArgOcc UnkOcc = False
deadArgOcc NoOcc = True
specialisableArgOcc :: ArgOcc -> Bool
-- | Does this occurence represent one worth specializing for.
specialisableArgOcc UnkOcc = False
specialisableArgOcc NoOcc = False
specialisableArgOcc (ScrutOcc {}) = True
{- Note [ScrutOcc]
~~~~~~~~~~~~~~~~~~
An occurrence of ScrutOcc indicates that the thing, or a `cast` version of the thing,
is *only* taken apart or applied.
Functions, literal: ScrutOcc emptyUFM
Data constructors: ScrutOcc subs,
where (subs :: UniqFM [ArgOcc]) gives usage of the *pattern-bound* components,
The domain of the UniqFM is the Unique of the data constructor
The [ArgOcc] is the occurrences of the *pattern-bound* components
of the data structure. E.g.
data T a = forall b. MkT a b (b->a)
A pattern binds b, x::a, y::b, z::b->a, but not 'a'!
-}
instance Outputable ArgOcc where
ppr (ScrutOcc xs) = text "scrut-occ" <> ppr xs
ppr UnkOcc = text "unk-occ"
ppr NoOcc = text "no-occ"
evalScrutOcc :: ArgOcc
-- We use evalScrutOcc for
-- - mkVarUsage: applied functions
-- - scApp: dicts that are the argument of a classop
evalScrutOcc = ScrutOcc emptyUFM
-- Experimentally, this version of combineOcc makes ScrutOcc "win", so
-- that if the thing is scrutinised anywhere then we get to see that
-- in the overall result, even if it's also used in a boxed way
-- This might be too aggressive; see Note [Reboxing] Alternative 3
combineOcc :: ArgOcc -> ArgOcc -> ArgOcc
combineOcc NoOcc occ = occ
combineOcc occ NoOcc = occ
combineOcc (ScrutOcc xs) (ScrutOcc ys) = ScrutOcc (plusUFM_C combineOccs xs ys)
combineOcc UnkOcc (ScrutOcc ys) = ScrutOcc ys
combineOcc (ScrutOcc xs) UnkOcc = ScrutOcc xs
combineOcc UnkOcc UnkOcc = UnkOcc
combineOccs :: [ArgOcc] -> [ArgOcc] -> [ArgOcc]
combineOccs xs ys = zipWithEqual "combineOccs" combineOcc xs ys
setScrutOcc :: ScEnv -> ScUsage -> OutExpr -> ArgOcc -> ScUsage
-- _Overwrite_ the occurrence info for the scrutinee, if the scrutinee
-- is a variable, and an interesting variable
setScrutOcc env usg (Cast e _) occ = setScrutOcc env usg e occ
setScrutOcc env usg (Tick _ e) occ = setScrutOcc env usg e occ
setScrutOcc env usg (Var v) occ
| Just RecArg <- lookupHowBound env v = usg { scu_occs = extendVarEnv (scu_occs usg) v occ }
| otherwise = usg
setScrutOcc _env usg _other _occ -- Catch-all
= usg
{-
************************************************************************
* *
\subsection{The main recursive function}
* *
************************************************************************
The main recursive function gathers up usage information, and
creates specialised versions of functions.
-}
scBind :: TopLevelFlag -> ScEnv -> InBind
-> (ScEnv -> UniqSM (ScUsage, a)) -- Specialise the scope of the binding
-> UniqSM (ScUsage, [OutBind], a)
scBind top_lvl env (NonRec bndr rhs) do_body
| isTyVar bndr -- Type-lets may be created by doBeta
= do { (final_usage, body') <- do_body (extendScSubst env bndr rhs)
; return (final_usage, [], body') }
| not (isTopLevel top_lvl) -- Nested non-recursive value binding
-- See Note [Specialising local let bindings]
= do { let (body_env, bndr') = extendBndr env bndr
-- Not necessary at top level; but here we are nested
; rhs_info <- scRecRhs env (bndr',rhs)
; let body_env2 = extendHowBound body_env [bndr'] RecFun
rhs' = ri_new_rhs rhs_info
body_env3 = extendValEnv body_env2 bndr' (isValue (sc_vals env) rhs')
; (body_usg, body') <- do_body body_env3
-- Now make specialised copies of the binding,
-- based on calls in body_usg
; (spec_usg, specs) <- specNonRec env (scu_calls body_usg) rhs_info
-- NB: For non-recursive bindings we inherit sc_force flag from
-- the parent function (see Note [Forcing specialisation])
-- Specialized + original binding
; let spec_bnds = [NonRec b r | (b,r) <- ruleInfoBinds rhs_info specs]
bind_usage = (body_usg `delCallsFor` [bndr'])
`combineUsage` spec_usg -- Note [spec_usg includes rhs_usg]
; return (bind_usage, spec_bnds, body')
}
| otherwise -- Top-level, non-recursive value binding
-- At top level we do not specialise non-recursive bindings; that
-- is, we do not call specNonRec, passing the calls from the body.
-- The original paper only specialised /recursive/ bindings, but
-- we later started specialising nested non-recursive bindings:
-- see Note [Specialising local let bindings]
--
-- I tried always specialising non-recursive top-level bindings too,
-- but found some regressions (see !8135). So I backed off.
= do { (rhs_usage, rhs') <- scExpr env rhs
-- At top level, we've already put all binders into scope; see initScEnv
-- Hence no need to call `extendBndr`. But we still want to
-- extend the `ValueEnv` to record the value of this binder.
; let body_env = extendValEnv env bndr (isValue (sc_vals env) rhs')
; (body_usage, body') <- do_body body_env
; return (rhs_usage `combineUsage` body_usage, [NonRec bndr rhs'], body') }
scBind top_lvl env (Rec prs) do_body
| isTopLevel top_lvl
, Just threshold <- sc_size (sc_opts env)
, not force_spec
, not (all (couldBeSmallEnoughToInline (sc_uf_opts (sc_opts env)) threshold) rhss)
= -- Do no specialisation if the RHSs are too big
-- ToDo: I'm honestly not sure of the rationale of this size-testing, nor
-- why it only applies at top level. But that's the way it has been
-- for a while. See #21456.
do { (body_usg, body') <- do_body rhs_env2
; (rhs_usgs, rhss') <- mapAndUnzipM (scExpr env) rhss
; let all_usg = (combineUsages rhs_usgs `combineUsage` body_usg)
`delCallsFor` bndrs'
bind' = Rec (bndrs' `zip` rhss')
; return (all_usg, [bind'], body') }
| otherwise
= do { rhs_infos <- mapM (scRecRhs rhs_env2) (bndrs' `zip` rhss)
; (body_usg, body') <- do_body rhs_env2
; (spec_usg, specs) <- specRec (scForce rhs_env2 force_spec)
(scu_calls body_usg) rhs_infos
-- Do not unconditionally generate specialisations from rhs_usgs
-- Instead use them only if we find an unspecialised call
-- See Note [Seeding recursive groups]
; let all_usg = (spec_usg `combineUsage` body_usg) -- Note [spec_usg includes rhs_usg]
`delCallsFor` bndrs'
bind' = Rec (concat (zipWithEqual "scExpr'" ruleInfoBinds rhs_infos specs))
-- zipWithEqual: length of returned [SpecInfo]
-- should be the same as incoming [RhsInfo]
; return (all_usg, [bind'], body') }
where
(bndrs,rhss) = unzip prs
force_spec = any (forceSpecBndr env) bndrs -- Note [Forcing specialisation]
(rhs_env1,bndrs') | isTopLevel top_lvl = (env, bndrs)
| otherwise = extendRecBndrs env bndrs
-- At top level, we've already put all binders into scope; see initScEnv
rhs_env2 = extendHowBound rhs_env1 bndrs' RecFun
{- Note [Specialising local let bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is not uncommon to find this
let $j = \x. <blah> in ...$j True...$j True...
Here $j is an arbitrary let-bound function, but it often comes up for
join points. We might like to specialise $j for its call patterns.
Notice the difference from a letrec, where we look for call patterns
in the *RHS* of the function. Here we look for call patterns in the
*body* of the let.
At one point I predicated this on the RHS mentioning the outer
recursive function, but that's not essential and might even be
harmful. I'm not sure.
-}
------------------------
scExpr, scExpr' :: ScEnv -> CoreExpr -> UniqSM (ScUsage, CoreExpr)
-- The unique supply is needed when we invent
-- a new name for the specialised function and its args
scExpr env e = scExpr' env e
scExpr' env (Var v) = case scSubstId env v of
Var v' -> return (mkVarUsage env v' [], Var v')
e' -> scExpr (zapScSubst env) e'
scExpr' env (Type t) =
let !(MkSolo ty') = scSubstTy env t
in return (nullUsage, Type ty')
scExpr' env (Coercion c) = return (nullUsage, Coercion (scSubstCo env c))
scExpr' _ e@(Lit {}) = return (nullUsage, e)
scExpr' env (Tick t e) = do (usg, e') <- scExpr env e
return (usg, Tick t e')
scExpr' env (Cast e co) = do (usg, e') <- scExpr env e
return (usg, mkCast e' (scSubstCo env co))
-- Important to use mkCast here
-- See Note [SpecConstr call patterns]
scExpr' env e@(App _ _) = scApp env (collectArgs e)
scExpr' env (Lam b e) = do let (env', b') = extendBndr env b
(usg, e') <- scExpr env' e
return (usg, Lam b' e')
scExpr' env (Let bind body)
= do { (final_usage, binds', body') <- scBind NotTopLevel env bind $
(\env -> scExpr env body)
; return (final_usage, mkLets binds' body') }
scExpr' env (Case scrut b ty alts)
= do { (scrut_usg, scrut') <- scExpr env scrut
; case isValue (sc_vals env) scrut' of
Just (ConVal con args) -> sc_con_app con args scrut'
_other -> sc_vanilla scrut_usg scrut'
}
where
sc_con_app con args scrut' -- Known constructor; simplify
= do { let Alt _ bs rhs = findAlt con alts
`orElse` Alt DEFAULT [] (mkImpossibleExpr ty "SpecConstr")
alt_env' = extendScSubstList env ((b,scrut') : bs `zip` trimConArgs con args)
; scExpr alt_env' rhs }
sc_vanilla scrut_usg scrut' -- Normal case
= do { let (alt_env,b') = extendBndrWith RecArg env b
-- Record RecArg for the components
; (alt_usgs, alt_occs, alts') <- mapAndUnzip3M (sc_alt alt_env scrut' b') alts
; let scrut_occ = foldr combineOcc NoOcc alt_occs
scrut_usg' = setScrutOcc env scrut_usg scrut' scrut_occ
-- The combined usage of the scrutinee is given
-- by scrut_occ, which is passed to setScrutOcc, which
-- in turn treats a bare-variable scrutinee specially
; let !(MkSolo ty') = scSubstTy env ty
; return (foldr combineUsage scrut_usg' alt_usgs,
Case scrut' b' ty' alts') }
single_alt = isSingleton alts
sc_alt env scrut' b' (Alt con bs rhs)
= do { let (env1, bs1) = extendBndrsWith RecArg env bs
(env2, bs2) = extendCaseBndrs env1 scrut' b' con bs1
; (usg, rhs') <- scExpr env2 rhs
; let (usg', b_occ:arg_occs) = lookupOccs usg (b':bs2)
scrut_occ = case con of
DataAlt dc -- See Note [Do not specialise evals]
| not (single_alt && all deadArgOcc arg_occs)
-> ScrutOcc (unitUFM dc arg_occs)
_ -> UnkOcc
; return (usg', b_occ `combineOcc` scrut_occ, Alt con bs2 rhs') }
{- Note [Do not specialise evals]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f x y = case x of I# _ ->
if y>1 then f x (y-1) else x
Here `x` is scrutinised by a case, but only in an eval-like way; the
/component/ of the I# is unused. We don't want to specialise this
function, even if we find a call (f (I# z)), because nothing is gained
* No case branches are discarded
* No allocation in removed
The specialised version would take an unboxed Int#, pass it along,
and rebox it at the end.
In fact this can cause significant regression. In #21763 we had:
like
f = ... case x of x' { I# n ->
join j y = rhs
in ...jump j x'...
Now if we specialise `j` for the argument `I# n`, we'll end up reboxing
it in `j`, without even removing an allocation from the call site.
Reboxing is always a worry. But here we can ameliorate the problem as
follows.
* In scExpr (Case ...), for a /single-alternative/ case expression, in
which the pattern binders are all unused, we build a UnkOcc for
the scrutinee, not one that maps the data constructor; we don't treat
this occurrence as a reason for specialisation.
* Conveniently, SpecConstr is doing its own occurrence analysis, so
the "unused" bit is just looking for NoOcc
* Note that if we have
f x = case x of { True -> e1; False -> e2 }
then even though the pattern binders are unused (there are none), it is
still worth specialising on x. Hence the /single-alternative/ guard.
-}
scApp :: ScEnv -> (InExpr, [InExpr]) -> UniqSM (ScUsage, CoreExpr)
scApp env (Var fn, args) -- Function is a variable
= assert (not (null args)) $
do { args_w_usgs <- mapM (scExpr env) args
; let (arg_usgs, args') = unzip args_w_usgs
arg_usg = combineUsages arg_usgs
; case scSubstId env fn of
fn'@(Lam {}) -> scExpr (zapScSubst env) (doBeta fn' args')
-- Do beta-reduction and try again
Var fn' -> return (arg_usg' `combineUsage` mkVarUsage env fn' args',
mkApps (Var fn') args')
where
-- arg_usg': see Note [Specialising on dictionaries]
arg_usg' | Just cls <- isClassOpId_maybe fn'
, dict_arg : _ <- dropList (classTyVars cls) args'
= setScrutOcc env arg_usg dict_arg evalScrutOcc
| otherwise
= arg_usg
other_fn' -> return (arg_usg, mkApps other_fn' args') }
-- NB: doing this ignores any usage info from the substituted
-- function, but I don't think that matters. If it does
-- we can fix it.
where
doBeta :: OutExpr -> [OutExpr] -> OutExpr
doBeta (Lam bndr body) (arg : args) = Let (NonRec bndr arg) (doBeta body args)
doBeta fn args = mkApps fn args
-- The function is almost always a variable, but not always.
-- In particular, if this pass follows float-in,
-- which it may, we can get
-- (let f = ...f... in f) arg1 arg2
scApp env (other_fn, args)
= do { (fn_usg, fn') <- scExpr env other_fn
; (arg_usgs, args') <- mapAndUnzipM (scExpr env) args
; return (combineUsages arg_usgs `combineUsage` fn_usg, mkApps fn' args') }
----------------------
mkVarUsage :: ScEnv -> Id -> [CoreExpr] -> ScUsage
mkVarUsage env fn args
= case lookupHowBound env fn of
Just RecFun -> SCU { scu_calls = unitVarEnv fn [Call fn args (sc_vals env)]
, scu_occs = emptyVarEnv }
Just RecArg -> SCU { scu_calls = emptyVarEnv
, scu_occs = unitVarEnv fn arg_occ }
Nothing -> nullUsage
where
arg_occ | null args = UnkOcc
| otherwise = evalScrutOcc
----------------------
scRecRhs :: ScEnv -> (OutId, InExpr) -> UniqSM RhsInfo
scRecRhs env (bndr,rhs)
= do { let (arg_bndrs,body) = collectBinders rhs
(body_env, arg_bndrs') = extendBndrsWith RecArg env arg_bndrs
; (body_usg, body') <- scExpr body_env body
; let (rhs_usg, arg_occs) = lookupOccs body_usg arg_bndrs'
; return (RI { ri_rhs_usg = rhs_usg
, ri_fn = bndr, ri_new_rhs = mkLams arg_bndrs' body'
, ri_lam_bndrs = arg_bndrs, ri_lam_body = body
, ri_arg_occs = arg_occs }) }
-- The arg_occs says how the visible,
-- lambda-bound binders of the RHS are used
-- (including the TyVar binders)
-- Two pats are the same if they match both ways
----------------------
ruleInfoBinds :: RhsInfo -> SpecInfo -> [(Id,CoreExpr)]
ruleInfoBinds (RI { ri_fn = fn, ri_new_rhs = new_rhs })
(SI { si_specs = specs })
= [(id,rhs) | OS { os_id = id, os_rhs = rhs } <- specs] ++
-- First the specialised bindings
[(fn `addIdSpecialisations` rules, new_rhs)]
-- And now the original binding
where
rules = [r | OS { os_rule = r } <- specs]
{-
************************************************************************
* *
The specialiser itself
* *
************************************************************************
-}
data RhsInfo
= RI { ri_fn :: OutId -- The binder
, ri_new_rhs :: OutExpr -- The specialised RHS (in current envt)
, ri_rhs_usg :: ScUsage -- Usage info from specialising RHS
, ri_lam_bndrs :: [InVar] -- The *original* RHS (\xs.body)
, ri_lam_body :: InExpr -- Note [Specialise original body]
, ri_arg_occs :: [ArgOcc] -- Info on how the xs occur in body
}
data SpecInfo -- Info about specialisations for a particular Id
= SI { si_specs :: [OneSpec] -- The specialisations we have
-- generated for this function
, si_n_specs :: Int -- Length of si_specs; used for numbering them
, si_mb_unspec :: Maybe ScUsage -- Just cs => we have not yet used calls in the
} -- from calls in the *original* RHS as
-- seeds for new specialisations;
-- if you decide to do so, here is the
-- RHS usage (which has not yet been
-- unleashed)
-- Nothing => we have
-- See Note [Seeding recursive groups]
-- See Note [spec_usg includes rhs_usg]
-- One specialisation: Rule plus definition
data OneSpec =
OS { os_pat :: CallPat -- Call pattern that generated this specialisation
, os_rule :: CoreRule -- Rule connecting original id with the specialisation
, os_id :: OutId -- Spec id
, os_rhs :: OutExpr } -- Spec rhs
initSpecInfo :: RhsInfo -> SpecInfo
initSpecInfo (RI { ri_rhs_usg = rhs_usg })
= SI { si_specs = [], si_n_specs = 0, si_mb_unspec = Just rhs_usg }
-- si_mb_unspec: add in rhs_usg if there are any boring calls,
-- or if the bndr is exported
----------------------
specNonRec :: ScEnv
-> CallEnv -- Calls in body
-> RhsInfo -- Structure info usage info for un-specialised RHS
-> UniqSM (ScUsage, SpecInfo) -- Usage from RHSs (specialised and not)
-- plus details of specialisations
specNonRec env body_calls rhs_info
= specialise env body_calls rhs_info (initSpecInfo rhs_info)
----------------------
specRec :: ScEnv
-> CallEnv -- Calls in body
-> [RhsInfo] -- Structure info and usage info for un-specialised RHSs
-> UniqSM (ScUsage, [SpecInfo]) -- Usage from all RHSs (specialised and not)
-- plus details of specialisations
specRec env body_calls rhs_infos
= go 1 body_calls nullUsage (map initSpecInfo rhs_infos)
-- body_calls: see Note [Seeding recursive groups]
-- NB: 'go' always calls 'specialise' once, which in turn unleashes
-- si_mb_unspec if there are any boring calls in body_calls,
-- or if any of the Id(s) are exported
where
opts = sc_opts env
-- Loop, specialising, until you get no new specialisations
go, go_again :: Int -- Which iteration of the "until no new specialisations"
-- loop we are on; first iteration is 1
-> CallEnv -- Seed calls
-- Two accumulating parameters:
-> ScUsage -- Usage from earlier specialisations
-> [SpecInfo] -- Details of specialisations so far
-> UniqSM (ScUsage, [SpecInfo])
go n_iter seed_calls usg_so_far spec_infos
= -- pprTrace "specRec3" (vcat [ text "bndrs" <+> ppr (map ri_fn rhs_infos)
-- , text "iteration" <+> int n_iter
-- , text "spec_infos" <+> ppr (map (map os_pat . si_specs) spec_infos)
-- ]) $
do { specs_w_usg <- zipWithM (specialise env seed_calls) rhs_infos spec_infos
; let (extra_usg_s, all_spec_infos) = unzip specs_w_usg
extra_usg = combineUsages extra_usg_s
all_usg = usg_so_far `combineUsage` extra_usg
new_calls = scu_calls extra_usg
; go_again n_iter new_calls all_usg all_spec_infos }
-- go_again deals with termination
go_again n_iter seed_calls usg_so_far spec_infos
| isEmptyVarEnv seed_calls
= return (usg_so_far, spec_infos)
-- Limit recursive specialisation
-- See Note [Limit recursive specialisation]
| n_iter > sc_recursive opts -- Too many iterations of the 'go' loop
, sc_force env || isNothing (sc_count opts)
-- If both of these are false, the sc_count
-- threshold will prevent non-termination
, any ((> the_limit) . si_n_specs) spec_infos
= -- Give up on specialisation, but don't forget to include the rhs_usg
-- for the unspecialised function, since it may now be called
-- pprTrace "specRec2" (ppr (map (map os_pat . si_specs) spec_infos)) $
let rhs_usgs = combineUsages (mapMaybe si_mb_unspec spec_infos)
in return (usg_so_far `combineUsage` rhs_usgs, spec_infos)
| otherwise
= go (n_iter + 1) seed_calls usg_so_far spec_infos
-- See Note [Limit recursive specialisation]
the_limit = case sc_count opts of
Nothing -> 10 -- Ugh!
Just max -> max
----------------------
specialise
:: ScEnv
-> CallEnv -- Info on newly-discovered calls to this function
-> RhsInfo
-> SpecInfo -- Original RHS plus patterns dealt with
-> UniqSM (ScUsage, SpecInfo) -- New specialised versions and their usage
-- See Note [spec_usg includes rhs_usg]
-- Note: this only generates *specialised* bindings
-- The original binding is added by ruleInfoBinds
--
-- Note: the rhs here is the optimised version of the original rhs
-- So when we make a specialised copy of the RHS, we're starting
-- from an RHS whose nested functions have been optimised already.
specialise env bind_calls (RI { ri_fn = fn, ri_lam_bndrs = arg_bndrs
, ri_lam_body = body, ri_arg_occs = arg_occs })
spec_info@(SI { si_specs = specs, si_n_specs = spec_count
, si_mb_unspec = mb_unspec })
| isDeadEndId fn -- Note [Do not specialise diverging functions]
-- /and/ do not generate specialisation seeds from its RHS
= -- pprTrace "specialise bot" (ppr fn) $
return (nullUsage, spec_info)
| not (isNeverActive (idInlineActivation fn))
-- See Note [Transfer activation]
-- Don't specialise OPAQUE things, see Note [OPAQUE pragma].
-- Since OPAQUE things are always never-active (see
-- GHC.Parser.PostProcess.mkOpaquePragma) this guard never fires for
-- OPAQUE things.
, not (null arg_bndrs) -- Only specialise functions
, Just all_calls <- lookupVarEnv bind_calls fn -- Some calls to it
= -- pprTrace "specialise entry {" (ppr fn <+> ppr all_calls) $
do { (boring_call, pats_discarded, new_pats)
<- callsToNewPats env fn spec_info arg_occs all_calls
; let n_pats = length new_pats
-- ; when (not (null new_pats) || isJust mb_unspec) $
-- pprTraceM "specialise" (vcat [ ppr fn <+> text "with" <+> int n_pats <+> text "good patterns"
-- , text "boring_call:" <+> ppr boring_call
-- , text "pats_discarded:" <+> ppr pats_discarded
-- , text "old spec_count" <+> ppr spec_count
-- , text "spec count limit" <+> ppr (sc_count (sc_opts env))
-- , text "mb_unspec" <+> ppr (isJust mb_unspec)
-- , text "arg_occs" <+> ppr arg_occs
-- , text "new_pats" <+> ppr new_pats])
; let spec_env = decreaseSpecCount env n_pats
; (spec_usgs, new_specs) <- mapAndUnzipM (spec_one spec_env fn arg_bndrs body)
(new_pats `zip` [spec_count..])
-- See Note [Specialise original body]
; let spec_usg = combineUsages spec_usgs
unspec_rhs_needed = pats_discarded || boring_call || isExportedId fn
-- If there were any boring calls among the seeds (= all_calls), then those
-- calls will call the un-specialised function. So we should use the seeds
-- from the _unspecialised_ function's RHS, which are in mb_unspec, by returning
-- then in new_usg.
(new_usg, mb_unspec') = case mb_unspec of
Just rhs_usg | unspec_rhs_needed
-> (spec_usg `combineUsage` rhs_usg, Nothing)
_ -> (spec_usg, mb_unspec)
-- ; pprTraceM "specialise return }" $
-- vcat [ ppr fn
-- , text "unspec_rhs_needed:" <+> ppr unspec_rhs_needed
-- , text "new calls:" <+> ppr (scu_calls new_usg)]
; return (new_usg, SI { si_specs = new_specs ++ specs
, si_n_specs = spec_count + n_pats
, si_mb_unspec = mb_unspec' }) }
| otherwise -- No calls, inactive, or not a function
-- Behave as if there was a single, boring call
= -- pprTrace "specialise inactive" (ppr fn $$ ppr mb_unspec) $
case mb_unspec of -- Behave as if there was a single, boring call
Just rhs_usg -> return (rhs_usg, spec_info { si_mb_unspec = Nothing })
-- See Note [spec_usg includes rhs_usg]
Nothing -> return (nullUsage, spec_info)
---------------------
spec_one :: ScEnv
-> OutId -- Function
-> [InVar] -- Lambda-binders of RHS; should match patterns
-> InExpr -- Body of the original function
-> (CallPat, Int)
-> UniqSM (ScUsage, OneSpec) -- Rule and binding
-- spec_one creates a specialised copy of the function, together
-- with a rule for using it. I'm very proud of how short this
-- function is, considering what it does :-).
{-
Example
In-scope: a, x::a
f = /\b \y::[(a,b)] -> ....f (b,c) ((:) (a,(b,c)) (x,v) (h w))...
[c::*, v::(b,c) are presumably bound by the (...) part]
==>
f_spec = /\ b c \ v::(b,c) hw::[(a,(b,c))] ->
(...entire body of f...) [b -> (b,c),
y -> ((:) (a,(b,c)) (x,v) hw)]
RULE: forall b::* c::*, -- Note, *not* forall a, x
v::(b,c),
hw::[(a,(b,c))] .
f (b,c) ((:) (a,(b,c)) (x,v) hw) = f_spec b c v hw
-}
spec_one env fn arg_bndrs body (call_pat, rule_number)
| CP { cp_qvars = qvars, cp_args = pats, cp_strict_args = cbv_args } <- call_pat
= do { -- pprTraceM "spec_one {" (ppr fn <+> ppr pats)
; spec_uniq <- getUniqueM
; let env1 = extendScSubstList (extendScInScope env qvars)
(arg_bndrs `zip` pats)
(body_env, extra_bndrs) = extendBndrs env1 (dropList pats arg_bndrs)
-- Remember, there may be fewer pats than arg_bndrs
-- See Note [SpecConstr call patterns]
-- extra_bndrs will then be arguments in the specialized version
-- which are *not* applied to arguments immediately at the call sites.
-- e.g. let f x y = ... in map (f True) xs
-- will result in y becoming an extra_bndr
fn_name = idName fn
fn_loc = nameSrcSpan fn_name
fn_occ = nameOccName fn_name
spec_occ = mkSpecOcc fn_occ
-- We use fn_occ rather than fn in the rule_name string
-- as we don't want the uniq to end up in the rule, and
-- hence in the ABI, as that can cause spurious ABI
-- changes (#4012).
rule_name = mkFastString ("SC:" ++ occNameString fn_occ ++ show rule_number)
spec_name = mkInternalName spec_uniq spec_occ fn_loc
-- Specialise the body
-- ; pprTraceM "body_subst_for" $ ppr (spec_occ) $$ ppr (sc_subst body_env)
; (spec_usg, spec_body) <- scExpr body_env body
-- And build the results
; (qvars', pats') <- generaliseDictPats qvars pats
; let spec_body_ty = exprType spec_body
(spec_lam_args, spec_call_args, spec_sig)
= calcSpecInfo fn arg_bndrs call_pat extra_bndrs
spec_arity = count isId spec_lam_args
spec_join_arity | isJoinId fn = Just (length spec_call_args)
| otherwise = Nothing
spec_id = asWorkerLikeId $
mkLocalId spec_name ManyTy
(mkLamTypes spec_lam_args spec_body_ty)
-- See Note [Transfer strictness]
`setIdDmdSig` spec_sig
`setIdCprSig` topCprSig
`setIdArity` spec_arity
`asJoinId_maybe` spec_join_arity
-- Conditionally use result of new worker-wrapper transform
spec_rhs = mkLams spec_lam_args (mkSeqs cbv_args spec_body_ty spec_body)
rule_rhs = mkVarApps (Var spec_id) spec_call_args
inline_act = idInlineActivation fn
this_mod = sc_module $ sc_opts env
rule = mkRule this_mod True {- Auto -} True {- Local -}
rule_name inline_act
fn_name qvars' pats' rule_rhs
-- See Note [Transfer activation]
-- ; pprTraceM "spec_one end }" $
-- vcat [ text "function:" <+> ppr fn <+> braces (ppr (idUnique fn))
-- , text "pats:" <+> ppr pats
-- , text "call_pat:" <+> ppr call_pat
-- , text "-->" <+> ppr spec_name
-- , text "bndrs" <+> ppr arg_bndrs
-- , text "extra_bndrs" <+> ppr extra_bndrs
-- , text "cbv_args" <+> ppr cbv_args
-- , text "spec_lam_args" <+> ppr spec_lam_args
-- , text "spec_call_args" <+> ppr spec_call_args
-- , text "rule_rhs" <+> ppr rule_rhs
-- , text "adds_void_worker_arg" <+> ppr add_void_arg
---- , text "body" <+> ppr body
---- , text "spec_rhs" <+> ppr spec_rhs
---- , text "how_bound" <+> ppr (sc_how_bound env) ]
-- ]
; return (spec_usg, OS { os_pat = call_pat, os_rule = rule
, os_id = spec_id
, os_rhs = spec_rhs }) }
generaliseDictPats :: [Var] -> [CoreExpr] -- Quantified vars and pats
-> UniqSM ([Var], [CoreExpr]) -- New quantified vars and pats
-- See Note [generaliseDictPats]
generaliseDictPats qvars pats
= do { (extra_qvars, pats') <- mapAccumLM go [] pats
; case extra_qvars of
[] -> return (qvars, pats)
_ -> return (qvars ++ extra_qvars, pats') }
where
qvar_set = mkVarSet qvars
go :: [Id] -> CoreExpr -> UniqSM ([Id], CoreExpr)
go extra_qvs pat
| not (isTyCoArg pat)
, let pat_ty = exprType pat
, typeDeterminesValue pat_ty
, exprFreeVars pat `disjointVarSet` qvar_set
= do { id <- mkSysLocalOrCoVarM (fsLit "dict") ManyTy pat_ty
; return (id:extra_qvs, Var id) }
| otherwise
= return (extra_qvs, pat)
-- See Note [SpecConstr and strict fields]
mkSeqs :: [Var] -> Type -> CoreExpr -> CoreExpr
mkSeqs seqees res_ty rhs =
foldr addEval rhs seqees
where
addEval :: Var -> CoreExpr -> CoreExpr
addEval arg_id rhs
-- Argument representing strict field and it's worth passing via cbv
| shouldStrictifyIdForCbv arg_id
= Case (Var arg_id) arg_id res_ty ([Alt DEFAULT [] rhs])
| otherwise
= rhs
{- Note [SpecConstr void argument insertion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a function
f :: Bool -> forall t. blah
f start @t = e
We want to specialize for a partially applied call `f True`.
See also Note [SpecConstr call patterns], second Wrinkle.
Naively we would expect to get
$sf :: forall t. blah
$sf @t = $se
RULE: f True = $sf
The specialized function only takes a single type argument so we add a
void argument to prevent it from turning into a thunk. See Note
[Protecting the last value argument] for details why. Normally we
would add the void argument after the type argument giving us:
$sf :: forall t. Void# -> bla
$sf @t void = $se
RULE: f True = $sf void# (wrong)
But if you look closely this wouldn't typecheck! If we substitute `f
True` with `$sf void#` we expect the type argument to be applied first
but we apply void# first. The easiest fix seems to be just to add the
void argument to the front of the arguments. Now we get:
$sf :: Void# -> forall t. bla
$sf void @t = $se
RULE: f True = $sf void#
And now we can substitute `f True` with `$sf void#` with everything working out nicely!
More precisely, in `calcSpecInfo`
(i) we need the void arg to /precede/ the `extra_bndrs`, but
(ii) it must still /follow/ `qvar_bndrs`.
Example to illustrate (ii):
f :: forall r (a :: TYPE r). Bool -> a
f = /\r. /\(a::TYPE r). \b. body
{- Specialise for f _ _ True -}
$sf :: forall r (a :: TYPE r). Void# -> a
$sf = /\r. /\(a::TYPE r). \v. body[True/b]
RULE: forall r (a :: TYPE r). f @r @a True = $sf @r @a void#
The void argument must follow the foralls, lest the forall be
ill-kinded. See Note [Worker/wrapper needs to add void arg last] in
GHC.Core.Opt.WorkWrap.Utils.
Note [generaliseDictPats]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider these two rules (#21831, item 2):
RULE "SPEC:foo" forall d1 d2. foo @Int @Integer d1 d2 = $sfoo1
RULE "SC:foo" forall a. foo @Int @a $fNumInteger = $sfoo2 @a
The former comes from the type class specialiser, the latter from SpecConstr.
Note that $fNumInteger is a top-level binding for Num Integer.
The trouble is that neither is more general than the other. In a call
(foo @Int @Integer $fNumInteger d)
it isn't clear which rule to fire.
The trouble is that the SpecConstr rule fires on a /specific/ dict, $fNumInteger,
but actually /could/ fire regardless. That is, it could be
RULE "SC:foo" forall a d. foo @Int @a d = $sfoo2 @a
Now, it is clear that SPEC:foo is more specific. But GHC can't tell
that, because SpecConstr doesn't know that dictionary arguments are
singleton types! So generaliseDictPats teaches it this fact. It
spots such patterns (using typeDeterminesValue), and quantifies over
the dictionary. Now we get
RULE "SC:foo" forall a d. foo @Int @a d = $sfoo2 @a
And /now/ "SPEC:foo" is clearly more specific: we can instantiate the new
"SC:foo" to match the (prefix of) "SPEC:foo".
-}
calcSpecInfo :: Id -- The original function
-> [InVar] -- Lambda binders of original RHS
-> CallPat -- Call pattern
-> [Var] -- Extra bndrs
-> ( [Var] -- Demand-decorated lambda binders
-- for RHS of specialised function
, [Var] -- Args for call site
, DmdSig ) -- Strictness of specialised thing
-- Calculate bits of IdInfo for the specialised function
-- See Note [Transfer strictness]
-- See Note [Strictness information in worker binders]
calcSpecInfo fn arg_bndrs (CP { cp_qvars = qvars, cp_args = pats }) extra_bndrs
= ( spec_lam_bndrs_w_dmds
, spec_call_args
, zapDmdEnvSig (DmdSig (dt{dt_args = spec_fn_dmds})) )
where
DmdSig dt@DmdType{dt_args=fn_dmds} = idDmdSig fn
spec_fn_dmds = [idDemandInfo b | b <- spec_lam_bndrs_w_dmds, isId b]
val_pats = filterOut isTypeArg pats
-- Value args at call sites, used to determine how many demands to drop
-- from the original functions demand and for setting up arg_dmd_env.
arg_dmd_env = go emptyVarEnv fn_dmds val_pats
qvar_dmds = [ lookupVarEnv arg_dmd_env qv `orElse` topDmd | qv <- qvars, isId qv ]
extra_dmds = dropList val_pats fn_dmds
-- Annotate the variables with the strictness information from
-- the function (see Note [Strictness information in worker binders])
qvars_w_dmds = set_dmds qvars qvar_dmds
extras_w_dmds = set_dmds extra_bndrs extra_dmds
spec_lam_bndrs_w_dmds = final_qvars_w_dmds ++ extras_w_dmds
(final_qvars_w_dmds, spec_call_args)
| needsVoidWorkerArg fn arg_bndrs (qvars ++ extra_bndrs)
-- Usual w/w hack to avoid generating
-- a spec_rhs of unlifted or ill-kinded type and no args.
-- See Note [SpecConstr void argument insertion]
= ( qvars_w_dmds ++ [voidArgId], qvars ++ [voidPrimId] )
| otherwise
= ( qvars_w_dmds, qvars )
set_dmds :: [Var] -> [Demand] -> [Var]
set_dmds [] _ = []
set_dmds vs [] = vs -- Run out of demands
set_dmds (v:vs) ds@(d:ds') | isTyVar v = v : set_dmds vs ds
| otherwise = setIdDemandInfo v d : set_dmds vs ds'
go :: VarEnv Demand -> [Demand] -> [CoreExpr] -> VarEnv Demand
-- We've filtered out all the type patterns already
go env (d:ds) (pat : pats) = go (go_one env d pat) ds pats
go env _ _ = env
go_one :: VarEnv Demand -> Demand -> CoreExpr -> VarEnv Demand
go_one env d (Var v) = extendVarEnv_C plusDmd env v d
go_one env (_n :* cd) e -- NB: _n does not have to be strict
| (Var _, args) <- collectArgs e
, Just (_b, ds) <- viewProd (length args) cd -- TODO: We may want to look at boxity _b, though...
= go env ds args
go_one env _ _ = env
{-
Note [spec_usg includes rhs_usg]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In calls to 'specialise', the returned ScUsage must include the rhs_usg in
the passed-in SpecInfo in si_mb_unspec, unless there are no calls at all to
the function.
The caller can, indeed must, assume this. They should not combine in rhs_usg
themselves, or they'll get rhs_usg twice -- and that can lead to an exponential
blowup of duplicates in the CallEnv. This is what gave rise to the massive
performance loss in #8852.
Note [Specialise original body]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RhsInfo for a binding keeps the *original* body of the binding. We
must specialise that, *not* the result of applying specExpr to the RHS
(which is also kept in RhsInfo). Otherwise we end up specialising a
specialised RHS, and that can lead directly to exponential behaviour.
Note [Transfer activation]
~~~~~~~~~~~~~~~~~~~~~~~~~~
This note is for SpecConstr, but exactly the same thing
happens in the overloading specialiser; see
Note [Auto-specialisation and RULES] in GHC.Core.Opt.Specialise.
In which phase should the specialise-constructor rules be active?
Originally I made them always-active, but Manuel found that this
defeated some clever user-written rules. Then I made them active only
in FinalPhase; after all, currently, the specConstr transformation is
only run after the simplifier has reached FinalPhase, but that meant
that specialisations didn't fire inside wrappers; see test
simplCore/should_compile/spec-inline.
So now I just use the inline-activation of the parent Id, as the
activation for the specialisation RULE, just like the main specialiser;
This in turn means there is no point in specialising NOINLINE things,
so we test for that.
Note [Transfer strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We must transfer strictness information from the original function to
the specialised one. Suppose, for example
f has strictness SSx
and a RULE f (a:as) b = f_spec a as b
Now we want f_spec to have strictness LLSx, otherwise we'll use call-by-need
when calling f_spec instead of call-by-value. And that can result in
unbounded worsening in space (cf the classic foldl vs foldl')
See #3437 for a good example.
The function calcSpecStrictness performs the calculation.
Note [Strictness information in worker binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After having calculated the strictness annotation for the worker (see Note
[Transfer strictness] above), we also want to have this information attached to
the worker’s arguments, for the benefit of later passes. The function
handOutStrictnessInformation decomposes the strictness annotation calculated by
calcSpecStrictness and attaches them to the variables.
************************************************************************
* *
\subsection{Argument analysis}
* *
************************************************************************
This code deals with analysing call-site arguments to see whether
they are constructor applications.
Note [Free type variables of the qvar types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a call (f @a x True), that we want to specialise, what variables should
we quantify over. Clearly over 'a' and 'x', but what about any type variables
free in x's type? In fact we don't need to worry about them because (f @a)
can only be a well-typed application if its type is compatible with x, so any
variables free in x's type must be free in (f @a), and hence either be gathered
via 'a' itself, or be in scope at f's defn. Hence we just take
(exprsFreeVars pats).
BUT phantom type synonyms can mess this reasoning up,
eg x::T b with type T b = Int
So we apply expandTypeSynonyms to the bound Ids.
See # 5458. Yuk.
Note [SpecConstr call patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A "call patterns" that we collect is going to become the LHS of a RULE.
Wrinkles:
* The list of argument patterns, cp_args, is no longer than the
visible lambdas of the binding, ri_arg_occs. This is done via
the zipWithM in callToPats.
* The list of argument patterns can certainly be shorter than the
lambdas in the function definition (under-saturated). For example
f x y = case x of { True -> e1; False -> e2 }
....map (f True) e...
We want to specialise `f` for `f True`.
* In fact we deliberately shrink the list of argument patterns,
cp_args, by trimming off all the boring ones at the end (see
`dropWhileEnd is_boring` in callToPats). Since the RULE only
applies when it is saturated, this shrinking makes the RULE more
applicable. But it does mean that the argument patterns do not
necessarily saturate the lambdas of the function.
* It's important that the pattern arguments do not look like
e |> Refl
or
e |> g1 |> g2
because both of these will be optimised by Simplify.simplRule. In the
former case such optimisation benign, because the rule will match more
terms; but in the latter we may lose a binding of 'g1' or 'g2', and
end up with a rule LHS that doesn't bind the template variables
(#10602).
The simplifier eliminates such things, but SpecConstr itself constructs
new terms by substituting. So the 'mkCast' in the Cast case of scExpr
is very important!
Note [Choosing patterns]
~~~~~~~~~~~~~~~~~~~~~~~~
If we get lots of patterns we may not want to make a specialisation
for each of them (code bloat), so we choose as follows, implemented
by trim_pats.
* The flag -fspec-constr-count-N sets the sc_count field
of the ScEnv to (Just n). This limits the total number
of specialisations for a given function to N.
* -fno-spec-constr-count sets the sc_count field to Nothing,
which switches of the limit.
* The ghastly ForceSpecConstr trick also switches of the limit
for a particular function
* Otherwise we sort the patterns to choose the most general
ones first; more general => more widely applicable.
Note [SpecConstr and casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#14270) a call like
let f = e
in ... f (K @(a |> co)) ...
where 'co' is a coercion variable not in scope at f's definition site.
If we aren't careful we'll get
let $sf a co = e (K @(a |> co))
RULE "SC:f" forall a co. f (K @(a |> co)) = $sf a co
f = e
in ...
But alas, when we match the call we won't bind 'co', because type-matching
(for good reasons) discards casts).
I don't know how to solve this, so for now I'm just discarding any
call patterns that
* Mentions a coercion variable in a type argument
* That is not in scope at the binding of the function
I think this is very rare.
It is important (e.g. #14936) that this /only/ applies to
coercions mentioned in casts. We don't want to be discombobulated
by casts in terms! For example, consider
f ((e1,e2) |> sym co)
where, say,
f :: Foo -> blah
co :: Foo ~R (Int,Int)
Here we definitely do want to specialise for that pair! We do not
match on the structure of the coercion; instead we just match on a
coercion variable, so the RULE looks like
forall (x::Int, y::Int, co :: (Int,Int) ~R Foo)
f ((x,y) |> co) = $sf x y co
Often the body of f looks like
f arg = ...(case arg |> co' of
(x,y) -> blah)...
so that the specialised f will turn into
$sf x y co = let arg = (x,y) |> co
in ...(case arg>| co' of
(x,y) -> blah)....
which will simplify to not use 'co' at all. But we can't guarantee
that co will end up unused, so we still pass it. Absence analysis
may remove it later.
Note that this /also/ discards the call pattern if we have a cast in a
/term/, although in fact Rules.match does make a very flaky and
fragile attempt to match coercions. e.g. a call like
f (Maybe Age) (Nothing |> co) blah
where co :: Maybe Int ~ Maybe Age
will be discarded. It's extremely fragile to match on the form of a
coercion, so I think it's better just not to try. A more complicated
alternative would be to discard calls that mention coercion variables
only in kind-casts, but I'm doing the simple thing for now.
-}
data CallPat = CP { cp_qvars :: [Var] -- Quantified variables
, cp_args :: [CoreExpr] -- Arguments
, cp_strict_args :: [Var] } -- Arguments we want to pass unlifted even if they are boxed
-- See Note [SpecConstr call patterns]
instance Outputable CallPat where
ppr (CP { cp_qvars = qvars, cp_args = args, cp_strict_args = strict })
= text "CP" <> braces (sep [ text "cp_qvars =" <+> ppr qvars <> comma
, text "cp_args =" <+> ppr args
, text "cp_strict_args = " <> ppr strict ])
callsToNewPats :: ScEnv -> Id
-> SpecInfo
-> [ArgOcc] -> [Call]
-> UniqSM ( Bool -- At least one boring call
, Bool -- Patterns were discarded
, [CallPat] ) -- Patterns to specialise
-- Result has no duplicate patterns,
-- nor ones mentioned in si_specs (hence "new" patterns)
-- Bool indicates that there was at least one boring pattern
-- The "New" in the name means "patterns that are not already covered
-- by an existing specialisation"
callsToNewPats env fn spec_info@(SI { si_specs = done_specs }) bndr_occs calls
= do { mb_pats <- mapM (callToPats env bndr_occs) calls
; let have_boring_call = any isNothing mb_pats
good_pats :: [CallPat]
good_pats = catMaybes mb_pats
-- Remove patterns we have already done
new_pats = filterOut is_done good_pats
is_done p = any (samePat p . os_pat) done_specs
-- Remove duplicates
non_dups = nubBy samePat new_pats
-- Remove ones that have too many worker variables
small_pats = filterOut too_big non_dups
too_big (CP { cp_qvars = vars, cp_args = args })
= not (isWorkerSmallEnough (sc_max_args $ sc_opts env) (valArgCount args) vars)
-- We are about to construct w/w pair in 'spec_one'.
-- Omit specialisation leading to high arity workers.
-- See Note [Limit w/w arity] in GHC.Core.Opt.WorkWrap.Utils
-- Discard specialisations if there are too many of them
(pats_were_discarded, trimmed_pats) = trim_pats env fn spec_info small_pats
-- ; pprTraceM "callsToPats" (vcat [ text "calls to" <+> ppr fn <> colon <+> ppr calls
-- , text "done_specs:" <+> ppr (map os_pat done_specs)
-- , text "trimmed_pats:" <+> ppr trimmed_pats ])
; return (have_boring_call, pats_were_discarded, trimmed_pats) }
-- If any of the calls does not give rise to a specialisation, either
-- because it is boring, or because there are too many specialisations,
-- return a flag to say so, so that we know to keep the original function.
trim_pats :: ScEnv -> Id -> SpecInfo -> [CallPat] -> (Bool, [CallPat])
-- True <=> some patterns were discarded
-- See Note [Choosing patterns]
trim_pats env fn (SI { si_n_specs = done_spec_count }) pats
| sc_force env
|| isNothing mb_scc
|| n_remaining >= n_pats
= -- pprTrace "trim_pats: no-trim" (ppr (sc_force env) $$ ppr mb_scc $$ ppr n_remaining $$ ppr n_pats)
(False, pats) -- No need to trim
| otherwise
= emit_trace $ -- Need to trim, so keep the best ones
(True, take n_remaining sorted_pats)
where
n_pats = length pats
spec_count' = n_pats + done_spec_count
n_remaining = max_specs - done_spec_count
mb_scc = sc_count $ sc_opts env
Just max_specs = mb_scc
sorted_pats = map fst $
sortBy (comparing snd) $
[(pat, pat_cons pat) | pat <- pats]
-- Sort in order of increasing number of constructors
-- (i.e. decreasing generality) and pick the initial
-- segment of this list
pat_cons :: CallPat -> Int
-- How many data constructors of literals are in
-- the pattern. More data-cons => less general
pat_cons (CP { cp_qvars = qs, cp_args = ps })
= foldr ((+) . n_cons) 0 ps
where
q_set = mkVarSet qs
n_cons (Var v) | v `elemVarSet` q_set = 0
| otherwise = 1
n_cons (Cast e _) = n_cons e
n_cons (App e1 e2) = n_cons e1 + n_cons e2
n_cons (Lit {}) = 1
n_cons _ = 0
emit_trace result
| debugIsOn || sc_debug (sc_opts env)
-- Suppress this scary message for ordinary users! #5125
= pprTrace "SpecConstr" msg result
| otherwise
= result
msg = vcat [ sep [ text "Function" <+> quotes (ppr fn)
, nest 2 (text "has" <+>
speakNOf spec_count' (text "call pattern") <> comma <+>
text "but the limit is" <+> int max_specs) ]
, text "Use -fspec-constr-count=n to set the bound"
, text "done_spec_count =" <+> int done_spec_count
, text "Keeping " <+> int n_remaining <> text ", out of" <+> int n_pats
, text "Discarding:" <+> ppr (drop n_remaining sorted_pats) ]
callToPats :: ScEnv -> [ArgOcc] -> Call -> UniqSM (Maybe CallPat)
-- The [Var] is the variables to quantify over in the rule
-- Type variables come first, since they may scope
-- over the following term variables
-- The [CoreExpr] are the argument patterns for the rule
callToPats env bndr_occs call@(Call fn args con_env)
= do { let in_scope = getSubstInScope (sc_subst env)
; arg_tripples <- zipWith3M (argToPat env in_scope con_env) args bndr_occs (map (const NotMarkedStrict) args)
-- This zip trims the args to be no longer than
-- the lambdas in the function definition (bndr_occs)
-- Drop boring patterns from the end
-- See Note [SpecConstr call patterns]
; let arg_tripples' | isJoinId fn = arg_tripples
| otherwise = dropWhileEnd is_boring arg_tripples
is_boring (interesting, _,_) = not interesting
(interesting_s, pats, cbv_ids) = unzip3 arg_tripples'
interesting = or interesting_s
; let pat_fvs = exprsFreeVarsList pats
-- To get determinism we need the list of free variables in
-- deterministic order. Otherwise we end up creating
-- lambdas with different argument orders. See
-- determinism/simplCore/should_compile/spec-inline-determ.hs
-- for an example. For explanation of determinism
-- considerations See Note [Unique Determinism] in GHC.Types.Unique.
in_scope_vars = getInScopeVars in_scope
is_in_scope v = v `elemVarSet` in_scope_vars
qvars = filterOut is_in_scope pat_fvs
-- Quantify over variables that are not in scope
-- at the call site
-- See Note [Free type variables of the qvar types]
-- See Note [Shadowing] at the top
(ktvs, ids) = partition isTyVar qvars
qvars' = scopedSort ktvs ++ map sanitise ids
-- Order into kind variables, type variables, term variables
-- The kind of a type variable may mention a kind variable
-- and the type of a term variable may mention a type variable
sanitise id = updateIdTypeAndMult expandTypeSynonyms id
-- See Note [Free type variables of the qvar types]
-- Check for bad coercion variables: see Note [SpecConstr and casts]
; let bad_covars :: CoVarSet
bad_covars = mapUnionVarSet get_bad_covars pats
get_bad_covars :: CoreArg -> CoVarSet
get_bad_covars (Type ty) = filterVarSet bad_covar (tyCoVarsOfType ty)
get_bad_covars _ = emptyVarSet
bad_covar v = isId v && not (is_in_scope v)
; warnPprTrace (not (isEmptyVarSet bad_covars))
"SpecConstr: bad covars"
(ppr bad_covars $$ ppr call) $
if interesting && isEmptyVarSet bad_covars
then do { let cp_res = CP { cp_qvars = qvars', cp_args = pats
, cp_strict_args = concat cbv_ids }
-- ; pprTraceM "callToPatsOut" $
-- vcat [ text "fn:" <+> ppr fn
-- , text "args:" <+> ppr args
-- , text "bndr_occs:" <+> ppr bndr_occs
-- , text "pat_fvs:" <+> ppr pat_fvs
-- , text "cp_res:" <+> ppr cp_res ]
; return (Just cp_res) }
else return Nothing }
-- argToPat takes an actual argument, and returns an abstracted
-- version, consisting of just the "constructor skeleton" of the
-- argument, with non-constructor sub-expression replaced by new
-- placeholder variables. For example:
-- C a (D (f x) (g y)) ==> C p1 (D p2 p3)
argToPat :: ScEnv
-> InScopeSet -- What's in scope at the fn defn site
-> ValueEnv -- ValueEnv at the call site
-> CoreArg -- A call arg (or component thereof)
-> ArgOcc
-> StrictnessMark -- Tells us if this argument is a strict field of a data constructor
-- See Note [SpecConstr and strict fields]
-> UniqSM (Bool, CoreArg, [Id])
-- Returns (interesting, pat),
-- where pat is the pattern derived from the argument
-- interesting=True if the pattern is non-trivial (not a variable or type)
-- E.g. x:xs --> (True, x:xs)
-- f xs --> (False, w) where w is a fresh wildcard
-- (f xs, 'c') --> (True, (w, 'c')) where w is a fresh wildcard
-- \x. x+y --> (True, \x. x+y)
-- lvl7 --> (True, lvl7) if lvl7 is bound
-- somewhere further out
argToPat env in_scope val_env arg arg_occ arg_str
= do
-- pprTraceM "argToPatIn" (ppr arg)
!res <- argToPat1 env in_scope val_env arg arg_occ arg_str
-- pprTraceM "argToPatOut" (ppr res)
return res
argToPat1 :: ScEnv
-> InScopeSet
-> ValueEnv
-> Expr CoreBndr
-> ArgOcc
-> StrictnessMark
-> UniqSM (Bool, Expr CoreBndr, [Id])
argToPat1 _env _in_scope _val_env arg@(Type {}) _arg_occ _arg_str
= return (False, arg, [])
argToPat1 env in_scope val_env (Tick _ arg) arg_occ arg_str
= argToPat env in_scope val_env arg arg_occ arg_str
-- Note [Tick annotations in call patterns]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Ignore Notes. In particular, we want to ignore any InlineMe notes
-- Perhaps we should not ignore profiling notes, but I'm going to
-- ride roughshod over them all for now.
--- See Note [Tick annotations in RULE matching] in GHC.Core.Rules
argToPat1 env in_scope val_env (Let _ arg) arg_occ arg_str
= argToPat env in_scope val_env arg arg_occ arg_str
-- See Note [Matching lets] in "GHC.Core.Rules"
-- Look through let expressions
-- e.g. f (let v = rhs in (v,w))
-- Here we can specialise for f (v,w)
-- because the rule-matcher will look through the let.
{- Disabled; see Note [Matching cases] in "GHC.Core.Rules"
argToPat env in_scope val_env (Case scrut _ _ [(_, _, rhs)]) arg_occ
| exprOkForSpeculation scrut -- See Note [Matching cases] in "GHC.Core.Rules"
= argToPat env in_scope val_env rhs arg_occ
-}
argToPat1 env in_scope val_env (Cast arg co) arg_occ arg_str
| not (ignoreType env ty2)
= do { (interesting, arg', strict_args) <- argToPat env in_scope val_env arg arg_occ arg_str
; if not interesting then
wildCardPat ty2 arg_str
else do
{ -- Make a wild-card pattern for the coercion
uniq <- getUniqueM
; let co_name = mkSysTvName uniq (fsLit "sg")
co_var = mkCoVar co_name (mkCoercionType Representational ty1 ty2)
; return (interesting, Cast arg' (mkCoVarCo co_var), strict_args) } }
where
Pair ty1 ty2 = coercionKind co
{- Disabling lambda specialisation for now
It's fragile, and the spec_loop can be infinite
argToPat in_scope val_env arg arg_occ
| is_value_lam arg
= return (True, arg)
where
is_value_lam (Lam v e) -- Spot a value lambda, even if
| isId v = True -- it is inside a type lambda
| otherwise = is_value_lam e
is_value_lam other = False
-}
-- Check for a constructor application
-- NB: this *precedes* the Var case, so that we catch nullary constrs
argToPat1 env in_scope val_env arg arg_occ _arg_str
| Just (ConVal (DataAlt dc) args) <- isValue val_env arg
, not (ignoreDataCon env dc) -- See Note [NoSpecConstr]
, Just arg_occs <- mb_scrut dc
= do { let (ty_args, rest_args) = splitAtList (dataConUnivTyVars dc) args
con_str, matched_str :: [StrictnessMark]
-- con_str corresponds 1-1 with the /value/ arguments
-- matched_str corresponds 1-1 with /all/ arguments
con_str = dataConRepStrictness dc
matched_str = match_vals con_str rest_args
-- ; pprTraceM "bangs" (ppr (length rest_args == length con_str) $$
-- ppr dc $$
-- ppr con_str $$
-- ppr rest_args $$
-- ppr (map isTypeArg rest_args))
; prs <- zipWith3M (argToPat env in_scope val_env) rest_args arg_occs matched_str
; let args' = map sndOf3 prs :: [CoreArg]
; assertPpr (length con_str == length (filter isRuntimeArg rest_args))
( ppr con_str $$ ppr rest_args $$
ppr (length con_str) $$ ppr (length rest_args)
) $ return ()
; return (True, mkConApp dc (ty_args ++ args'), concat (map thdOf3 prs)) }
where
mb_scrut dc = case arg_occ of
ScrutOcc bs | Just occs <- lookupUFM bs dc
-> Just (occs) -- See Note [Reboxing]
_other | sc_force env || sc_keen (sc_opts env)
-> Just (repeat UnkOcc)
| otherwise
-> Nothing
match_vals bangs (arg:args)
| isTypeArg arg
= NotMarkedStrict : match_vals bangs args
| (b:bs) <- bangs
= b : match_vals bs args
match_vals [] [] = []
match_vals as bs =
pprPanic "spec-constr:argToPat - Bangs don't match value arguments"
(text "arg:" <> ppr arg $$
text "remaining args:" <> ppr as $$
text "remaining bangs:" <> ppr bs)
-- Check if the argument is a variable that
-- (a) is used in an interesting way in the function body
--- i.e. ScrutOcc. UnkOcc and NoOcc are not interesting
-- (NoOcc means we could drop the argument, but that's the
-- business of absence analysis, not SpecConstr.)
-- (b) we know what its value is
-- In that case it counts as "interesting"
argToPat1 env in_scope val_env (Var v) arg_occ arg_str
| sc_force env || specialisableArgOcc arg_occ -- (a)
, is_value -- (b)
-- Ignoring sc_keen here to avoid gratuitously incurring Note [Reboxing]
-- So sc_keen focused just on f (I# x), where we have freshly-allocated
-- box that we can eliminate in the caller
, not (ignoreType env (varType v))
-- See Note [SpecConstr and strict fields]
= return (True, Var v, if isMarkedStrict arg_str then [v] else mempty)
where
is_value
| isLocalId v = v `elemInScopeSet` in_scope
&& isJust (lookupVarEnv val_env v)
-- Local variables have values in val_env
| otherwise = isValueUnfolding (idUnfolding v)
-- Imports have unfoldings
-- I'm really not sure what this comment means
-- And by not wild-carding we tend to get forall'd
-- variables that are in scope, which in turn can
-- expose the weakness in let-matching
-- See Note [Matching lets] in GHC.Core.Rules
-- Check for a variable bound inside the function.
-- Don't make a wild-card, because we may usefully share
-- e.g. f a = let x = ... in f (x,x)
-- NB: this case follows the lambda and con-app cases!!
-- argToPat _in_scope _val_env (Var v) _arg_occ
-- = return (False, Var v)
-- SLPJ : disabling this to avoid proliferation of versions
-- also works badly when thinking about seeding the loop
-- from the body of the let
-- f x y = letrec g z = ... in g (x,y)
-- We don't want to specialise for that *particular* x,y
-- The default case: make a wild-card
-- We use this for coercions too
argToPat1 _env _in_scope _val_env arg _arg_occ arg_str
= wildCardPat (exprType arg) arg_str
-- | wildCardPats are always boring
wildCardPat :: Type -> StrictnessMark -> UniqSM (Bool, CoreArg, [Id])
wildCardPat ty str
= do { id <- mkSysLocalOrCoVarM (fsLit "sc") ManyTy ty
-- ; pprTraceM "wildCardPat" (ppr id' <+> ppr (idUnfolding id'))
; return (False, varToCoreExpr id, if isMarkedStrict str then [id] else []) }
isValue :: ValueEnv -> CoreExpr -> Maybe Value
isValue _env (Lit lit)
| litIsLifted lit = Nothing
| otherwise = Just (ConVal (LitAlt lit) [])
isValue env (Var v)
| Just cval <- lookupVarEnv env v
= Just cval -- You might think we could look in the idUnfolding here
-- but that doesn't take account of which branch of a
-- case we are in, which is the whole point
| not (isLocalId v) && isCheapUnfolding unf
= isValue env (unfoldingTemplate unf)
where
unf = idUnfolding v
-- However we do want to consult the unfolding
-- as well, for let-bound constructors!
isValue env (Lam b e)
| isTyVar b = case isValue env e of
Just _ -> Just LambdaVal
Nothing -> Nothing
| otherwise = Just LambdaVal
isValue env (Tick t e)
| not (tickishIsCode t)
= isValue env e
isValue _env expr -- Maybe it's a constructor application
| (Var fun, args, _) <- collectArgsTicks (not . tickishIsCode) expr
= case idDetails fun of
DataConWorkId con | args `lengthAtLeast` dataConRepArity con
-- Check saturated; might be > because the
-- arity excludes type args
-> Just (ConVal (DataAlt con) args)
DFunId {} -> Just LambdaVal
-- DFunId: see Note [Specialising on dictionaries]
_other | valArgCount args < idArity fun
-- Under-applied function
-> Just LambdaVal -- Partial application
_other -> Nothing
isValue _env _expr = Nothing
valueIsWorkFree :: Value -> Bool
valueIsWorkFree LambdaVal = True
valueIsWorkFree (ConVal _ args) = all exprIsWorkFree args
samePat :: CallPat -> CallPat -> Bool
samePat (CP { cp_qvars = vs1, cp_args = as1 })
(CP { cp_qvars = vs2, cp_args = as2 })
= all2 same as1 as2
where
-- If the args are the same, their strictness marks will be too so we don't compare those.
same (Var v1) (Var v2)
| v1 `elem` vs1 = v2 `elem` vs2
| v2 `elem` vs2 = False
| otherwise = v1 == v2
same (Lit l1) (Lit l2) = l1==l2
same (App f1 a1) (App f2 a2) = same f1 f2 && same a1 a2
same (Type {}) (Type {}) = True -- Note [Ignore type differences]
same (Coercion {}) (Coercion {}) = True
same (Tick _ e1) e2 = same e1 e2 -- Ignore casts and notes
same (Cast e1 _) e2 = same e1 e2
same e1 (Tick _ e2) = same e1 e2
same e1 (Cast e2 _) = same e1 e2
same e1 e2 = warnPprTrace (bad e1 || bad e2) "samePat" (ppr e1 $$ ppr e2) $
False -- Let, lambda, case should not occur
bad (Case {}) = True
bad (Let {}) = True
bad (Lam {}) = True
bad _other = False
{-
Note [Ignore type differences]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do not want to generate specialisations where the call patterns
differ only in their type arguments! Not only is it utterly useless,
but it also means that (with polymorphic recursion) we can generate
an infinite number of specialisations. Example is Data.Sequence.adjustTree,
I think.
-}
|