1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
|
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-
(c) The GRASP/AQUA Project, Glasgow University, 1993-1998
\section[Specialise]{Stamping out overloading, and (optionally) polymorphism}
-}
module GHC.Core.Opt.Specialise ( specProgram, specUnfolding ) where
import GHC.Prelude
import GHC.Driver.Session
import GHC.Driver.Config
import GHC.Driver.Config.Diagnostic
import GHC.Driver.Config.Core.Rules ( initRuleOpts )
import GHC.Core.Type hiding( substTy, substCo, extendTvSubst, zapSubst )
import GHC.Core.Multiplicity
import GHC.Core.SimpleOpt( defaultSimpleOpts, simpleOptExprWith )
import GHC.Core.Predicate
import GHC.Core.Coercion( Coercion )
import GHC.Core.Opt.Monad
import qualified GHC.Core.Subst as Core
import GHC.Core.Unfold.Make
import GHC.Core
import GHC.Core.Make ( mkLitRubbish )
import GHC.Core.Unify ( tcMatchTy )
import GHC.Core.Rules
import GHC.Core.Utils ( exprIsTrivial, exprIsTopLevelBindable
, mkCast, exprType
, stripTicksTop, mkInScopeSetBndrs )
import GHC.Core.FVs
import GHC.Core.TyCo.FVs ( tyCoVarsOfTypeList )
import GHC.Core.Opt.Arity( collectBindersPushingCo )
-- import GHC.Core.Ppr( pprIds )
import GHC.Builtin.Types ( unboxedUnitTy )
import GHC.Data.Maybe ( maybeToList, isJust )
import GHC.Data.Bag
import GHC.Data.OrdList
import GHC.Data.List.SetOps
import GHC.Types.Basic
import GHC.Types.Unique.Supply
import GHC.Types.Unique.DFM
import GHC.Types.Name
import GHC.Types.Tickish
import GHC.Types.Id.Make ( voidArgId, voidPrimId )
import GHC.Types.Var ( PiTyBinder(..), isLocalVar, isInvisibleFunArg, mkLocalVar )
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.Error
import GHC.Utils.Error ( mkMCDiagnostic )
import GHC.Utils.Monad ( foldlM )
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain( assert )
import GHC.Unit.Module( Module )
import GHC.Unit.Module.ModGuts
import GHC.Core.Unfold
import Data.List( partition )
import Data.List.NonEmpty ( NonEmpty (..) )
{-
************************************************************************
* *
\subsection[notes-Specialise]{Implementation notes [SLPJ, Aug 18 1993]}
* *
************************************************************************
These notes describe how we implement specialisation to eliminate
overloading.
The specialisation pass works on Core
syntax, complete with all the explicit dictionary application,
abstraction and construction as added by the type checker. The
existing type checker remains largely as it is.
One important thought: the {\em types} passed to an overloaded
function, and the {\em dictionaries} passed are mutually redundant.
If the same function is applied to the same type(s) then it is sure to
be applied to the same dictionary(s)---or rather to the same {\em
values}. (The arguments might look different but they will evaluate
to the same value.)
Second important thought: we know that we can make progress by
treating dictionary arguments as static and worth specialising on. So
we can do without binding-time analysis, and instead specialise on
dictionary arguments and no others.
The basic idea
~~~~~~~~~~~~~~
Suppose we have
let f = <f_rhs>
in <body>
and suppose f is overloaded.
STEP 1: CALL-INSTANCE COLLECTION
We traverse <body>, accumulating all applications of f to types and
dictionaries.
(Might there be partial applications, to just some of its types and
dictionaries? In principle yes, but in practice the type checker only
builds applications of f to all its types and dictionaries, so partial
applications could only arise as a result of transformation, and even
then I think it's unlikely. In any case, we simply don't accumulate such
partial applications.)
STEP 2: EQUIVALENCES
So now we have a collection of calls to f:
f t1 t2 d1 d2
f t3 t4 d3 d4
...
Notice that f may take several type arguments. To avoid ambiguity, we
say that f is called at type t1/t2 and t3/t4.
We take equivalence classes using equality of the *types* (ignoring
the dictionary args, which as mentioned previously are redundant).
STEP 3: SPECIALISATION
For each equivalence class, choose a representative (f t1 t2 d1 d2),
and create a local instance of f, defined thus:
f@t1/t2 = <f_rhs> t1 t2 d1 d2
f_rhs presumably has some big lambdas and dictionary lambdas, so lots
of simplification will now result. However we don't actually *do* that
simplification. Rather, we leave it for the simplifier to do. If we
*did* do it, though, we'd get more call instances from the specialised
RHS. We can work out what they are by instantiating the call-instance
set from f's RHS with the types t1, t2.
Add this new id to f's IdInfo, to record that f has a specialised version.
Before doing any of this, check that f's IdInfo doesn't already
tell us about an existing instance of f at the required type/s.
(This might happen if specialisation was applied more than once, or
it might arise from user SPECIALIZE pragmas.)
Recursion
~~~~~~~~~
Wait a minute! What if f is recursive? Then we can't just plug in
its right-hand side, can we?
But it's ok. The type checker *always* creates non-recursive definitions
for overloaded recursive functions. For example:
f x = f (x+x) -- Yes I know its silly
becomes
f a (d::Num a) = let p = +.sel a d
in
letrec fl (y::a) = fl (p y y)
in
fl
We still have recursion for non-overloaded functions which we
specialise, but the recursive call should get specialised to the
same recursive version.
Polymorphism 1
~~~~~~~~~~~~~~
All this is crystal clear when the function is applied to *constant
types*; that is, types which have no type variables inside. But what if
it is applied to non-constant types? Suppose we find a call of f at type
t1/t2. There are two possibilities:
(a) The free type variables of t1, t2 are in scope at the definition point
of f. In this case there's no problem, we proceed just as before. A common
example is as follows. Here's the Haskell:
g y = let f x = x+x
in f y + f y
After typechecking we have
g a (d::Num a) (y::a) = let f b (d'::Num b) (x::b) = +.sel b d' x x
in +.sel a d (f a d y) (f a d y)
Notice that the call to f is at type type "a"; a non-constant type.
Both calls to f are at the same type, so we can specialise to give:
g a (d::Num a) (y::a) = let f@a (x::a) = +.sel a d x x
in +.sel a d (f@a y) (f@a y)
(b) The other case is when the type variables in the instance types
are *not* in scope at the definition point of f. The example we are
working with above is a good case. There are two instances of (+.sel a d),
but "a" is not in scope at the definition of +.sel. Can we do anything?
Yes, we can "common them up", a sort of limited common sub-expression deal.
This would give:
g a (d::Num a) (y::a) = let +.sel@a = +.sel a d
f@a (x::a) = +.sel@a x x
in +.sel@a (f@a y) (f@a y)
This can save work, and can't be spotted by the type checker, because
the two instances of +.sel weren't originally at the same type.
Further notes on (b)
* There are quite a few variations here. For example, the defn of
+.sel could be floated outside the \y, to attempt to gain laziness.
It certainly mustn't be floated outside the \d because the d has to
be in scope too.
* We don't want to inline f_rhs in this case, because
that will duplicate code. Just commoning up the call is the point.
* Nothing gets added to +.sel's IdInfo.
* Don't bother unless the equivalence class has more than one item!
Not clear whether this is all worth it. It is of course OK to
simply discard call-instances when passing a big lambda.
Polymorphism 2 -- Overloading
~~~~~~~~~~~~~~
Consider a function whose most general type is
f :: forall a b. Ord a => [a] -> b -> b
There is really no point in making a version of g at Int/Int and another
at Int/Bool, because it's only instantiating the type variable "a" which
buys us any efficiency. Since g is completely polymorphic in b there
ain't much point in making separate versions of g for the different
b types.
That suggests that we should identify which of g's type variables
are constrained (like "a") and which are unconstrained (like "b").
Then when taking equivalence classes in STEP 2, we ignore the type args
corresponding to unconstrained type variable. In STEP 3 we make
polymorphic versions. Thus:
f@t1/ = /\b -> <f_rhs> t1 b d1 d2
We do this.
Dictionary floating
~~~~~~~~~~~~~~~~~~~
Consider this
f a (d::Num a) = let g = ...
in
...(let d1::Ord a = Num.Ord.sel a d in g a d1)...
Here, g is only called at one type, but the dictionary isn't in scope at the
definition point for g. Usually the type checker would build a
definition for d1 which enclosed g, but the transformation system
might have moved d1's defn inward. Solution: float dictionary bindings
outwards along with call instances.
Consider
f x = let g p q = p==q
h r s = (r+s, g r s)
in
h x x
Before specialisation, leaving out type abstractions we have
f df x = let g :: Eq a => a -> a -> Bool
g dg p q = == dg p q
h :: Num a => a -> a -> (a, Bool)
h dh r s = let deq = eqFromNum dh
in (+ dh r s, g deq r s)
in
h df x x
After specialising h we get a specialised version of h, like this:
h' r s = let deq = eqFromNum df
in (+ df r s, g deq r s)
But we can't naively make an instance for g from this, because deq is not in scope
at the defn of g. Instead, we have to float out the (new) defn of deq
to widen its scope. Notice that this floating can't be done in advance -- it only
shows up when specialisation is done.
User SPECIALIZE pragmas
~~~~~~~~~~~~~~~~~~~~~~~
Specialisation pragmas can be digested by the type checker, and implemented
by adding extra definitions along with that of f, in the same way as before
f@t1/t2 = <f_rhs> t1 t2 d1 d2
Indeed the pragmas *have* to be dealt with by the type checker, because
only it knows how to build the dictionaries d1 and d2! For example
g :: Ord a => [a] -> [a]
{-# SPECIALIZE f :: [Tree Int] -> [Tree Int] #-}
Here, the specialised version of g is an application of g's rhs to the
Ord dictionary for (Tree Int), which only the type checker can conjure
up. There might not even *be* one, if (Tree Int) is not an instance of
Ord! (All the other specialisation has suitable dictionaries to hand
from actual calls.)
Problem. The type checker doesn't have to hand a convenient <f_rhs>, because
it is buried in a complex (as-yet-un-desugared) binding group.
Maybe we should say
f@t1/t2 = f* t1 t2 d1 d2
where f* is the Id f with an IdInfo which says "inline me regardless!".
Indeed all the specialisation could be done in this way.
That in turn means that the simplifier has to be prepared to inline absolutely
any in-scope let-bound thing.
Again, the pragma should permit polymorphism in unconstrained variables:
h :: Ord a => [a] -> b -> b
{-# SPECIALIZE h :: [Int] -> b -> b #-}
We *insist* that all overloaded type variables are specialised to ground types,
(and hence there can be no context inside a SPECIALIZE pragma).
We *permit* unconstrained type variables to be specialised to
- a ground type
- or left as a polymorphic type variable
but nothing in between. So
{-# SPECIALIZE h :: [Int] -> [c] -> [c] #-}
is *illegal*. (It can be handled, but it adds complication, and gains the
programmer nothing.)
SPECIALISING INSTANCE DECLARATIONS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
instance Foo a => Foo [a] where
...
{-# SPECIALIZE instance Foo [Int] #-}
The original instance decl creates a dictionary-function
definition:
dfun.Foo.List :: forall a. Foo a -> Foo [a]
The SPECIALIZE pragma just makes a specialised copy, just as for
ordinary function definitions:
dfun.Foo.List@Int :: Foo [Int]
dfun.Foo.List@Int = dfun.Foo.List Int dFooInt
The information about what instance of the dfun exist gets added to
the dfun's IdInfo in the same way as a user-defined function too.
Automatic instance decl specialisation?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Can instance decls be specialised automatically? It's tricky.
We could collect call-instance information for each dfun, but
then when we specialised their bodies we'd get new call-instances
for ordinary functions; and when we specialised their bodies, we might get
new call-instances of the dfuns, and so on. This all arises because of
the unrestricted mutual recursion between instance decls and value decls.
Still, there's no actual problem; it just means that we may not do all
the specialisation we could theoretically do.
Furthermore, instance decls are usually exported and used non-locally,
so we'll want to compile enough to get those specialisations done.
Lastly, there's no such thing as a local instance decl, so we can
survive solely by spitting out *usage* information, and then reading that
back in as a pragma when next compiling the file. So for now,
we only specialise instance decls in response to pragmas.
SPITTING OUT USAGE INFORMATION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To spit out usage information we need to traverse the code collecting
call-instance information for all imported (non-prelude?) functions
and data types. Then we equivalence-class it and spit it out.
This is done at the top-level when all the call instances which escape
must be for imported functions and data types.
*** Not currently done ***
Partial specialisation by pragmas
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What about partial specialisation:
k :: (Ord a, Eq b) => [a] -> b -> b -> [a]
{-# SPECIALIZE k :: Eq b => [Int] -> b -> b -> [a] #-}
or even
{-# SPECIALIZE k :: Eq b => [Int] -> [b] -> [b] -> [a] #-}
Seems quite reasonable. Similar things could be done with instance decls:
instance (Foo a, Foo b) => Foo (a,b) where
...
{-# SPECIALIZE instance Foo a => Foo (a,Int) #-}
{-# SPECIALIZE instance Foo b => Foo (Int,b) #-}
Ho hum. Things are complex enough without this. I pass.
Requirements for the simplifier
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The simplifier has to be able to take advantage of the specialisation.
* When the simplifier finds an application of a polymorphic f, it looks in
f's IdInfo in case there is a suitable instance to call instead. This converts
f t1 t2 d1 d2 ===> f_t1_t2
Note that the dictionaries get eaten up too!
* Dictionary selection operations on constant dictionaries must be
short-circuited:
+.sel Int d ===> +Int
The obvious way to do this is in the same way as other specialised
calls: +.sel has inside it some IdInfo which tells that if it's applied
to the type Int then it should eat a dictionary and transform to +Int.
In short, dictionary selectors need IdInfo inside them for constant
methods.
* Exactly the same applies if a superclass dictionary is being
extracted:
Eq.sel Int d ===> dEqInt
* Something similar applies to dictionary construction too. Suppose
dfun.Eq.List is the function taking a dictionary for (Eq a) to
one for (Eq [a]). Then we want
dfun.Eq.List Int d ===> dEq.List_Int
Where does the Eq [Int] dictionary come from? It is built in
response to a SPECIALIZE pragma on the Eq [a] instance decl.
In short, dfun Ids need IdInfo with a specialisation for each
constant instance of their instance declaration.
All this uses a single mechanism: the SpecEnv inside an Id
What does the specialisation IdInfo look like?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The SpecEnv of an Id maps a list of types (the template) to an expression
[Type] |-> Expr
For example, if f has this RuleInfo:
[Int, a] -> \d:Ord Int. f' a
it means that we can replace the call
f Int t ===> (\d. f' t)
This chucks one dictionary away and proceeds with the
specialised version of f, namely f'.
What can't be done this way?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is no way, post-typechecker, to get a dictionary for (say)
Eq a from a dictionary for Eq [a]. So if we find
==.sel [t] d
we can't transform to
eqList (==.sel t d')
where
eqList :: (a->a->Bool) -> [a] -> [a] -> Bool
Of course, we currently have no way to automatically derive
eqList, nor to connect it to the Eq [a] instance decl, but you
can imagine that it might somehow be possible. Taking advantage
of this is permanently ruled out.
Still, this is no great hardship, because we intend to eliminate
overloading altogether anyway!
A note about non-tyvar dictionaries
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some Ids have types like
forall a,b,c. Eq a -> Ord [a] -> tau
This seems curious at first, because we usually only have dictionary
args whose types are of the form (C a) where a is a type variable.
But this doesn't hold for the functions arising from instance decls,
which sometimes get arguments with types of form (C (T a)) for some
type constructor T.
Should we specialise wrt this compound-type dictionary? We used to say
"no", saying:
"This is a heuristic judgement, as indeed is the fact that we
specialise wrt only dictionaries. We choose *not* to specialise
wrt compound dictionaries because at the moment the only place
they show up is in instance decls, where they are simply plugged
into a returned dictionary. So nothing is gained by specialising
wrt them."
But it is simpler and more uniform to specialise wrt these dicts too;
and in future GHC is likely to support full fledged type signatures
like
f :: Eq [(a,b)] => ...
Note [Specialisation and overlapping instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is at tricky case (see a comment in MR !8916):
module A where
class C a where
meth :: a -> String
instance {-# OVERLAPPABLE #-} C (Maybe a) where
meth _ = "Maybe"
{-# SPECIALISE f :: Maybe a -> Bool -> String #-}
f :: C a => a -> Bool -> String
f a True = f a False
f a _ = meth a
module B where
import A
instance C (Maybe Int) where
meth _ = "Int"
main = putStrLn $ f (Just 42 :: Maybe Int) True
Running main without optimisations yields "Int", the correct answer.
Activating optimisations yields "Maybe" due to a rewrite rule in module
A generated by the SPECIALISE pragma:
RULE "USPEC f" forall a (d :: C a). f @a d = $sf
In B we get the call (f @(Maybe Int) (d :: C (Maybe Int))), and
that rewrites to $sf, but that isn't really right.
Overlapping instances mean that `C (Maybe Int)` is not a singleton
type: there two distinct dictionaries that have this type. And that
spells trouble for specialistion, which really asssumes singleton
types.
For now, we just accept this problem, but it may bite us one day.
One solution would be to decline to expose any specialisation rules
to an importing module -- but that seems a bit drastic.
************************************************************************
* *
\subsubsection{The new specialiser}
* *
************************************************************************
Our basic game plan is this. For let(rec) bound function
f :: (C a, D c) => (a,b,c,d) -> Bool
* Find any specialised calls of f, (f ts ds), where
ts are the type arguments t1 .. t4, and
ds are the dictionary arguments d1 .. d2.
* Add a new definition for f1 (say):
f1 = /\ b d -> (..body of f..) t1 b t3 d d1 d2
Note that we abstract over the unconstrained type arguments.
* Add the mapping
[t1,b,t3,d] |-> \d1 d2 -> f1 b d
to the specialisations of f. This will be used by the
simplifier to replace calls
(f t1 t2 t3 t4) da db
by
(\d1 d1 -> f1 t2 t4) da db
All the stuff about how many dictionaries to discard, and what types
to apply the specialised function to, are handled by the fact that the
SpecEnv contains a template for the result of the specialisation.
We don't build *partial* specialisations for f. For example:
f :: Eq a => a -> a -> Bool
{-# SPECIALISE f :: (Eq b, Eq c) => (b,c) -> (b,c) -> Bool #-}
Here, little is gained by making a specialised copy of f.
There's a distinct danger that the specialised version would
first build a dictionary for (Eq b, Eq c), and then select the (==)
method from it! Even if it didn't, not a great deal is saved.
We do, however, generate polymorphic, but not overloaded, specialisations:
f :: Eq a => [a] -> b -> b -> b
... SPECIALISE f :: [Int] -> b -> b -> b ...
Hence, the invariant is this:
*** no specialised version is overloaded ***
************************************************************************
* *
\subsubsection{The exported function}
* *
************************************************************************
-}
-- | Specialise calls to type-class overloaded functions occurring in a program.
specProgram :: ModGuts -> CoreM ModGuts
specProgram guts@(ModGuts { mg_module = this_mod
, mg_rules = local_rules
, mg_binds = binds })
= do { dflags <- getDynFlags
; rule_env <- initRuleEnv guts
-- See Note [Fire rules in the specialiser]
-- We need to start with a Subst that knows all the things
-- that are in scope, so that the substitution engine doesn't
-- accidentally re-use a unique that's already in use
-- Easiest thing is to do it all at once, as if all the top-level
-- decls were mutually recursive
; let top_env = SE { se_subst = Core.mkEmptySubst $
mkInScopeSetBndrs binds
-- mkInScopeSetList $
-- bindersOfBinds binds
, se_module = this_mod
, se_rules = rule_env
, se_dflags = dflags }
go [] = return ([], emptyUDs)
go (bind:binds) = do (bind', binds', uds') <- specBind TopLevel top_env bind $ \_ ->
go binds
return (bind' ++ binds', uds')
-- Specialise the bindings of this module
; (binds', uds) <- runSpecM (go binds)
; (spec_rules, spec_binds) <- specImports top_env uds
; return (guts { mg_binds = spec_binds ++ binds'
, mg_rules = spec_rules ++ local_rules }) }
{-
Note [Wrap bindings returned by specImports]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'specImports' returns a set of specialized bindings. However, these are lacking
necessary floated dictionary bindings, which are returned by
UsageDetails(ud_binds). These dictionaries need to be brought into scope with
'wrapDictBinds' before the bindings returned by 'specImports' can be used. See,
for instance, the 'specImports' call in 'specProgram'.
Note [Disabling cross-module specialisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since GHC 7.10 we have performed specialisation of INLINABLE bindings living
in modules outside of the current module. This can sometimes uncover user code
which explodes in size when aggressively optimized. The
-fno-cross-module-specialise option was introduced to allow users to being
bitten by such instances to revert to the pre-7.10 behavior.
See #10491
-}
{- *********************************************************************
* *
Specialising imported functions
* *
********************************************************************* -}
{- Note [Specialising imported functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
specImports specialises imported functions, based on calls in this module.
When -fspecialise-aggressively is on, we specialise any imported
function for which we have an unfolding. The
-fspecialise-aggressively flag is usually off, because we risk lots of
orphan modules from over-vigorous specialisation. (See Note [Orphans]
in GHC.Core.) However it's not a big deal: anything non-recursive with
an unfolding-template will probably have been inlined already.
When -fspecialise-aggressively is off, we are more selective about
specialisation (see canSpecImport):
(1) Without -fspecialise-aggressively, do not specialise
DFunUnfoldings. Note [Do not specialise imported DFuns].
(2) Without -fspecialise-aggressively, specialise only imported things
that have a /user-supplied/ INLINE or INLINABLE pragma (hence
isAnyInlinePragma rather than isStableSource).
In particular, we don't want to specialise workers created by
worker/wrapper (for functions with no pragma) because they won't
specialise usefully, and they generate quite a bit of useless code
bloat.
Specialise even INLINE things; it hasn't inlined yet, so perhaps
it never will. Moreover it may have calls inside it that we want
to specialise
Wrinkle (W1): If we specialise an imported Id M.foo, we make a /local/
binding $sfoo. But specImports may further specialise $sfoo. So we end up
with RULES for both M.foo (imported) and $sfoo (local). Rules for local
Ids should be attached to the Ids themselves (see GHC.HsToCore
Note [Attach rules to local ids]); so we must partition the rules and
attach the local rules. That is done in specImports, via addRulesToId.
Note [Glom the bindings if imported functions are specialised]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have an imported, *recursive*, INLINABLE function
f :: Eq a => a -> a
f = /\a \d x. ...(f a d)...
In the module being compiled we have
g x = f (x::Int)
Now we'll make a specialised function
f_spec :: Int -> Int
f_spec = \x -> ...(f Int dInt)...
{-# RULE f Int _ = f_spec #-}
g = \x. f Int dInt x
Note that f_spec doesn't look recursive
After rewriting with the RULE, we get
f_spec = \x -> ...(f_spec)...
BUT since f_spec was non-recursive before it'll *stay* non-recursive.
The occurrence analyser never turns a NonRec into a Rec. So we must
make sure that f_spec is recursive. Easiest thing is to make all
the specialisations for imported bindings recursive.
-}
specImports :: SpecEnv
-> UsageDetails
-> CoreM ([CoreRule], [CoreBind])
specImports top_env (MkUD { ud_binds = dict_binds, ud_calls = calls })
| not $ gopt Opt_CrossModuleSpecialise (se_dflags top_env)
-- See Note [Disabling cross-module specialisation]
= return ([], wrapDictBinds dict_binds [])
| otherwise
= do { let env_w_dict_bndrs = top_env `bringFloatedDictsIntoScope` dict_binds
; (_env, spec_rules, spec_binds) <- spec_imports env_w_dict_bndrs [] dict_binds calls
-- Make a Rec: see Note [Glom the bindings if imported functions are specialised]
--
-- wrapDictBinds: don't forget to wrap the specialized bindings with
-- bindings for the needed dictionaries.
-- See Note [Wrap bindings returned by specImports]
--
-- addRulesToId: see Wrinkle (W1) in Note [Specialising imported functions]
-- c.f. GHC.HsToCore.addExportFlagsAndRules
; let (rules_for_locals, rules_for_imps) = partition isLocalRule spec_rules
local_rule_base = extendRuleBaseList emptyRuleBase rules_for_locals
final_binds
| null spec_binds = wrapDictBinds dict_binds []
| otherwise = [Rec $ mapFst (addRulesToId local_rule_base) $
flattenBinds $
wrapDictBinds dict_binds $
spec_binds]
; return (rules_for_imps, final_binds)
}
-- | Specialise a set of calls to imported bindings
spec_imports :: SpecEnv -- Passed in so that all top-level Ids are in scope
---In-scope set includes the FloatedDictBinds
-> [Id] -- Stack of imported functions being specialised
-- See Note [specImport call stack]
-> FloatedDictBinds -- Dict bindings, used /only/ for filterCalls
-- See Note [Avoiding loops in specImports]
-> CallDetails -- Calls for imported things
-> CoreM ( SpecEnv -- Env contains the new rules
, [CoreRule] -- New rules
, [CoreBind] ) -- Specialised bindings
spec_imports env callers dict_binds calls
= do { let import_calls = dVarEnvElts calls
-- ; debugTraceMsg (text "specImports {" <+>
-- vcat [ text "calls:" <+> ppr import_calls
-- , text "dict_binds:" <+> ppr dict_binds ])
; (env, rules, spec_binds) <- go env import_calls
-- ; debugTraceMsg (text "End specImports }" <+> ppr import_calls)
; return (env, rules, spec_binds) }
where
go :: SpecEnv -> [CallInfoSet] -> CoreM (SpecEnv, [CoreRule], [CoreBind])
go env [] = return (env, [], [])
go env (cis : other_calls)
= do { -- debugTraceMsg (text "specImport {" <+> ppr cis)
; (env, rules1, spec_binds1) <- spec_import env callers dict_binds cis
; -- debugTraceMsg (text "specImport }" <+> ppr cis)
; (env, rules2, spec_binds2) <- go env other_calls
; return (env, rules1 ++ rules2, spec_binds1 ++ spec_binds2) }
spec_import :: SpecEnv -- Passed in so that all top-level Ids are in scope
---In-scope set includes the FloatedDictBinds
-> [Id] -- Stack of imported functions being specialised
-- See Note [specImport call stack]
-> FloatedDictBinds -- Dict bindings, used /only/ for filterCalls
-- See Note [Avoiding loops in specImports]
-> CallInfoSet -- Imported function and calls for it
-> CoreM ( SpecEnv
, [CoreRule] -- New rules
, [CoreBind] ) -- Specialised bindings
spec_import env callers dict_binds cis@(CIS fn _)
| isIn "specImport" fn callers
= return (env, [], []) -- No warning. This actually happens all the time
-- when specialising a recursive function, because
-- the RHS of the specialised function contains a recursive
-- call to the original function
| null good_calls
= return (env, [], [])
| Just rhs <- canSpecImport dflags fn
= do { -- Get rules from the external package state
-- We keep doing this in case we "page-fault in"
-- more rules as we go along
; eps_rules <- getExternalRuleBase
; let rule_env = se_rules env `updExternalPackageRules` eps_rules
-- ; debugTraceMsg (text "specImport1" <+> vcat
-- [ text "function:" <+> ppr fn
-- , text "good calls:" <+> ppr good_calls
-- , text "existing rules:" <+> ppr (getRules rule_env fn)
-- , text "rhs:" <+> ppr rhs
-- , text "dict_binds:" <+> ppr dict_binds ])
; (rules1, spec_pairs, MkUD { ud_binds = dict_binds1, ud_calls = new_calls })
<- runSpecM $ specCalls True env (getRules rule_env fn) good_calls fn rhs
; let spec_binds1 = [NonRec b r | (b,r) <- spec_pairs]
-- After the rules kick in, via fireRewriteRules, we may get recursion,
-- but we rely on a global GlomBinds to sort that out later
-- See Note [Glom the bindings if imported functions are specialised]
-- Meanwhile, though, bring the binders into scope
new_subst = se_subst env `Core.extendSubstInScopeList` map fst spec_pairs
new_env = env { se_rules = rule_env `addLocalRules` rules1
, se_subst = new_subst }
`bringFloatedDictsIntoScope` dict_binds1
-- Now specialise any cascaded calls
-- ; debugTraceMsg (text "specImport 2" <+> vcat
-- [ text "function:" <+> ppr fn
-- , text "rules1:" <+> ppr rules1
-- , text "spec_binds1" <+> ppr spec_binds1
-- , text "dict_binds1" <+> ppr dict_binds1
-- , text "new_calls" <+> ppr new_calls ])
; (env, rules2, spec_binds2)
<- spec_imports new_env (fn:callers)
(dict_binds `thenFDBs` dict_binds1)
new_calls
; let final_binds = wrapDictBinds dict_binds1 $
spec_binds2 ++ spec_binds1
; return (env, rules2 ++ rules1, final_binds) }
| otherwise
= do { tryWarnMissingSpecs dflags callers fn good_calls
; return (env, [], [])}
where
dflags = se_dflags env
good_calls = filterCalls cis dict_binds
-- SUPER IMPORTANT! Drop calls that (directly or indirectly) refer to fn
-- See Note [Avoiding loops in specImports]
canSpecImport :: DynFlags -> Id -> Maybe CoreExpr
canSpecImport dflags fn
| isDataConWrapId fn
= Nothing -- Don't specialise data-con wrappers, even if they
-- have dict args; there is no benefit.
| CoreUnfolding { uf_tmpl = rhs } <- unf
-- CoreUnfolding: see Note [Specialising imported functions] point (1).
, isAnyInlinePragma (idInlinePragma fn)
-- See Note [Specialising imported functions] point (2).
= Just rhs
| gopt Opt_SpecialiseAggressively dflags
= maybeUnfoldingTemplate unf
-- With -fspecialise-aggressively, specialise anything
-- with an unfolding, stable or not, DFun or not
| otherwise = Nothing
where
unf = realIdUnfolding fn -- We want to see the unfolding even for loop breakers
-- | Returns whether or not to show a missed-spec warning.
-- If -Wall-missed-specializations is on, show the warning.
-- Otherwise, if -Wmissed-specializations is on, only show a warning
-- if there is at least one imported function being specialized,
-- and if all imported functions are marked with an inline pragma
-- Use the most specific warning as the reason.
tryWarnMissingSpecs :: DynFlags -> [Id] -> Id -> [CallInfo] -> CoreM ()
-- See Note [Warning about missed specialisations]
tryWarnMissingSpecs dflags callers fn calls_for_fn
| isClassOpId fn = return () -- See Note [Missed specialisation for ClassOps]
| wopt Opt_WarnMissedSpecs dflags
&& not (null callers)
&& allCallersInlined = doWarn $ WarningWithFlag Opt_WarnMissedSpecs
| wopt Opt_WarnAllMissedSpecs dflags = doWarn $ WarningWithFlag Opt_WarnAllMissedSpecs
| otherwise = return ()
where
allCallersInlined = all (isAnyInlinePragma . idInlinePragma) callers
diag_opts = initDiagOpts dflags
doWarn reason =
msg (mkMCDiagnostic diag_opts reason Nothing)
(vcat [ hang (text ("Could not specialise imported function") <+> quotes (ppr fn))
2 (vcat [ text "when specialising" <+> quotes (ppr caller)
| caller <- callers])
, whenPprDebug (text "calls:" <+> vcat (map (pprCallInfo fn) calls_for_fn))
, text "Probable fix: add INLINABLE pragma on" <+> quotes (ppr fn) ])
{- Note [Missed specialisation for ClassOps]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In #19592 I saw a number of missed specialisation warnings
which were the result of things like:
case isJumpishInstr @X86.Instr $dInstruction_s7f8 eta3_a78C of { ...
where isJumpishInstr is part of the Instruction class and defined like
this:
class Instruction instr where
...
isJumpishInstr :: instr -> Bool
...
isJumpishInstr is a ClassOp which will select the right method
from within the dictionary via our built in rules. See also
Note [ClassOp/DFun selection] in GHC.Tc.TyCl.Instance.
We don't give these unfoldings, and as a result the specialiser
complains. But usually this doesn't matter. The simplifier will
apply the rule and we end up with
case isJumpishInstrImplX86 eta3_a78C of { ...
Since isJumpishInstrImplX86 is defined for a concrete instance (given
by the dictionary) it is usually already well specialised!
Theoretically the implementation of a method could still be overloaded
over a different type class than what it's a method of. But I wasn't able
to make this go wrong, and SPJ thinks this should be fine as well.
So I decided to remove the warnings for failed specialisations on ClassOps
alltogether as they do more harm than good.
-}
{- Note [Do not specialise imported DFuns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ticket #18223 shows that specialising calls of DFuns is can cause a huge
and entirely unnecessary blowup in program size. Consider a call to
f @[[[[[[[[T]]]]]]]] d1 x
where df :: C a => C [a]
d1 :: C [[[[[[[[T]]]]]]]] = dfC[] @[[[[[[[T]]]]]]] d1
d2 :: C [[[[[[[T]]]]]]] = dfC[] @[[[[[[T]]]]]] d3
...
Now we'll specialise f's RHS, which may give rise to calls to 'g',
also overloaded, which we will specialise, and so on. However, if
we specialise the calls to dfC[], we'll generate specialised copies of
all methods of C, at all types; and the same for C's superclasses.
And many of these specialised functions will never be called. We are
going to call the specialised 'f', and the specialised 'g', but DFuns
group functions into a tuple, many of whose elements may never be used.
With deeply-nested types this can lead to a simply overwhelming number
of specialisations: see #18223 for a simple example (from the wild).
I measured the number of specialisations for various numbers of calls
of `flip evalStateT ()`, and got this
Size after one simplification
#calls #SPEC rules Terms Types
5 56 3100 10600
9 108 13660 77206
The real tests case has 60+ calls, which blew GHC out of the water.
Solution: don't specialise DFuns. The downside is that if we end
up with (h (dfun d)), /and/ we don't specialise 'h', then we won't
pass to 'h' a tuple of specialised functions.
However, the flag -fspecialise-aggressively (experimental, off by default)
allows DFuns to specialise as well.
Note [Avoiding loops in specImports]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must take great care when specialising instance declarations
(DFuns like $fOrdList) lest we accidentally build a recursive
dictionary. See Note [Avoiding loops (DFuns)].
The basic strategy of Note [Avoiding loops (DFuns)] is to use filterCalls
to discard loopy specialisations. But to do that we must ensure
that the in-scope dict-binds (passed to filterCalls) contains
all the needed dictionary bindings. In particular, in the recursive
call to spec_imports in spec_import, we must include the dict-binds
from the parent. Lacking this caused #17151, a really nasty bug.
Here is what happened.
* Class structure:
Source is a superclass of Mut
Index is a superclass of Source
* We started with these dict binds
dSource = $fSourcePix @Int $fIndexInt
dIndex = sc_sel dSource
dMut = $fMutPix @Int dIndex
and these calls to specialise
$fMutPix @Int dIndex
$fSourcePix @Int $fIndexInt
* We specialised the call ($fMutPix @Int dIndex)
==> new call ($fSourcePix @Int dIndex)
(because Source is a superclass of Mut)
* We specialised ($fSourcePix @Int dIndex)
==> produces specialised dict $s$fSourcePix,
a record with dIndex as a field
plus RULE forall d. ($fSourcePix @Int d) = $s$fSourcePix
*** This is the bogus step ***
* Now we decide not to specialise the call
$fSourcePix @Int $fIndexInt
because we alredy have a RULE that matches it
* Finally the simplifer rewrites
dSource = $fSourcePix @Int $fIndexInt
==> dSource = $s$fSourcePix
Disaster. Now we have
Rewrite dSource's RHS to $s$fSourcePix Disaster
dSource = $s$fSourcePix
dIndex = sc_sel dSource
$s$fSourcePix = MkSource dIndex ...
Solution: filterCalls should have stopped the bogus step,
by seeing that dIndex transitively uses $fSourcePix. But
it can only do that if it sees all the dict_binds. Wow.
--------------
Here's another example (#13429). Suppose we have
class Monoid v => C v a where ...
We start with a call
f @ [Integer] @ Integer $fC[]Integer
Specialising call to 'f' gives dict bindings
$dMonoid_1 :: Monoid [Integer]
$dMonoid_1 = M.$p1C @ [Integer] $fC[]Integer
$dC_1 :: C [Integer] (Node [Integer] Integer)
$dC_1 = M.$fCvNode @ [Integer] $dMonoid_1
...plus a recursive call to
f @ [Integer] @ (Node [Integer] Integer) $dC_1
Specialising that call gives
$dMonoid_2 :: Monoid [Integer]
$dMonoid_2 = M.$p1C @ [Integer] $dC_1
$dC_2 :: C [Integer] (Node [Integer] Integer)
$dC_2 = M.$fCvNode @ [Integer] $dMonoid_2
Now we have two calls to the imported function
M.$fCvNode :: Monoid v => C v a
M.$fCvNode @v @a m = C m some_fun
But we must /not/ use the call (M.$fCvNode @ [Integer] $dMonoid_2)
for specialisation, else we get:
$dC_1 = M.$fCvNode @ [Integer] $dMonoid_1
$dMonoid_2 = M.$p1C @ [Integer] $dC_1
$s$fCvNode = C $dMonoid_2 ...
RULE M.$fCvNode [Integer] _ _ = $s$fCvNode
Now use the rule to rewrite the call in the RHS of $dC_1
and we get a loop!
Note [specImport call stack]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When specialising an imports function 'f', we may get new calls
of an imported function 'g', which we want to specialise in turn,
and similarly specialising 'g' might expose a new call to 'h'.
We track the stack of enclosing functions. So when specialising 'h' we
have a specImport call stack of [g,f]. We do this for two reasons:
* Note [Warning about missed specialisations]
* Note [Avoiding recursive specialisation]
Note [Warning about missed specialisations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose
* In module Lib, you carefully mark a function 'foo' INLINABLE
* Import Lib(foo) into another module M
* Call 'foo' at some specialised type in M
Then you jolly well expect it to be specialised in M. But what if
'foo' calls another function 'Lib.bar'. Then you'd like 'bar' to be
specialised too. But if 'bar' is not marked INLINABLE it may well
not be specialised. The warning Opt_WarnMissedSpecs warns about this.
It's more noisy to warning about a missed specialisation opportunity
for /every/ overloaded imported function, but sometimes useful. That
is what Opt_WarnAllMissedSpecs does.
ToDo: warn about missed opportunities for local functions.
Note [Avoiding recursive specialisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we specialise 'f' we may find new overloaded calls to 'g', 'h' in
'f's RHS. So we want to specialise g,h. But we don't want to
specialise f any more! It's possible that f's RHS might have a
recursive yet-more-specialised call, so we'd diverge in that case.
And if the call is to the same type, one specialisation is enough.
Avoiding this recursive specialisation loop is one reason for the
'callers' stack passed to specImports and specImport.
************************************************************************
* *
\subsubsection{@specExpr@: the main function}
* *
************************************************************************
-}
data SpecEnv
= SE { se_subst :: Core.Subst
-- We carry a substitution down:
-- a) we must clone any binding that might float outwards,
-- to avoid name clashes
-- b) we carry a type substitution to use when analysing
-- the RHS of specialised bindings (no type-let!)
, se_module :: Module
, se_rules :: RuleEnv -- From the home package and this module
, se_dflags :: DynFlags
}
instance Outputable SpecEnv where
ppr (SE { se_subst = subst })
= text "SE" <+> braces (text "subst =" <+> ppr subst)
specVar :: SpecEnv -> InId -> SpecM (OutExpr, UsageDetails)
specVar env@(SE { se_subst = Core.Subst in_scope ids _ _ }) v
| not (isLocalId v) = return (Var v, emptyUDs)
| Just e <- lookupVarEnv ids v = specExpr (zapSubst env) e -- Note (1)
| Just v' <- lookupInScope in_scope v = return (Var v', emptyUDs)
| otherwise = pprPanic "specVar" (ppr v $$ ppr in_scope)
-- c.f. GHC.Core.Subst.lookupIdSubst
-- Note (1): we recurse so we do the lookupInScope thing on any Vars in e
-- probably has little effect, but it's the right thing.
-- We need zapSubst because `e` is an OutExpr
specExpr :: SpecEnv -> CoreExpr -> SpecM (CoreExpr, UsageDetails)
---------------- First the easy cases --------------------
specExpr env (Var v) = specVar env v
specExpr env (Type ty) = return (Type (substTy env ty), emptyUDs)
specExpr env (Coercion co) = return (Coercion (substCo env co), emptyUDs)
specExpr _ (Lit lit) = return (Lit lit, emptyUDs)
specExpr env (Cast e co)
= do { (e', uds) <- specExpr env e
; return ((mkCast e' (substCo env co)), uds) }
specExpr env (Tick tickish body)
= do { (body', uds) <- specExpr env body
; return (Tick (specTickish env tickish) body', uds) }
---------------- Applications might generate a call instance --------------------
specExpr env expr@(App {})
= do { let (fun_in, args_in) = collectArgs expr
; (args_out, uds_args) <- mapAndCombineSM (specExpr env) args_in
; let env_args = env `bringFloatedDictsIntoScope` ud_binds uds_args
-- Some dicts may have floated out of args_in;
-- they should be in scope for fireRewriteRules (#21689)
(fun_in', args_out') = fireRewriteRules env_args fun_in args_out
; (fun_out', uds_fun) <- specExpr env fun_in'
; let uds_call = mkCallUDs env fun_out' args_out'
; return (fun_out' `mkApps` args_out', uds_fun `thenUDs` uds_call `thenUDs` uds_args) }
---------------- Lambda/case require dumping of usage details --------------------
specExpr env e@(Lam {})
= specLam env' bndrs' body
where
(bndrs, body) = collectBinders e
(env', bndrs') = substBndrs env bndrs
-- More efficient to collect a group of binders together all at once
-- and we don't want to split a lambda group with dumped bindings
specExpr env (Case scrut case_bndr ty alts)
= do { (scrut', scrut_uds) <- specExpr env scrut
; (scrut'', case_bndr', alts', alts_uds)
<- specCase env scrut' case_bndr alts
-- ; pprTrace "specExpr:case" (vcat
-- [ text "scrut" <+> ppr scrut, text "scrut'" <+> ppr scrut'
-- , text "case_bndr'" <+> ppr case_bndr'
-- , text "alts_uds" <+> ppr alts_uds
-- ])
; return (Case scrut'' case_bndr' (substTy env ty) alts'
, scrut_uds `thenUDs` alts_uds) }
---------------- Finally, let is the interesting case --------------------
specExpr env (Let bind body)
= do { (binds', body', uds) <- specBind NotTopLevel env bind $ \body_env ->
-- pprTrace "specExpr:let" (ppr (se_subst body_env) $$ ppr body) $
specExpr body_env body
-- All done
; return (foldr Let body' binds', uds) }
-- See Note [Specialisation modulo dictionary selectors]
-- Note [ClassOp/DFun selection]
-- Note [Fire rules in the specialiser]
fireRewriteRules :: SpecEnv -> InExpr -> [OutExpr] -> (InExpr, [OutExpr])
fireRewriteRules env (Var f) args
| Just (rule, expr) <- specLookupRule env f args InitialPhase (getRules (se_rules env) f)
, let rest_args = drop (ruleArity rule) args -- See Note [Extra args in the target]
zapped_subst = Core.zapSubst (se_subst env)
expr' = simpleOptExprWith defaultSimpleOpts zapped_subst expr
-- simplOptExpr needed because lookupRule returns
-- (\x y. rhs) arg1 arg2
, (fun, args) <- collectArgs expr'
= fireRewriteRules env fun (args++rest_args)
fireRewriteRules _ fun args = (fun, args)
--------------
specLam :: SpecEnv -> [OutBndr] -> InExpr -> SpecM (OutExpr, UsageDetails)
-- The binders have been substituted, but the body has not
specLam env bndrs body
| null bndrs
= specExpr env body
| otherwise
= do { (body', uds) <- specExpr env body
; let (free_uds, dumped_dbs) = dumpUDs bndrs uds
; return (mkLams bndrs (wrapDictBindsE dumped_dbs body'), free_uds) }
--------------
specTickish :: SpecEnv -> CoreTickish -> CoreTickish
specTickish (SE { se_subst = subst }) (Breakpoint ext ix ids)
= Breakpoint ext ix [ id' | id <- ids, Var id' <- [Core.lookupIdSubst subst id]]
-- drop vars from the list if they have a non-variable substitution.
-- should never happen, but it's harmless to drop them anyway.
specTickish _ other_tickish = other_tickish
--------------
specCase :: SpecEnv
-> OutExpr -- Scrutinee, already done
-> InId -> [InAlt]
-> SpecM ( OutExpr -- New scrutinee
, OutId
, [OutAlt]
, UsageDetails)
specCase env scrut' case_bndr [Alt con args rhs]
| -- See Note [Floating dictionaries out of cases]
interestingDict scrut' (idType case_bndr)
, not (isDeadBinder case_bndr && null sc_args')
= do { case_bndr_flt :| sc_args_flt <- mapM clone_me (case_bndr' :| sc_args')
; let case_bndr_flt' = case_bndr_flt `addDictUnfolding` scrut'
scrut_bind = mkDB (NonRec case_bndr_flt scrut')
sc_args_flt' = zipWith addDictUnfolding sc_args_flt sc_rhss
sc_rhss = [ Case (Var case_bndr_flt') case_bndr' (idType sc_arg')
[Alt con args' (Var sc_arg')]
| sc_arg' <- sc_args' ]
cb_set = unitVarSet case_bndr_flt'
sc_binds = [ DB { db_bind = NonRec sc_arg_flt sc_rhs, db_fvs = cb_set }
| (sc_arg_flt, sc_rhs) <- sc_args_flt' `zip` sc_rhss ]
flt_binds = scrut_bind : sc_binds
-- Extend the substitution for RHS to map the *original* binders
-- to their floated versions.
mb_sc_flts :: [Maybe DictId]
mb_sc_flts = map (lookupVarEnv clone_env) args'
clone_env = zipVarEnv sc_args' sc_args_flt'
subst_prs = (case_bndr, Var case_bndr_flt)
: [ (arg, Var sc_flt)
| (arg, Just sc_flt) <- args `zip` mb_sc_flts ]
subst' = se_subst env_rhs
`Core.extendSubstInScopeList` (case_bndr_flt' : sc_args_flt')
`Core.extendIdSubstList` subst_prs
env_rhs' = env_rhs { se_subst = subst' }
; (rhs', rhs_uds) <- specExpr env_rhs' rhs
; let (free_uds, dumped_dbs) = dumpUDs (case_bndr':args') rhs_uds
all_uds = flt_binds `consDictBinds` free_uds
alt' = Alt con args' (wrapDictBindsE dumped_dbs rhs')
-- ; pprTrace "specCase" (ppr case_bndr $$ ppr scrut_bind) $
; return (Var case_bndr_flt, case_bndr', [alt'], all_uds) }
where
(env_rhs, (case_bndr':args')) = substBndrs env (case_bndr:args)
sc_args' = filter is_flt_sc_arg args'
clone_me bndr = do { uniq <- getUniqueM
; return (mkUserLocalOrCoVar occ uniq wght ty loc) }
where
name = idName bndr
wght = idMult bndr
ty = idType bndr
occ = nameOccName name
loc = getSrcSpan name
arg_set = mkVarSet args'
is_flt_sc_arg var = isId var
&& not (isDeadBinder var)
&& isDictTy var_ty
&& tyCoVarsOfType var_ty `disjointVarSet` arg_set
where
var_ty = idType var
specCase env scrut case_bndr alts
= do { (alts', uds_alts) <- mapAndCombineSM spec_alt alts
; return (scrut, case_bndr', alts', uds_alts) }
where
(env_alt, case_bndr') = substBndr env case_bndr
spec_alt (Alt con args rhs)
= do { (rhs', uds) <- specExpr env_rhs rhs
; let (free_uds, dumped_dbs) = dumpUDs (case_bndr' : args') uds
-- ; unless (isNilOL dumped_dbs) $
-- pprTrace "specAlt" (vcat
-- [text "case_bndr', args" <+> (ppr case_bndr' $$ ppr args)
-- ,text "dumped" <+> ppr dumped_dbs ]) return ()
; return (Alt con args' (wrapDictBindsE dumped_dbs rhs'), free_uds) }
where
(env_rhs, args') = substBndrs env_alt args
{- Note [Fire rules in the specialiser]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this (#21851)
module A where
f :: Num b => b -> (b, b)
f x = (x + 1, snd (f x))
{-# SPECIALIZE f :: Int -> (Int, Int) #-}
module B (g') where
import A
g :: Num a => a -> a
g x = fst (f x)
{-# NOINLINE[99] g #-}
h :: Int -> Int
h = g
Note that `f` has the CPR property, and so will worker/wrapper.
The call to `g` in `h` will make us specialise `g @Int`. And the specialised
version of `g` will contain the call `f @Int`; but in the subsequent run of
the Simplifier, there will be a competition between:
* The user-supplied SPECIALISE rule for `f`
* The inlining of the wrapper for `f`
In fact, the latter wins -- see Note [Rewrite rules and inlining] in
GHC.Core.Opt.Simplify.Iteration. However, it a bit fragile.
Moreover consider (test T21851_2):
module A
f :: (Ord a, Show b) => a -> b -> blah
{-# RULE forall b. f @Int @b = wombat #-}
wombat :: Show b => Int -> b -> blah
wombat = blah
module B
import A
g :: forall a. Ord a => blah
g @a = ...g...f @a @Char....
h = ....g @Int....
Now, in module B, GHC will specialise `g @Int`, which will lead to a
call `f @Int @Char`. If we immediately (in the specialiser) rewrite
that to `womabat @Char`, we have a chance to specialise `wombat`.
Conclusion: it's treat if the Specialiser fires RULEs itself.
It's not hard to achieve: see `fireRewriteRules`. The only tricky bit is
making sure that we have a reasonably up to date EPS rule base. Currently
we load it up just once, in `initRuleEnv`, called at the beginning of
`specProgram`.
NB: you might wonder if running rules in the specialiser (this Note)
renders Note [Rewrite rules and inlining] in the Simplifier redundant.
That is, if we run rules in the specialiser, does it matter if we make
rules "win" over inlining in the Simplifier? Yes, it does! See the
discussion in #21851.
Note [Floating dictionaries out of cases]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
g = \d. case d of { MkD sc ... -> ...(f sc)... }
Naively we can't float d2's binding out of the case expression,
because 'sc' is bound by the case, and that in turn means we can't
specialise f, which seems a pity.
So we invert the case, by floating out a binding
for 'sc_flt' thus:
sc_flt = case d of { MkD sc ... -> sc }
Now we can float the call instance for 'f'. Indeed this is just
what'll happen if 'sc' was originally bound with a let binding,
but case is more efficient, and necessary with equalities. So it's
good to work with both.
You might think that this won't make any difference, because the
call instance will only get nuked by the \d. BUT if 'g' itself is
specialised, then transitively we should be able to specialise f.
In general, given
case e of cb { MkD sc ... -> ...(f sc)... }
we transform to
let cb_flt = e
sc_flt = case cb_flt of { MkD sc ... -> sc }
in
case cb_flt of bg { MkD sc ... -> ....(f sc_flt)... }
The "_flt" things are the floated binds; we use the current substitution
to substitute sc -> sc_flt in the RHS
************************************************************************
* *
Dealing with a binding
* *
************************************************************************
-}
bringFloatedDictsIntoScope :: SpecEnv -> FloatedDictBinds -> SpecEnv
bringFloatedDictsIntoScope env (FDB { fdb_bndrs = dx_bndrs })
= -- pprTrace "brought into scope" (ppr dx_bndrs) $
env {se_subst=subst'}
where
subst' = se_subst env `Core.extendSubstInScopeSet` dx_bndrs
specBind :: TopLevelFlag
-> SpecEnv -- At top-level only, this env already has the
-- top level binders in scope
-> InBind
-> (SpecEnv -> SpecM (body, UsageDetails)) -- Process the body
-> SpecM ( [OutBind] -- New bindings
, body -- Body
, UsageDetails) -- And info to pass upstream
-- Returned UsageDetails:
-- No calls for binders of this bind
specBind top_lvl env (NonRec fn rhs) do_body
= do { (rhs', rhs_uds) <- specExpr env rhs
; (body_env1, fn1) <- case top_lvl of
TopLevel -> return (env, fn)
NotTopLevel -> cloneBndrSM env fn
; let fn2 | isStableUnfolding (idUnfolding fn1) = fn1
| otherwise = fn1 `setIdUnfolding` mkSimpleUnfolding defaultUnfoldingOpts rhs'
-- Update the unfolding with the perhaps-simpler or more specialised rhs'
-- This is important: see Note [Update unfolding after specialisation]
-- And in any case cloneBndrSM discards non-Stable unfoldings
fn3 = zapIdDemandInfo fn2
-- We zap the demand info because the binding may float,
-- which would invalidate the demand info (see #17810 for example).
-- Destroying demand info is not terrible; specialisation is
-- always followed soon by demand analysis.
body_env2 = body_env1 `bringFloatedDictsIntoScope` ud_binds rhs_uds
`extendInScope` fn3
-- bringFloatedDictsIntoScope: see #23567
; (body', body_uds) <- do_body body_env2
; (fn4, spec_defns, body_uds1) <- specDefn env body_uds fn3 rhs
; let (free_uds, dump_dbs, float_all) = dumpBindUDs [fn4] body_uds1
all_free_uds = free_uds `thenUDs` rhs_uds
pairs = spec_defns ++ [(fn4, rhs')]
-- fn4 mentions the spec_defns in its rules,
-- so put the latter first
final_binds :: [DictBind]
-- See Note [From non-recursive to recursive]
final_binds | not (isNilOL dump_dbs)
, not (null spec_defns)
= [recWithDumpedDicts pairs dump_dbs]
| otherwise
= [mkDB $ NonRec b r | (b,r) <- pairs]
++ fromOL dump_dbs
can_float_this_one = exprIsTopLevelBindable rhs (idType fn)
-- exprIsTopLevelBindable: see Note [Care with unlifted bindings]
; if float_all && can_float_this_one then
-- Rather than discard the calls mentioning the bound variables
-- we float this (dictionary) binding along with the others
return ([], body', all_free_uds `snocDictBinds` final_binds)
else
-- No call in final_uds mentions bound variables,
-- so we can just leave the binding here
return (map db_bind final_binds, body', all_free_uds) }
specBind top_lvl env (Rec pairs) do_body
-- Note [Specialising a recursive group]
= do { let (bndrs,rhss) = unzip pairs
; (rec_env, bndrs1) <- case top_lvl of
TopLevel -> return (env, bndrs)
NotTopLevel -> cloneRecBndrsSM env bndrs
; (rhss', rhs_uds) <- mapAndCombineSM (specExpr rec_env) rhss
; (body', body_uds) <- do_body rec_env
; let scope_uds = body_uds `thenUDs` rhs_uds
-- Includes binds and calls arising from rhss
; (bndrs2, spec_defns2, uds2) <- specDefns rec_env scope_uds (bndrs1 `zip` rhss)
-- bndrs2 is like bndrs1, but with RULES added
; (bndrs3, spec_defns3, uds3)
<- if null spec_defns2 -- Common case: no specialisation
then return (bndrs2, [], uds2)
else do { -- Specialisation occurred; do it again
(bndrs3, spec_defns3, uds3)
<- specDefns rec_env uds2 (bndrs2 `zip` rhss)
; return (bndrs3, spec_defns3 ++ spec_defns2, uds3) }
; let (final_uds, dumped_dbs, float_all) = dumpBindUDs bndrs1 uds3
final_bind = recWithDumpedDicts (spec_defns3 ++ zip bndrs3 rhss')
dumped_dbs
; if float_all then
return ([], body', final_uds `snocDictBind` final_bind)
else
return ([db_bind final_bind], body', final_uds) }
---------------------------
specDefns :: SpecEnv
-> UsageDetails -- Info on how it is used in its scope
-> [(OutId,InExpr)] -- The things being bound and their un-processed RHS
-> SpecM ([OutId], -- Original Ids with RULES added
[(OutId,OutExpr)], -- Extra, specialised bindings
UsageDetails) -- Stuff to fling upwards from the specialised versions
-- Specialise a list of bindings (the contents of a Rec), but flowing usages
-- upwards binding by binding. Example: { f = ...g ...; g = ...f .... }
-- Then if the input CallDetails has a specialised call for 'g', whose specialisation
-- in turn generates a specialised call for 'f', we catch that in this one sweep.
-- But not vice versa (it's a fixpoint problem).
specDefns _env uds []
= return ([], [], uds)
specDefns env uds ((bndr,rhs):pairs)
= do { (bndrs1, spec_defns1, uds1) <- specDefns env uds pairs
; (bndr1, spec_defns2, uds2) <- specDefn env uds1 bndr rhs
; return (bndr1 : bndrs1, spec_defns1 ++ spec_defns2, uds2) }
---------------------------
specDefn :: SpecEnv
-> UsageDetails -- Info on how it is used in its scope
-> OutId -> InExpr -- The thing being bound and its un-processed RHS
-> SpecM (Id, -- Original Id with added RULES
[(Id,CoreExpr)], -- Extra, specialised bindings
UsageDetails) -- Stuff to fling upwards from the specialised versions
specDefn env body_uds fn rhs
= do { let (body_uds_without_me, calls_for_me) = callsForMe fn body_uds
rules_for_me = idCoreRules fn
-- Bring into scope the binders from the floated dicts
env_w_dict_bndrs = bringFloatedDictsIntoScope env (ud_binds body_uds)
; (rules, spec_defns, spec_uds) <- specCalls False env_w_dict_bndrs
rules_for_me calls_for_me fn rhs
; return ( fn `addIdSpecialisations` rules
, spec_defns
, body_uds_without_me `thenUDs` spec_uds) }
-- It's important that the `thenUDs` is this way
-- round, because body_uds_without_me may bind
-- dictionaries that are used in calls_for_me passed
-- to specDefn. So the dictionary bindings in
-- spec_uds may mention dictionaries bound in
-- body_uds_without_me
---------------------------
specCalls :: Bool -- True => specialising imported fn
-- False => specialising local fn
-> SpecEnv
-> [CoreRule] -- Existing RULES for the fn
-> [CallInfo]
-> OutId -> InExpr
-> SpecM SpecInfo -- New rules, specialised bindings, and usage details
-- This function checks existing rules, and does not create
-- duplicate ones. So the caller does not need to do this filtering.
-- See 'already_covered'
type SpecInfo = ( [CoreRule] -- Specialisation rules
, [(Id,CoreExpr)] -- Specialised definition
, UsageDetails ) -- Usage details from specialised RHSs
specCalls spec_imp env existing_rules calls_for_me fn rhs
-- The first case is the interesting one
| notNull calls_for_me -- And there are some calls to specialise
&& not (isNeverActive (idInlineActivation fn))
-- Don't specialise NOINLINE things
-- See Note [Auto-specialisation and RULES]
--
-- Don't specialise OPAQUE things, see Note [OPAQUE pragma].
-- Since OPAQUE things are always never-active (see
-- GHC.Parser.PostProcess.mkOpaquePragma) this guard never fires for
-- OPAQUE things.
-- && not (certainlyWillInline (idUnfolding fn)) -- And it's not small
-- See Note [Inline specialisations] for why we do not
-- switch off specialisation for inline functions
= -- pprTrace "specCalls: some" (vcat
-- [ text "function" <+> ppr fn
-- , text "calls:" <+> ppr calls_for_me
-- , text "subst" <+> ppr (se_subst env) ]) $
foldlM spec_call ([], [], emptyUDs) calls_for_me
| otherwise -- No calls or RHS doesn't fit our preconceptions
= warnPprTrace (not (exprIsTrivial rhs) && notNull calls_for_me && not (isClassOpId fn))
"Missed specialisation opportunity for" (ppr fn $$ trace_doc) $
-- isClassOpId: class-op Ids never inline; we specialise them
-- through fireRewriteRules. So don't complain about missed opportunities
-- Note [Specialisation shape]
-- pprTrace "specCalls: none" (ppr fn <+> ppr calls_for_me) $
return ([], [], emptyUDs)
where
trace_doc = sep [ ppr rhs_bndrs, ppr (idInlineActivation fn) ]
fn_type = idType fn
fn_arity = idArity fn
fn_unf = realIdUnfolding fn -- Ignore loop-breaker-ness here
inl_prag = idInlinePragma fn
inl_act = inlinePragmaActivation inl_prag
is_local = isLocalId fn
is_dfun = isDFunId fn
dflags = se_dflags env
this_mod = se_module env
-- Figure out whether the function has an INLINE pragma
-- See Note [Inline specialisations]
(rhs_bndrs, rhs_body) = collectBindersPushingCo rhs
-- See Note [Account for casts in binding]
already_covered :: SpecEnv -> [CoreRule] -> [CoreExpr] -> Bool
already_covered env new_rules args -- Note [Specialisations already covered]
= isJust (specLookupRule env fn args (beginPhase inl_act)
(new_rules ++ existing_rules))
-- Rules: we look both in the new_rules (generated by this invocation
-- of specCalls), and in existing_rules (passed in to specCalls)
-- inl_act: is the activation we are going to put in the new SPEC
-- rule; so we want to see if it is covered by another rule with
-- that same activation.
----------------------------------------------------------
-- Specialise to one particular call pattern
spec_call :: SpecInfo -- Accumulating parameter
-> CallInfo -- Call instance
-> SpecM SpecInfo
spec_call spec_acc@(rules_acc, pairs_acc, uds_acc) _ci@(CI { ci_key = call_args })
= -- See Note [Specialising Calls]
do { let all_call_args | is_dfun = saturating_call_args -- See Note [Specialising DFuns]
| otherwise = call_args
saturating_call_args = call_args ++ map mk_extra_dfun_arg (dropList call_args rhs_bndrs)
mk_extra_dfun_arg bndr | isTyVar bndr = UnspecType
| otherwise = UnspecArg
; ( useful, rhs_env2, leftover_bndrs
, rule_bndrs, rule_lhs_args
, spec_bndrs1, dx_binds, spec_args) <- specHeader env rhs_bndrs all_call_args
-- ; pprTrace "spec_call" (vcat
-- [ text "fun: " <+> ppr fn
-- , text "call info: " <+> ppr _ci
-- , text "useful: " <+> ppr useful
-- , text "rule_bndrs:" <+> ppr rule_bndrs
-- , text "lhs_args: " <+> ppr rule_lhs_args
-- , text "spec_bndrs1:" <+> ppr spec_bndrs1
-- , text "leftover_bndrs:" <+> pprIds leftover_bndrs
-- , text "spec_args: " <+> ppr spec_args
-- , text "dx_binds: " <+> ppr dx_binds
-- , text "rhs_bndrs" <+> ppr rhs_bndrs
-- , text "rhs_body" <+> ppr rhs_body
-- , text "rhs_env2: " <+> ppr (se_subst rhs_env2)
-- , ppr dx_binds ]) $
-- return ()
; if not useful -- No useful specialisation
|| already_covered rhs_env2 rules_acc rule_lhs_args
then return spec_acc
else
do { -- Run the specialiser on the specialised RHS
-- The "1" suffix is before we maybe add the void arg
; (rhs_body', rhs_uds) <- specExpr rhs_env2 rhs_body
-- Add the { d1' = dx1; d2' = dx2 } usage stuff
-- to the rhs_uds; see Note [Specialising Calls]
; let rhs_uds_w_dx = dx_binds `consDictBinds` rhs_uds
spec_rhs_bndrs = spec_bndrs1 ++ leftover_bndrs
(spec_uds, dumped_dbs) = dumpUDs spec_rhs_bndrs rhs_uds_w_dx
spec_rhs1 = mkLams spec_rhs_bndrs $
wrapDictBindsE dumped_dbs rhs_body'
spec_fn_ty1 = exprType spec_rhs1
-- Maybe add a void arg to the specialised function,
-- to avoid unlifted bindings
-- See Note [Specialisations Must Be Lifted]
-- C.f. GHC.Core.Opt.WorkWrap.Utils.needsVoidWorkerArg
add_void_arg = isUnliftedType spec_fn_ty1 && not (isJoinId fn)
(spec_bndrs, spec_rhs, spec_fn_ty)
| add_void_arg = ( voidPrimId : spec_bndrs1
, Lam voidArgId spec_rhs1
, mkVisFunTyMany unboxedUnitTy spec_fn_ty1)
| otherwise = (spec_bndrs1, spec_rhs1, spec_fn_ty1)
join_arity_decr = length rule_lhs_args - length spec_bndrs
--------------------------------------
-- Add a suitable unfolding; see Note [Inline specialisations]
-- The wrap_unf_body applies the original unfolding to the specialised
-- arguments, not forgetting to wrap the dx_binds around the outside (#22358)
simpl_opts = initSimpleOpts dflags
wrap_unf_body body = foldr (Let . db_bind) (body `mkApps` spec_args) dx_binds
spec_unf = specUnfolding simpl_opts spec_bndrs wrap_unf_body
rule_lhs_args fn_unf
--------------------------------------
-- Adding arity information just propagates it a bit faster
-- See Note [Arity decrease] in GHC.Core.Opt.Simplify
-- Copy InlinePragma information from the parent Id.
-- So if f has INLINE[1] so does spec_fn
arity_decr = count isValArg rule_lhs_args - count isId spec_bndrs
spec_inl_prag
| not is_local -- See Note [Specialising imported functions]
, isStrongLoopBreaker (idOccInfo fn) -- in GHC.Core.Opt.OccurAnal
= neverInlinePragma
| otherwise
= inl_prag
spec_fn_info
= vanillaIdInfo `setArityInfo` max 0 (fn_arity - arity_decr)
`setInlinePragInfo` spec_inl_prag
`setUnfoldingInfo` spec_unf
-- Compute the IdDetails of the specialise Id
-- See Note [Transfer IdDetails during specialisation]
spec_fn_details
= case idDetails fn of
JoinId join_arity _ -> JoinId (join_arity - join_arity_decr) Nothing
DFunId is_nt -> DFunId is_nt
_ -> VanillaId
; spec_fn <- newSpecIdSM (idName fn) spec_fn_ty spec_fn_details spec_fn_info
; let
-- The rule to put in the function's specialisation is:
-- forall x @b d1' d2'.
-- f x @T1 @b @T2 d1' d2' = f1 x @b
-- See Note [Specialising Calls]
herald | spec_imp = -- Specialising imported fn
text "SPEC/" <> ppr this_mod
| otherwise = -- Specialising local fn
text "SPEC"
spec_rule = mkSpecRule dflags this_mod True inl_act
herald fn rule_bndrs rule_lhs_args
(mkVarApps (Var spec_fn) spec_bndrs)
spec_f_w_arity = spec_fn
_rule_trace_doc = vcat [ ppr fn <+> dcolon <+> ppr fn_type
, ppr spec_fn <+> dcolon <+> ppr spec_fn_ty
, ppr rhs_bndrs, ppr call_args
, ppr spec_rule
]
; -- pprTrace "spec_call: rule" _rule_trace_doc
return ( spec_rule : rules_acc
, (spec_f_w_arity, spec_rhs) : pairs_acc
, spec_uds `thenUDs` uds_acc
) } }
-- Convenience function for invoking lookupRule from Specialise
-- The SpecEnv's InScopeSet should include all the Vars in the [CoreExpr]
specLookupRule :: SpecEnv -> Id -> [CoreExpr]
-> CompilerPhase -- Look up rules as if we were in this phase
-> [CoreRule] -> Maybe (CoreRule, CoreExpr)
specLookupRule env fn args phase rules
= lookupRule ropts in_scope_env is_active fn args rules
where
dflags = se_dflags env
in_scope = getSubstInScope (se_subst env)
in_scope_env = ISE in_scope (whenActiveUnfoldingFun is_active)
ropts = initRuleOpts dflags
is_active = isActive phase
{- Note [Specialising DFuns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DFuns have a special sort of unfolding (DFunUnfolding), and it is
hard to specialise a DFunUnfolding to give another DFunUnfolding
unless the DFun is fully applied (#18120). So, in the case of DFunIds
we simply extend the CallKey with trailing UnspecTypes/UnspecArgs,
so that we'll generate a rule that completely saturates the DFun.
There is an ASSERT that checks this, in the DFunUnfolding case of
GHC.Core.Unfold.Make.specUnfolding.
Note [Transfer IdDetails during specialisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When specialising a function, `newSpecIdSM` comes up with a fresh Id the
specialised RHS will be bound to. It is critical that we get the `IdDetails` of
the specialised Id correct:
* JoinId: We want the specialised Id to be a join point, too. But
we have to carefully adjust the arity
* DFunId: It is crucial that we also make the new Id a DFunId.
- First, because it obviously /is/ a DFun, having a DFunUnfolding and
all that; see Note [Specialising DFuns]
- Second, DFuns get very delicate special treatment in the demand analyser;
see GHC.Core.Opt.DmdAnal.enterDFun. If the specialised function isn't
also a DFunId, this special treatment doesn't happen, so the demand
analyser makes a too-strict DFun, and we get an infinite loop. See Note
[Do not strictify a DFun's parameter dictionaries] in GHC.Core.Opt.DmdAnal.
#22549 describes the loop, and (lower down) a case where a /specialised/
DFun caused a loop.
* WorkerLikeId: Introduced by WW, so after Specialise. Nevertheless, they come
up when specialising imports. We must keep them as VanillaIds because WW
will detect them as WorkerLikeIds again. That is, unless specialisation
allows unboxing of all previous CBV args, in which case sticking to
VanillaIds was the only correct choice to begin with.
* RecSelId, DataCon*Id, ClassOpId, PrimOpId, FCallId, CoVarId, TickBoxId:
Never specialised.
Note [Specialisation Must Preserve Sharing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a function:
f :: forall a. Eq a => a -> blah
f =
if expensive
then f1
else f2
As written, all calls to 'f' will share 'expensive'. But if we specialise 'f'
at 'Int', eg:
$sfInt = SUBST[a->Int,dict->dEqInt] (if expensive then f1 else f2)
RULE "SPEC f"
forall (d :: Eq Int).
f Int _ = $sfIntf
We've now lost sharing between 'f' and '$sfInt' for 'expensive'. Yikes!
To avoid this, we only generate specialisations for functions whose arity is
enough to bind all of the arguments we need to specialise. This ensures our
specialised functions don't do any work before receiving all of their dicts,
and thus avoids the 'f' case above.
Note [Specialisations Must Be Lifted]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a function 'f':
f = forall a. Eq a => Array# a
used like
case x of
True -> ...f @Int dEqInt...
False -> 0
Naively, we might generate an (expensive) specialisation
$sfInt :: Array# Int
even in the case that @x = False@! Instead, we add a dummy 'Void#' argument to
the specialisation '$sfInt' ($sfInt :: Void# -> Array# Int) in order to
preserve laziness.
Note [Care with unlifted bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#22998)
f x = let x::ByteArray# = <some literal>
n::Natural = NB x
in wombat @192827 (n |> co)
where
co :: Natural ~ KnownNat 192827
wombat :: forall (n:Nat). KnownNat n => blah
Left to itself, the specialiser would float the bindings for `x` and `n` to top
level, so we can specialise `wombat`. But we can't have a top-level ByteArray#
(see Note [Core letrec invariant] in GHC.Core). Boo.
This is pretty exotic, so we take a simple way out: in specBind (the NonRec
case) do not float the binding itself unless it satisfies exprIsTopLevelBindable.
This is conservative: maybe the RHS of `x` has a free var that would stop it
floating to top level anyway; but that is hard to spot (since we don't know what
the non-top-level in-scope binders are) and rare (since the binding must satisfy
Note [Core let-can-float invariant] in GHC.Core).
Note [Specialising Calls]
~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have a function with a complicated type:
f :: forall a b c. Int -> Eq a => Show b => c -> Blah
f @a @b @c i dEqA dShowA x = blah
and suppose it is called at:
f 7 @T1 @T2 @T3 dEqT1 ($dfShow dShowT2) t3
This call is described as a 'CallInfo' whose 'ci_key' is:
[ SpecType T1, SpecType T2, UnspecType, UnspecArg, SpecDict dEqT1
, SpecDict ($dfShow dShowT2), UnspecArg ]
Why are 'a' and 'b' identified as 'SpecType', while 'c' is 'UnspecType'?
Because we must specialise the function on type variables that appear
free in its *dictionary* arguments; but not on type variables that do not
appear in any dictionaries, i.e. are fully polymorphic.
Because this call has dictionaries applied, we'd like to specialise
the call on any type argument that appears free in those dictionaries.
In this case, those are [a :-> T1, b :-> T2].
We also need to substitute the dictionary binders with their
specialised dictionaries. The simplest substitution would be
[dEqA :-> dEqT1, dShowA :-> $dfShow dShowT2], but this duplicates
work, since `$dfShow dShowT2` is a function application. Therefore, we
also want to *float the dictionary out* (via bindAuxiliaryDict),
creating a new dict binding
dShow1 = $dfShow dShowT2
and the substitution [dEqA :-> dEqT1, dShowA :-> dShow1].
With the substitutions in hand, we can generate a specialised function:
$sf :: forall c. Int -> c -> Blah
$sf = SUBST[a :-> T1, b :-> T2, dEqA :-> dEqT1, dShowA :-> dShow1] (\@c i x -> blah)
Note that the substitution is applied to the whole thing. This is
convenient, but just slightly fragile. Notably:
* There had better be no name clashes in a/b/c
We must construct a rewrite rule:
RULE "SPEC f @T1 @T2 _"
forall (@c :: Type) (i :: Int) (d1 :: Eq T1) (d2 :: Show T2).
f @T1 @T2 @c i d1 d2 = $sf @c i
In the rule, d1 and d2 are just wildcards, not used in the RHS. Note
additionally that 'x' isn't captured by this rule --- we bind only
enough etas in order to capture all of the *specialised* arguments.
Note [Drop dead args from specialisations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When specialising a function, it’s possible some of the arguments may
actually be dead. For example, consider:
f :: forall a. () -> Show a => a -> String
f x y = show y ++ "!"
We might generate the following CallInfo for `f @Int`:
[SpecType Int, UnspecArg, SpecDict $dShowInt, UnspecArg]
Normally we’d include both the x and y arguments in the
specialisation, since we’re not specialising on either of them. But
that’s silly, since x is actually unused! So we might as well drop it
in the specialisation:
$sf :: Int -> String
$sf y = show y ++ "!"
{-# RULE "SPEC f @Int" forall x. f @Int x $dShow = $sf #-}
This doesn’t save us much, since the arg would be removed later by
worker/wrapper, anyway, but it’s easy to do.
Wrinkles
* Note that we only drop dead arguments if:
1. We don’t specialise on them.
2. They come before an argument we do specialise on.
Doing the latter would require eta-expanding the RULE, which could
make it match less often, so it’s not worth it. Doing the former could
be more useful --- it would stop us from generating pointless
specialisations --- but it’s more involved to implement and unclear if
it actually provides much benefit in practice.
* If the function has a stable unfolding, specHeader has to come up with
arguments to pass to that stable unfolding, when building the stable
unfolding of the specialised function: this is the last field in specHeader's
big result tuple.
The right thing to do is to produce a LitRubbish; it should rapidly
disappear. Rather like GHC.Core.Opt.WorkWrap.Utils.mk_absent_let.
Note [Specialisation modulo dictionary selectors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In #19644, we discovered that the ClassOp/DFun rules from
Note [ClassOp/DFun selection] inhibit transitive specialisation.
Example, inspired by T17966:
class C a where
m :: Show b => a -> b -> String
dummy :: a -> () -- Force a datatype dictionary representation
instance C Int where
m a b = show a ++ show b
dummy _ = ()
f :: (C a, Show b) => a -> b -> String
f a b = m a b ++ "!"
{-# INLINABLE[0] f #-}
main = putStrLn (f (42::Int) (True::Bool))
Here, we specialise `f` at `Int` and `Bool`, giving
$dC = $fCInt
$dShow = GHC.Show.$fShowBool
$sf (a::Int) (b::Bool) =
... (m @Int $dC @Bool $dShow a b) ...
Here `m` is just a DictSel, so there is (apparently) nothing to specialise!
However, the next Simplifier run will expose the rewritten instance method:
... $fCInt_$cm @Bool $fShowBool a b ...
where $fCInt_$cm is the instance method for `m` in `instance C Int`:
$fCInt_$cm :: forall b. Show b => Int -> b -> String
$fCInt_$cm b d x y = show @Int $dShowInt x ++ show @b d y
We want to specialise this! How? By doing the method-selection rewrite in
the Specialiser. Hence
1. In the App case of 'specExpr', try to apply the ClassOp/DFun rule on the
head of the application, repeatedly, via 'fireRewriteRules'.
2. Attach an unfolding to freshly-bound dictionary ids such as `$dC` and
`$dShow` in `bindAuxiliaryDict`, so that we can exploit the unfolding
in 'fireRewriteRules' to do the ClassOp/DFun rewrite.
NB: Without (2), (1) would be pointless, because 'lookupRule' wouldn't be able
to look into the RHS of `$dC` to see the DFun.
Note [Zap occ info in rule binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we generate a specialisation RULE, we need to drop occurrence
info on the binders. If we don’t, things go wrong when we specialise a
function like
f :: forall a. () -> Show a => a -> String
f x y = show y ++ "!"
since we’ll generate a RULE like
RULE "SPEC f @Int" forall x [Occ=Dead].
f @Int x $dShow = $sf
and Core Lint complains, even though x only appears on the LHS (due to
Note [Drop dead args from specialisations]).
Why is that a Lint error? Because the arguments on the LHS of a rule
are syntactically expressions, not patterns, so Lint treats the
appearance of x as a use rather than a binding. Fortunately, the
solution is simple: we just make sure to zap the occ info before
using ids as wildcard binders in a rule.
Note [Account for casts in binding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f :: Eq a => a -> IO ()
{-# INLINABLE f
StableUnf = (/\a \(d:Eq a) (x:a). blah) |> g
#-}
f = ...
In f's stable unfolding we have done some modest simplification which
has pushed the cast to the outside. (I wonder if this is the Right
Thing, but it's what happens now; see GHC.Core.Opt.Simplify.Utils Note [Casts and
lambdas].) Now that stable unfolding must be specialised, so we want
to push the cast back inside. It would be terrible if the cast
defeated specialisation! Hence the use of collectBindersPushingCo.
Note [Evidence foralls]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose (#12212) that we are specialising
f :: forall a b. (Num a, F a ~ F b) => blah
with a=b=Int. Then the RULE will be something like
RULE forall (d:Num Int) (g :: F Int ~ F Int).
f Int Int d g = f_spec
But both varToCoreExpr (when constructing the LHS args), and the
simplifier (when simplifying the LHS args), will transform to
RULE forall (d:Num Int) (g :: F Int ~ F Int).
f Int Int d <F Int> = f_spec
by replacing g with Refl. So now 'g' is unbound, which results in a later
crash. So we use Refl right off the bat, and do not forall-quantify 'g':
* varToCoreExpr generates a Refl
* exprsFreeIdsList returns the Ids bound by the args,
which won't include g
You might wonder if this will match as often, but the simplifier replaces
complicated Refl coercions with Refl pretty aggressively.
Note [Orphans and auto-generated rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we specialise an INLINABLE function, or when we have
-fspecialise-aggressively, we auto-generate RULES that are orphans.
We don't want to warn about these, or we'd generate a lot of warnings.
Thus, we only warn about user-specified orphan rules.
Indeed, we don't even treat the module as an orphan module if it has
auto-generated *rule* orphans. Orphan modules are read every time we
compile, so they are pretty obtrusive and slow down every compilation,
even non-optimised ones. (Reason: for type class instances it's a
type correctness issue.) But specialisation rules are strictly for
*optimisation* only so it's fine not to read the interface.
What this means is that a SPEC rules from auto-specialisation in
module M will be used in other modules only if M.hi has been read for
some other reason, which is actually pretty likely.
Note [From non-recursive to recursive]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even in the non-recursive case, if any dict-binds depend on 'fn' we might
have built a recursive knot
f a d x = <blah>
MkUD { ud_binds = NonRec d7 (MkD ..f..)
, ud_calls = ...(f T d7)... }
The we generate
Rec { fs x = <blah>[T/a, d7/d]
f a d x = <blah>
RULE f T _ = fs
d7 = ...f... }
Here the recursion is only through the RULE.
However we definitely should /not/ make the Rec in this wildly common
case:
d = ...
MkUD { ud_binds = NonRec d7 (...d...)
, ud_calls = ...(f T d7)... }
Here we want simply to add d to the floats, giving
MkUD { ud_binds = NonRec d (...)
NonRec d7 (...d...)
, ud_calls = ...(f T d7)... }
In general, we need only make this Rec if
- there are some specialisations (spec_binds non-empty)
- there are some dict_binds that depend on f (dump_dbs non-empty)
Note [Avoiding loops (DFuns)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When specialising /dictionary functions/ we must be very careful to
avoid building loops. Here is an example that bit us badly, on
several distinct occasions.
Here is one: #3591
class Eq a => C a
instance Eq [a] => C [a]
This translates to
dfun :: Eq [a] -> C [a]
dfun a d = MkD a d (meth d)
d4 :: Eq [T] = <blah>
d2 :: C [T] = dfun T d4
d1 :: Eq [T] = $p1 d2
d3 :: C [T] = dfun T d1
None of these definitions is recursive. What happened was that we
generated a specialisation:
RULE forall d. dfun T d = dT :: C [T]
dT = (MkD a d (meth d)) [T/a, d1/d]
= MkD T d1 (meth d1)
But now we use the RULE on the RHS of d2, to get
d2 = dT = MkD d1 (meth d1)
d1 = $p1 d2
and now d1 is bottom! The problem is that when specialising 'dfun' we
should first dump "below" the binding all floated dictionary bindings
that mention 'dfun' itself. So d2 and d3 (and hence d1) must be
placed below 'dfun', and thus unavailable to it when specialising
'dfun'. That in turn means that the call (dfun T d1) must be
discarded. On the other hand, the call (dfun T d4) is fine, assuming
d4 doesn't mention dfun.
Solution:
Discard all calls that mention dictionaries that depend
(directly or indirectly) on the dfun we are specialising.
This is done by 'filterCalls'
Note [Avoiding loops (non-DFuns)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The whole Note [Avoiding loops (DFuns)] things applies only to DFuns.
It's important /not/ to apply filterCalls to non-DFuns. For example:
class C a where { foo,bar :: [a] -> [a] }
instance C Int where
foo x = r_bar x
bar xs = reverse xs
r_bar :: C a => [a] -> [a]
r_bar xs = bar (xs ++ xs)
That translates to:
r_bar a (c::C a) (xs::[a]) = bar a d (xs ++ xs)
Rec { $fCInt :: C Int = MkC foo_help reverse
foo_help (xs::[Int]) = r_bar Int $fCInt xs }
The call (r_bar $fCInt) mentions $fCInt,
which mentions foo_help,
which mentions r_bar
But we DO want to specialise r_bar at Int:
Rec { $fCInt :: C Int = MkC foo_help reverse
foo_help (xs::[Int]) = r_bar Int $fCInt xs
r_bar a (c::C a) (xs::[a]) = bar a d (xs ++ xs)
RULE r_bar Int _ = r_bar_Int
r_bar_Int xs = bar Int $fCInt (xs ++ xs)
}
Note that, because of its RULE, r_bar joins the recursive
group. (In this case it'll unravel a short moment later.)
See test simplCore/should_compile/T19599a.
Another example is #19599, which looked like this:
class (Show a, Enum a) => MyShow a where
myShow :: a -> String
myShow_impl :: MyShow a => a -> String
foo :: Int -> String
foo = myShow_impl @Int $fMyShowInt
Rec { $fMyShowInt = MkMyShowD $fEnumInt $fShowInt $cmyShow
; $cmyShow = myShow_impl @Int $fMyShowInt }
Here, we really do want to specialise `myShow_impl @Int $fMyShowInt`.
Note [Specialising a recursive group]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
let rec { f x = ...g x'...
; g y = ...f y'.... }
in f 'a'
Here we specialise 'f' at Char; but that is very likely to lead to
a specialisation of 'g' at Char. We must do the latter, else the
whole point of specialisation is lost.
But we do not want to keep iterating to a fixpoint, because in the
presence of polymorphic recursion we might generate an infinite number
of specialisations.
So we use the following heuristic:
* Arrange the rec block in dependency order, so far as possible
(the occurrence analyser already does this)
* Specialise it much like a sequence of lets
* Then go through the block a second time, feeding call-info from
the RHSs back in the bottom, as it were
In effect, the ordering maxmimises the effectiveness of each sweep,
and we do just two sweeps. This should catch almost every case of
monomorphic recursion -- the exception could be a very knotted-up
recursion with multiple cycles tied up together.
This plan is implemented in the Rec case of specBindItself.
Note [Specialisations already covered]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We obviously don't want to generate two specialisations for the same
argument pattern. There are two wrinkles
1. We do the already-covered test in specDefn, not when we generate
the CallInfo in mkCallUDs. We used to test in the latter place, but
we now iterate the specialiser somewhat, and the Id at the call site
might therefore not have all the RULES that we can see in specDefn
2. What about two specialisations where the second is an *instance*
of the first? If the more specific one shows up first, we'll generate
specialisations for both. If the *less* specific one shows up first,
we *don't* currently generate a specialisation for the more specific
one. (See the call to lookupRule in already_covered.) Reasons:
(a) lookupRule doesn't say which matches are exact (bad reason)
(b) if the earlier specialisation is user-provided, it's
far from clear that we should auto-specialise further
Note [Auto-specialisation and RULES]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
g :: Num a => a -> a
g = ...
f :: (Int -> Int) -> Int
f w = ...
{-# RULE f g = 0 #-}
Suppose that auto-specialisation makes a specialised version of
g::Int->Int. That version won't appear in the LHS of the RULE for f.
So if the specialisation rule fires too early, the rule for f may
never fire.
It might be possible to add new rules, to "complete" the rewrite system.
Thus when adding
RULE forall d. g Int d = g_spec
also add
RULE f g_spec = 0
But that's a bit complicated. For now we ask the programmer's help,
by *copying the INLINE activation pragma* to the auto-specialised
rule. So if g says {-# NOINLINE[2] g #-}, then the auto-spec rule
will also not be active until phase 2. And that's what programmers
should jolly well do anyway, even aside from specialisation, to ensure
that g doesn't inline too early.
This in turn means that the RULE would never fire for a NOINLINE
thing so not much point in generating a specialisation at all.
Note [Specialisation shape]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We only specialise a function if it has visible top-level lambdas
corresponding to its overloading. E.g. if
f :: forall a. Eq a => ....
then its body must look like
f = /\a. \d. ...
Reason: when specialising the body for a call (f ty dexp), we want to
substitute dexp for d, and pick up specialised calls in the body of f.
We do allow casts, however; see Note [Account for casts in binding].
This doesn't always work. One example I came across was this:
newtype Gen a = MkGen{ unGen :: Int -> a }
choose :: Eq a => a -> Gen a
choose n = MkGen (\r -> n)
oneof = choose (1::Int)
It's a silly example, but we get
choose = /\a. g `cast` co
where choose doesn't have any dict arguments. Thus far I have not
tried to fix this (wait till there's a real example).
Mind you, then 'choose' will be inlined (since RHS is trivial) so
it doesn't matter. This comes up with single-method classes
class C a where { op :: a -> a }
instance C a => C [a] where ....
==>
$fCList :: C a => C [a]
$fCList = $copList |> (...coercion>...)
....(uses of $fCList at particular types)...
So we suppress the WARN if the rhs is trivial.
Note [Inline specialisations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is what we do with the InlinePragma of the original function
* Activation/RuleMatchInfo: both inherited from the original function
* InlineSpec: inherit from original function
* Unfolding: transfer a StableUnfolding iff it is UnfWhen
See GHC.Core.Unfold.Make.specUnfolding
and its Note [Specialising unfoldings]
InlineSpec: you might wonder why we specialise INLINE functions at all.
After all they should be inlined, right? Two reasons:
* Even INLINE functions are sometimes not inlined, when they aren't
applied to interesting arguments. But perhaps the type arguments
alone are enough to specialise (even though the args are too boring
to trigger inlining), and it's certainly better to call the
specialised version.
* The RHS of an INLINE function might call another overloaded function,
and we'd like to generate a specialised version of that function too.
This actually happens a lot. Consider
replicateM_ :: (Monad m) => Int -> m a -> m ()
{-# INLINABLE replicateM_ #-}
replicateM_ d x ma = ...
The strictness analyser may transform to
replicateM_ :: (Monad m) => Int -> m a -> m ()
{-# INLINE replicateM_ #-}
replicateM_ d x ma = case x of I# x' -> $wreplicateM_ d x' ma
$wreplicateM_ :: (Monad m) => Int# -> m a -> m ()
{-# INLINABLE $wreplicateM_ #-}
$wreplicateM_ = ...
Now an importing module has a specialised call to replicateM_, say
(replicateM_ dMonadIO). We certainly want to specialise $wreplicateM_!
This particular example had a huge effect on the call to replicateM_
in nofib/shootout/n-body.
-}
{- *********************************************************************
* *
SpecArg, and specHeader
* *
********************************************************************* -}
-- | An argument that we might want to specialise.
-- See Note [Specialising Calls] for the nitty gritty details.
data SpecArg
=
-- | Type arguments that should be specialised, due to appearing
-- free in the type of a 'SpecDict'.
SpecType Type
-- | Type arguments that should remain polymorphic.
| UnspecType
-- | Dictionaries that should be specialised. mkCallUDs ensures
-- that only "interesting" dictionary arguments get a SpecDict;
-- see Note [Interesting dictionary arguments]
| SpecDict DictExpr
-- | Value arguments that should not be specialised.
| UnspecArg
instance Outputable SpecArg where
ppr (SpecType t) = text "SpecType" <+> ppr t
ppr UnspecType = text "UnspecType"
ppr (SpecDict d) = text "SpecDict" <+> ppr d
ppr UnspecArg = text "UnspecArg"
specArgFreeIds :: SpecArg -> IdSet
specArgFreeIds (SpecType {}) = emptyVarSet
specArgFreeIds (SpecDict dx) = exprFreeIds dx
specArgFreeIds UnspecType = emptyVarSet
specArgFreeIds UnspecArg = emptyVarSet
specArgFreeVars :: SpecArg -> VarSet
specArgFreeVars (SpecType ty) = tyCoVarsOfType ty
specArgFreeVars (SpecDict dx) = exprFreeVars dx
specArgFreeVars UnspecType = emptyVarSet
specArgFreeVars UnspecArg = emptyVarSet
isSpecDict :: SpecArg -> Bool
isSpecDict (SpecDict {}) = True
isSpecDict _ = False
-- | Given binders from an original function 'f', and the 'SpecArg's
-- corresponding to its usage, compute everything necessary to build
-- a specialisation.
--
-- We will use the running example from Note [Specialising Calls]:
--
-- f :: forall a b c. Int -> Eq a => Show b => c -> Blah
-- f @a @b @c i dEqA dShowB x = blah
--
-- Suppose we decide to specialise it at the following pattern:
--
-- [ SpecType T1, SpecType T2, UnspecType, UnspecArg
-- , SpecDict dEqT1, SpecDict ($dfShow dShowT2), UnspecArg ]
--
-- We'd eventually like to build the RULE
--
-- RULE "SPEC f @T1 @T2 _"
-- forall (@c :: Type) (i :: Int) (d1 :: Eq T1) (d2 :: Show T2).
-- f @T1 @T2 @c i d1 d2 = $sf @c i
--
-- and the specialisation '$sf'
--
-- $sf :: forall c. Int -> c -> Blah
-- $sf = SUBST[a :-> T1, b :-> T2, dEqA :-> dEqT1, dShowB :-> dShow1] (\@c i x -> blah)
--
-- where dShow1 is a floated binding created by bindAuxiliaryDict.
--
-- The cases for 'specHeader' below are presented in the same order as this
-- running example. The result of 'specHeader' for this example is as follows:
--
-- ( -- Returned arguments
-- env + [a :-> T1, b :-> T2, dEqA :-> dEqT1, dShowB :-> dShow1]
-- , [x]
--
-- -- RULE helpers
-- , [c, i, d1, d2]
-- , [T1, T2, c, i, d1, d2]
--
-- -- Specialised function helpers
-- , [c, i, x]
-- , [dShow1 = $dfShow dShowT2]
-- , [T1, T2, c, i, dEqT1, dShow1]
-- )
specHeader
:: SpecEnv
-> [InBndr] -- The binders from the original function 'f'
-> [SpecArg] -- From the CallInfo
-> SpecM ( Bool -- True <=> some useful specialisation happened
-- Not the same as any (isSpecDict args) because
-- the args might be longer than bndrs
-- Returned arguments
, SpecEnv -- Substitution to apply to the body of 'f'
, [OutBndr] -- Leftover binders from the original function 'f'
-- that don’t have a corresponding SpecArg
-- RULE helpers
, [OutBndr] -- Binders for the RULE
, [OutExpr] -- Args for the LHS of the rule
-- Specialised function helpers
, [OutBndr] -- Binders for $sf
, [DictBind] -- Auxiliary dictionary bindings
, [OutExpr] -- Specialised arguments for unfolding
-- Same length as "Args for LHS of rule"
)
-- We want to specialise on type 'T1', and so we must construct a substitution
-- 'a->T1', as well as a LHS argument for the resulting RULE and unfolding
-- details.
specHeader env (bndr : bndrs) (SpecType ty : args)
= do { -- Find qvars, the type variables to add to the binders for the rule
-- Namely those free in `ty` that aren't in scope
-- See (MP2) in Note [Specialising polymorphic dictionaries]
let in_scope = Core.getSubstInScope (se_subst env)
qvars = scopedSort $
filterOut (`elemInScopeSet` in_scope) $
tyCoVarsOfTypeList ty
(env1, qvars') = substBndrs env qvars
ty' = substTy env1 ty
env2 = extendTvSubst env1 bndr ty'
; (useful, env3, leftover_bndrs, rule_bs, rule_es, bs', dx, spec_args)
<- specHeader env2 bndrs args
; pure ( useful
, env3
, leftover_bndrs
, qvars' ++ rule_bs
, Type ty' : rule_es
, qvars' ++ bs'
, dx
, Type ty' : spec_args
)
}
-- Next we have a type that we don't want to specialise. We need to perform
-- a substitution on it (in case the type refers to 'a'). Additionally, we need
-- to produce a binder, LHS argument and RHS argument for the resulting rule,
-- /and/ a binder for the specialised body.
specHeader env (bndr : bndrs) (UnspecType : args)
= do { let (env', bndr') = substBndr env bndr
; (useful, env'', leftover_bndrs, rule_bs, rule_es, bs', dx, spec_args)
<- specHeader env' bndrs args
; pure ( useful
, env''
, leftover_bndrs
, bndr' : rule_bs
, varToCoreExpr bndr' : rule_es
, bndr' : bs'
, dx
, varToCoreExpr bndr' : spec_args
)
}
-- Next we want to specialise the 'Eq a' dict away. We need to construct
-- a wildcard binder to match the dictionary (See Note [Specialising Calls] for
-- the nitty-gritty), as a LHS rule and unfolding details.
specHeader env (bndr : bndrs) (SpecDict d : args)
| not (isDeadBinder bndr)
, allVarSet (`elemInScopeSet` in_scope) (exprFreeVars d)
-- See Note [Weird special case for SpecDict]
= do { (env1, bndr') <- newDictBndr env bndr -- See Note [Zap occ info in rule binders]
; let (env2, dx_bind, spec_dict) = bindAuxiliaryDict env1 bndr bndr' d
; (_, env3, leftover_bndrs, rule_bs, rule_es, bs', dx, spec_args)
<- specHeader env2 bndrs args
; pure ( True -- Ha! A useful specialisation!
, env3
, leftover_bndrs
-- See Note [Evidence foralls]
, exprFreeIdsList (varToCoreExpr bndr') ++ rule_bs
, varToCoreExpr bndr' : rule_es
, bs'
, maybeToList dx_bind ++ dx
, spec_dict : spec_args
)
}
where
in_scope = Core.getSubstInScope (se_subst env)
-- Finally, we don't want to specialise on this argument 'i':
-- - It's an UnSpecArg, or
-- - It's a dead dictionary
-- We need to produce a binder, LHS and RHS argument for the RULE, and
-- a binder for the specialised body.
--
-- NB: Calls to 'specHeader' will trim off any trailing 'UnspecArg's, which is
-- why 'i' doesn't appear in our RULE above. But we have no guarantee that
-- there aren't 'UnspecArg's which come /before/ all of the dictionaries, so
-- this case must be here.
specHeader env (bndr : bndrs) (_ : args)
-- The "_" can be UnSpecArg, or SpecDict where the bndr is dead
= do { -- see Note [Zap occ info in rule binders]
let (env', bndr') = substBndr env (zapIdOccInfo bndr)
; (useful, env'', leftover_bndrs, rule_bs, rule_es, bs', dx, spec_args)
<- specHeader env' bndrs args
; let bndr_ty = idType bndr'
-- See Note [Drop dead args from specialisations]
-- C.f. GHC.Core.Opt.WorkWrap.Utils.mk_absent_let
(mb_spec_bndr, spec_arg)
| isDeadBinder bndr
, Just lit_expr <- mkLitRubbish bndr_ty
= (Nothing, lit_expr)
| otherwise
= (Just bndr', varToCoreExpr bndr')
; pure ( useful
, env''
, leftover_bndrs
, bndr' : rule_bs
, varToCoreExpr bndr' : rule_es
, case mb_spec_bndr of
Just b' -> b' : bs'
Nothing -> bs'
, dx
, spec_arg : spec_args
)
}
-- If we run out of binders, stop immediately
-- See Note [Specialisation Must Preserve Sharing]
specHeader env [] _ = pure (False, env, [], [], [], [], [], [])
-- Return all remaining binders from the original function. These have the
-- invariant that they should all correspond to unspecialised arguments, so
-- it's safe to stop processing at this point.
specHeader env bndrs []
= pure (False, env', bndrs', [], [], [], [], [])
where
(env', bndrs') = substBndrs env bndrs
-- | Binds a dictionary argument to a fresh name, to preserve sharing
bindAuxiliaryDict
:: SpecEnv
-> InId -> OutId -> OutExpr -- Original dict binder, and the witnessing expression
-> ( SpecEnv -- Substitutes for orig_dict_id
, Maybe DictBind -- Auxiliary dict binding, if any
, OutExpr) -- Witnessing expression (always trivial)
bindAuxiliaryDict env@(SE { se_subst = subst })
orig_dict_id fresh_dict_id dict_expr
-- If the dictionary argument is trivial,
-- don’t bother creating a new dict binding; just substitute
| exprIsTrivial dict_expr
= let env' = env { se_subst = Core.extendSubst subst orig_dict_id dict_expr }
in -- pprTrace "bindAuxiliaryDict:trivial" (ppr orig_dict_id <+> ppr dict_id) $
(env', Nothing, dict_expr)
| otherwise -- Non-trivial dictionary arg; make an auxiliary binding
= let fresh_dict_id' = fresh_dict_id `addDictUnfolding` dict_expr
dict_bind = mkDB (NonRec fresh_dict_id' dict_expr)
env' = env { se_subst = Core.extendSubst subst orig_dict_id (Var fresh_dict_id')
`Core.extendSubstInScope` fresh_dict_id' }
-- Ensure the new unfolding is in the in-scope set
in -- pprTrace "bindAuxiliaryDict:non-trivial" (ppr orig_dict_id <+> ppr fresh_dict_id') $
(env', Just dict_bind, Var fresh_dict_id')
addDictUnfolding :: Id -> CoreExpr -> Id
-- Add unfolding for freshly-bound Ids: see Note [Make the new dictionaries interesting]
-- and Note [Specialisation modulo dictionary selectors]
addDictUnfolding id rhs
= id `setIdUnfolding` mkSimpleUnfolding defaultUnfoldingOpts rhs
{-
Note [Make the new dictionaries interesting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Important! We're going to substitute dx_id1 for d
and we want it to look "interesting", else we won't gather *any*
consequential calls. E.g.
f d = ...g d....
If we specialise f for a call (f (dfun dNumInt)), we'll get
a consequent call (g d') with an auxiliary definition
d' = df dNumInt
We want that consequent call to look interesting; so we add an unfolding
in the dictionary Id.
-}
{- *********************************************************************
* *
UsageDetails and suchlike
* *
********************************************************************* -}
data UsageDetails
= MkUD { ud_binds :: !FloatedDictBinds
, ud_calls :: !CallDetails }
-- INVARIANT: suppose bs = fdb_bndrs ud_binds
-- Then 'calls' may *mention* 'bs',
-- but there should be no calls *for* bs
data FloatedDictBinds -- See Note [Floated dictionary bindings]
= FDB { fdb_binds :: !(OrdList DictBind)
-- The order is important;
-- in ds1 `appOL` ds2, bindings in ds2 can depend on those in ds1
, fdb_bndrs :: !IdSet
} -- ^ The binders of 'fdb_binds'.
-- Caches a superset of the expression
-- `mkVarSet (bindersOfDictBinds fdb_binds))`
-- for later addition to an InScopeSet
-- | A 'DictBind' is a binding along with a cached set containing its free
-- variables (both type variables and dictionaries). We need this set
-- in splitDictBinds, when filtering bindings to decide which are
-- captured by a binder
data DictBind = DB { db_bind :: CoreBind, db_fvs :: VarSet }
bindersOfDictBind :: DictBind -> [Id]
bindersOfDictBind = bindersOf . db_bind
bindersOfDictBinds :: Foldable f => f DictBind -> [Id]
bindersOfDictBinds = bindersOfBinds . foldr ((:) . db_bind) []
{- Note [Floated dictionary bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We float out dictionary bindings for the reasons described under
"Dictionary floating" above. But not /just/ dictionary bindings.
Consider
f :: Eq a => blah
f a d = rhs
$c== :: T -> T -> Bool
$c== x y = ...
$df :: Eq T
$df = Eq $c== ...
gurgle = ...(f @T $df)...
We gather the call info for (f @T $df), and we don't want to drop it
when we come across the binding for $df. So we add $df to the floats
and continue. But then we have to add $c== to the floats, and so on.
These all float above the binding for 'f', and now we can
successfully specialise 'f'.
So the DictBinds in (ud_binds :: OrdList DictBind) may contain
non-dictionary bindings too.
Note [Specialising polymorphic dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note June 2023: This has proved to be quite a tricky optimisation to get right
see (#23469, #23109, #21229, #23445) so it is now guarded by a flag
`-fpolymorphic-specialisation`.
Consider
class M a where { foo :: a -> Int }
instance M (ST s) where ...
-- dMST :: forall s. M (ST s)
wimwam :: forall a. M a => a -> Int
wimwam = /\a \(d::M a). body
f :: ST s -> Int
f = /\s \(x::ST s). wimwam @(ST s) (dMST @s) dx + 1
We'd like to specialise wimwam at (ST s), thus
$swimwam :: forall s. ST s -> Int
$swimwam = /\s. body[ST s/a, (dMST @s)/d]
RULE forall s (d :: M (ST s)).
wimwam @(ST s) d = $swimwam @s
Here are the moving parts:
(MP1) We must /not/ dump the CallInfo
CIS wimwam (CI { ci_key = [@(ST s), dMST @s]
, ci_fvs = {dMST} })
when we come to the /\s. Instead, we simply let it continue to float
upwards. Hence ci_fvs is an IdSet, listing the /Ids/ that
are free in the call, but not the /TyVars/. Hence using specArgFreeIds
in singleCall.
NB to be fully kosher we should explicitly quantifying the CallInfo
over 's', but we don't bother. This would matter if there was an
enclosing binding of the same 's', which I don't expect to happen.
(MP2) When we come to specialise the call, we must remember to quantify
over 's'. That is done in the SpecType case of specHeader, where
we add 's' (called qvars) to the binders of the RULE and the specialised
function.
(MP3) If we have f :: forall m. Monoid m => blah, and two calls
(f @(Endo b) (d :: Monoid (Endo b))
(f @(Endo (c->c)) (d :: Monoid (Endo (c->c)))
we want to generate a specialisation only for the first. The second
is just a substitution instance of the first, with no greater specialisation.
Hence the call to `remove_dups` in `filterCalls`.
All this arose in #13873, in the unexpected form that a SPECIALISE
pragma made the program slower! The reason was that the specialised
function $sinsertWith arising from the pragma looked rather like `f`
above, and failed to specialise a call in its body like wimwam.
Without the pragma, the original call to `insertWith` was completely
monomorpic, and specialised in one go.
Wrinkles.
* See Note [Weird special case for SpecDict]
* With -XOverlappingInstances you might worry about this:
class C a where ...
instance C (Maybe Int) where ... -- $df1 :: C (Maybe Int)
instance C (Maybe a) where ... -- $df2 :: forall a. C (Maybe a)
f :: C a => blah
f = rhs
g = /\a. ...(f @(Maybe a) ($df2 a))...
h = ...f @(Maybe Int) $df1
There are two calls to f, but with different evidence. This patch will
combine them into one. But it's OK: this code will never arise unless you
use -XIncoherentInstances. Even with -XOverlappingInstances, GHC tries hard
to keep dictionaries as singleton types. But that goes out of the window
with -XIncoherentInstances -- and that is true even with ordianry type-class
specialisation (at least if any inlining has taken place).
GHC makes very few guarantees when you use -XIncoherentInstances, and its
not worth crippling the normal case for the incoherent corner. (The best
thing might be to switch off specialisation altogether if incoherence is
involved... but incoherence is a property of an instance, not a class, so
it's a hard test to make.)
But see Note [Specialisation and overlapping instances].
Note [Weird special case for SpecDict]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are trying to specialise for this this call:
$wsplit @T (mkD @k @(a::k) :: C T)
where
mkD :: forall k (a::k). C T
is a top-level dictionary-former. This actually happened in #22459,
because of (MP1) of Note [Specialising polymorphic dictionaries].
How can we speicalise $wsplit? We might try
RULE "SPEC" forall (d :: C T). $wsplit @T d = $s$wsplit
but then in the body of $s$wsplit what will we use for the dictionary
evidence? We can't use (mkD @k @(a::k)) because k and a aren't in scope.
We could zap `k` to (Any @Type) and `a` to (Any @(Any @Type)), but that
is a lot of hard work for a very strange case.
So we simply refrain from specialising in this case; hence the guard
allVarSet (`elemInScopeSet` in_scope) (exprFreeVars d)
in the SpecDict cased of specHeader.
How did this strange polymorphic mkD arise in the first place?
From GHC.Core.Opt.Utils.abstractFloats, which was abstracting
over too many type variables. But that too is now fixed;
see Note [Which type variables to abstract over] in that module.
-}
instance Outputable DictBind where
ppr (DB { db_bind = bind, db_fvs = fvs })
= text "DB" <+> braces (sep [ text "fvs: " <+> ppr fvs
, text "bind:" <+> ppr bind ])
instance Outputable UsageDetails where
ppr (MkUD { ud_binds = dbs, ud_calls = calls })
= text "MkUD" <+> braces (sep (punctuate comma
[text "binds" <+> equals <+> ppr dbs,
text "calls" <+> equals <+> ppr calls]))
instance Outputable FloatedDictBinds where
ppr (FDB { fdb_binds = binds }) = ppr binds
emptyUDs :: UsageDetails
emptyUDs = MkUD { ud_binds = emptyFDBs, ud_calls = emptyDVarEnv }
emptyFDBs :: FloatedDictBinds
emptyFDBs = FDB { fdb_binds = nilOL, fdb_bndrs = emptyVarSet }
------------------------------------------------------------
type CallDetails = DIdEnv CallInfoSet
-- The order of specialized binds and rules depends on how we linearize
-- CallDetails, so to get determinism we must use a deterministic set here.
-- See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM
data CallInfoSet = CIS Id (Bag CallInfo)
-- The list of types and dictionaries is guaranteed to
-- match the type of f
-- The Bag may contain duplicate calls (i.e. f @T and another f @T)
-- These dups are eliminated by already_covered in specCalls
data CallInfo
= CI { ci_key :: [SpecArg] -- All arguments
, ci_fvs :: IdSet -- Free Ids of the ci_key call
-- /not/ including the main id itself, of course
-- NB: excluding tyvars:
-- See Note [Specialising polymorphic dictionaries]
}
type DictExpr = CoreExpr
ciSetFilter :: (CallInfo -> Bool) -> CallInfoSet -> CallInfoSet
ciSetFilter p (CIS id a) = CIS id (filterBag p a)
instance Outputable CallInfoSet where
ppr (CIS fn map) = hang (text "CIS" <+> ppr fn)
2 (ppr map)
pprCallInfo :: Id -> CallInfo -> SDoc
pprCallInfo fn (CI { ci_key = key })
= ppr fn <+> ppr key
instance Outputable CallInfo where
ppr (CI { ci_key = key, ci_fvs = _fvs })
= text "CI" <> braces (sep (map ppr key))
unionCalls :: CallDetails -> CallDetails -> CallDetails
unionCalls c1 c2 = plusDVarEnv_C unionCallInfoSet c1 c2
unionCallInfoSet :: CallInfoSet -> CallInfoSet -> CallInfoSet
unionCallInfoSet (CIS f calls1) (CIS _ calls2) =
CIS f (calls1 `unionBags` calls2)
callDetailsFVs :: CallDetails -> VarSet
callDetailsFVs calls =
nonDetStrictFoldUDFM (unionVarSet . callInfoFVs) emptyVarSet calls
-- It's OK to use nonDetStrictFoldUDFM here because we forget the ordering
-- immediately by converting to a nondeterministic set.
callInfoFVs :: CallInfoSet -> VarSet
callInfoFVs (CIS _ call_info) =
foldr (\(CI { ci_fvs = fv }) vs -> unionVarSet fv vs) emptyVarSet call_info
getTheta :: [PiTyBinder] -> [PredType]
getTheta = fmap piTyBinderType . filter isInvisiblePiTyBinder . filter isAnonPiTyBinder
------------------------------------------------------------
singleCall :: SpecEnv -> Id -> [SpecArg] -> UsageDetails
singleCall spec_env id args
= MkUD {ud_binds = emptyFDBs,
ud_calls = unitDVarEnv id $ CIS id $
unitBag (CI { ci_key = args
, ci_fvs = call_fvs }) }
where
call_fvs =
foldr (unionVarSet . free_var_fn) emptyVarSet args
free_var_fn =
if gopt Opt_PolymorphicSpecialisation (se_dflags spec_env)
then specArgFreeIds
else specArgFreeVars
-- specArgFreeIds: we specifically look for free Ids, not TyVars
-- see (MP1) in Note [Specialising polymorphic dictionaries]
--
-- We don't include the 'id' itself.
mkCallUDs :: SpecEnv -> OutExpr -> [OutExpr] -> UsageDetails
mkCallUDs env fun args
| (_, Var f) <- stripTicksTop tickishFloatable fun -- See Note [Ticks on applications]
= -- pprTraceWith "mkCallUDs" (\res -> vcat [ ppr f, ppr args, ppr res ]) $
mkCallUDs' env f args
| otherwise
= emptyUDs
mkCallUDs' :: SpecEnv -> Id -> [OutExpr] -> UsageDetails
mkCallUDs' env f args
| wantCallsFor env f -- We want it, and...
, not (null ci_key) -- this call site has a useful specialisation
= -- pprTrace "mkCallUDs: keeping" _trace_doc
singleCall env f ci_key
| otherwise -- See also Note [Specialisations already covered]
= -- pprTrace "mkCallUDs: discarding" _trace_doc
emptyUDs
where
_trace_doc = vcat [ppr f, ppr args, ppr ci_key]
pis = fst $ splitPiTys $ idType f
constrained_tyvars = tyCoVarsOfTypes $ getTheta pis
ci_key :: [SpecArg]
ci_key = dropWhileEndLE (not . isSpecDict) $
zipWith mk_spec_arg args pis
-- Drop trailing args until we get to a SpecDict
-- In this way the RULE has as few args as possible,
-- which broadens its applicability, since rules only
-- fire when saturated
mk_spec_arg :: OutExpr -> PiTyBinder -> SpecArg
mk_spec_arg arg (Named bndr)
| binderVar bndr `elemVarSet` constrained_tyvars
= case arg of
Type ty -> SpecType ty
_ -> pprPanic "ci_key" $ ppr arg
| otherwise = UnspecType
-- For "invisibleFunArg", which are the type-class dictionaries,
-- we decide on a case by case basis if we want to specialise
-- on this argument; if so, SpecDict, if not UnspecArg
mk_spec_arg arg (Anon pred af)
| isInvisibleFunArg af
, interestingDict arg (scaledThing pred)
-- See Note [Interesting dictionary arguments]
= SpecDict arg
| otherwise = UnspecArg
{-
Note [Ticks on applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ticks such as source location annotations can sometimes make their way
onto applications (see e.g. #21697). So if we see something like
App (Tick _ f) e
we need to descend below the tick to find what the real function being
applied is.
The resulting RULE also has to be able to match this annotated use
site, so we only look through ticks that RULE matching looks through
(see Note [Tick annotations in RULE matching] in GHC.Core.Rules).
-}
wantCallsFor :: SpecEnv -> Id -> Bool
wantCallsFor _env _f = True
-- We could reduce the size of the UsageDetails by being less eager
-- about collecting calls for LocalIds: there is no point for
-- ones that are lambda-bound. We can't decide this by looking at
-- the (absence of an) unfolding, because unfoldings for local
-- functions are discarded by cloneBindSM, so no local binder will
-- have an unfolding at this stage. We'd have to keep a candidate
-- set of let-binders.
--
-- Not many lambda-bound variables have dictionary arguments, so
-- this would make little difference anyway.
--
-- For imported Ids we could check for an unfolding, but we have to
-- do so anyway in canSpecImport, and it seems better to have it
-- all in one place. So we simply collect usage info for imported
-- overloaded functions.
{- Note [Interesting dictionary arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
\a.\d:Eq a. let f = ... in ...(f d)...
There really is not much point in specialising f wrt the dictionary d,
because the code for the specialised f is not improved at all, because
d is lambda-bound. We simply get junk specialisations.
What is "interesting"? Just that it has *some* structure. But what about
variables? We look in the variable's /unfolding/. And that means
that we must be careful to ensure that dictionaries have unfoldings,
* cloneBndrSM discards non-Stable unfoldings
* specBind updates the unfolding after specialisation
See Note [Update unfolding after specialisation]
* bindAuxiliaryDict adds an unfolding for an aux dict
see Note [Specialisation modulo dictionary selectors]
* specCase adds unfoldings for the new bindings it creates
We accidentally lost accurate tracking of local variables for a long
time, because cloned variables didn't have unfoldings. But makes a
massive difference in a few cases, eg #5113. For nofib as a
whole it's only a small win: 2.2% improvement in allocation for ansi,
1.2% for bspt, but mostly 0.0! Average 0.1% increase in binary size.
Note [Update unfolding after specialisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#21848)
wombat :: Show b => Int -> b -> String
wombat a b | a>0 = wombat (a-1) b
| otherwise = show a ++ wombat a b
class C a where
meth :: Show b => a -> b -> String
dummy :: a -> () -- Force a datatype dictionary representation
instance C Int where
meth = wombat
dummy _ = ()
class C a => D a -- D has C as a superclass
instance D Int
f :: (D a, Show b) => a -> b -> String
{-# INLINABLE[0] f #-}
f a b = meth a b ++ "!" ++ meth a b
Now `f` turns into:
f @a @b (dd :: D a) (ds :: Show b) a b
= let dc :: D a = %p1 dd -- Superclass selection
in meth @a dc ....
meth @a dc ....
When we specialise `f`, at a=Int say, that superclass selection can
nfire (via rewiteClassOps), but that info (that 'dc' is now a
particular dictionary `C`, of type `C Int`) must be available to
the call `meth @a dc`, so that we can fire the `meth` class-op, and
thence specialise `wombat`.
We deliver on this idea by updating the unfolding for the binder
in the NonRec case of specBind. (This is too exotic to trouble with
the Rec case.)
-}
interestingDict :: CoreExpr -> Type -> Bool
-- A dictionary argument is interesting if it has *some* structure,
-- see Note [Interesting dictionary arguments]
-- NB: "dictionary" arguments include constraints of all sorts,
-- including equality constraints; hence the Coercion case
-- To make this work, we need to ensure that dictionaries have
-- unfoldings in them.
interestingDict arg arg_ty
| not (typeDeterminesValue arg_ty) = False -- See Note [Type determines value]
| otherwise = go arg
where
go (Var v) = hasSomeUnfolding (idUnfolding v)
|| isDataConWorkId v
go (Type _) = False
go (Coercion _) = False
go (App fn (Type _)) = go fn
go (App fn (Coercion _)) = go fn
go (Tick _ a) = go a
go (Cast e _) = go e
go _ = True
thenUDs :: UsageDetails -> UsageDetails -> UsageDetails
thenUDs (MkUD {ud_binds = db1, ud_calls = calls1})
(MkUD {ud_binds = db2, ud_calls = calls2})
= MkUD { ud_binds = db1 `thenFDBs` db2
, ud_calls = calls1 `unionCalls` calls2 }
thenFDBs :: FloatedDictBinds -> FloatedDictBinds -> FloatedDictBinds
-- Combine FloatedDictBinds
-- In (dbs1 `thenFDBs` dbs2), dbs2 may mention dbs1 but not vice versa
thenFDBs (FDB { fdb_binds = dbs1, fdb_bndrs = bs1 })
(FDB { fdb_binds = dbs2, fdb_bndrs = bs2 })
= FDB { fdb_binds = dbs1 `appOL` dbs2
, fdb_bndrs = bs1 `unionVarSet` bs2 }
-----------------------------
_dictBindBndrs :: OrdList DictBind -> [Id]
_dictBindBndrs dbs = foldr ((++) . bindersOf . db_bind) [] dbs
-- | Construct a 'DictBind' from a 'CoreBind'
mkDB :: CoreBind -> DictBind
mkDB bind = DB { db_bind = bind, db_fvs = bind_fvs bind }
-- | Identify the free variables of a 'CoreBind'
bind_fvs :: CoreBind -> VarSet
bind_fvs (NonRec bndr rhs) = pair_fvs (bndr,rhs)
bind_fvs (Rec prs) = rhs_fvs `delVarSetList` (map fst prs)
where
rhs_fvs = unionVarSets (map pair_fvs prs)
pair_fvs :: (Id, CoreExpr) -> VarSet
pair_fvs (bndr, rhs) = exprSomeFreeVars interesting rhs
`unionVarSet` idFreeVars bndr
-- idFreeVars: don't forget variables mentioned in
-- the rules of the bndr. C.f. OccAnal.addRuleUsage
-- Also tyvars mentioned in its type; they may not appear
-- in the RHS
-- type T a = Int
-- x :: T a = 3
where
interesting :: InterestingVarFun
interesting v = isLocalVar v || (isId v && isDFunId v)
-- Very important: include DFunIds /even/ if it is imported
-- Reason: See Note [Avoiding loops in specImports], the #13429
-- example involving an imported dfun. We must know
-- whether a dictionary binding depends on an imported
-- DFun in case we try to specialise that imported DFun
-- | Flatten a set of "dumped" 'DictBind's, and some other binding
-- pairs, into a single recursive binding.
recWithDumpedDicts :: [(Id,CoreExpr)] -> OrdList DictBind -> DictBind
recWithDumpedDicts pairs dbs
= DB { db_bind = Rec bindings
, db_fvs = fvs `delVarSetList` map fst bindings }
where
(bindings, fvs) = foldr add ([], emptyVarSet)
(dbs `snocOL` mkDB (Rec pairs))
add (DB { db_bind = bind, db_fvs = fvs }) (prs_acc, fvs_acc)
= case bind of
NonRec b r -> ((b,r) : prs_acc, fvs')
Rec prs1 -> (prs1 ++ prs_acc, fvs')
where
fvs' = fvs_acc `unionVarSet` fvs
snocDictBind :: UsageDetails -> DictBind -> UsageDetails
snocDictBind uds@MkUD{ud_binds= FDB { fdb_binds = dbs, fdb_bndrs = bs }} db
= uds { ud_binds = FDB { fdb_binds = dbs `snocOL` db
, fdb_bndrs = bs `extendVarSetList` bindersOfDictBind db } }
snocDictBinds :: UsageDetails -> [DictBind] -> UsageDetails
-- Add ud_binds to the tail end of the bindings in uds
snocDictBinds uds@MkUD{ud_binds=FDB{ fdb_binds = binds, fdb_bndrs = bs }} dbs
= uds { ud_binds = FDB { fdb_binds = binds `appOL` (toOL dbs)
, fdb_bndrs = bs `extendVarSetList` bindersOfDictBinds dbs } }
consDictBinds :: [DictBind] -> UsageDetails -> UsageDetails
consDictBinds dbs uds@MkUD{ud_binds=FDB{fdb_binds = binds, fdb_bndrs = bs}}
= uds { ud_binds = FDB{ fdb_binds = toOL dbs `appOL` binds
, fdb_bndrs = bs `extendVarSetList` bindersOfDictBinds dbs } }
wrapDictBinds :: FloatedDictBinds -> [CoreBind] -> [CoreBind]
wrapDictBinds (FDB { fdb_binds = dbs }) binds
= foldr add binds dbs
where
add (DB { db_bind = bind }) binds = bind : binds
wrapDictBindsE :: OrdList DictBind -> CoreExpr -> CoreExpr
wrapDictBindsE dbs expr
= foldr add expr dbs
where
add (DB { db_bind = bind }) expr = Let bind expr
----------------------
dumpUDs :: [CoreBndr] -> UsageDetails -> (UsageDetails, OrdList DictBind)
-- Used at a lambda or case binder; just dump anything mentioning the binder
dumpUDs bndrs uds@(MkUD { ud_binds = orig_dbs, ud_calls = orig_calls })
| null bndrs = (uds, nilOL) -- Common in case alternatives
| otherwise = -- pprTrace "dumpUDs" (ppr bndrs $$ ppr free_uds $$ ppr dump_dbs) $
(free_uds, dump_dbs)
where
free_uds = uds { ud_binds = free_dbs, ud_calls = free_calls }
bndr_set = mkVarSet bndrs
(free_dbs, dump_dbs, dump_set) = splitDictBinds orig_dbs bndr_set
free_calls = deleteCallsMentioning dump_set $ -- Drop calls mentioning bndr_set on the floor
deleteCallsFor bndrs orig_calls -- Discard calls for bndr_set; there should be
-- no calls for any of the dicts in dump_dbs
dumpBindUDs :: [CoreBndr] -> UsageDetails -> (UsageDetails, OrdList DictBind, Bool)
-- Used at a let(rec) binding.
-- We return a boolean indicating whether the binding itself is mentioned,
-- directly or indirectly, by any of the ud_calls; in that case we want to
-- float the binding itself;
-- See Note [Floated dictionary bindings]
dumpBindUDs bndrs (MkUD { ud_binds = orig_dbs, ud_calls = orig_calls })
= -- pprTrace "dumpBindUDs" (ppr bndrs $$ ppr free_uds $$ ppr dump_dbs $$ ppr float_all) $
(free_uds, dump_dbs, float_all)
where
free_uds = MkUD { ud_binds = free_dbs, ud_calls = free_calls }
bndr_set = mkVarSet bndrs
(free_dbs, dump_dbs, dump_set) = splitDictBinds orig_dbs bndr_set
free_calls = deleteCallsFor bndrs orig_calls
float_all = dump_set `intersectsVarSet` callDetailsFVs free_calls
callsForMe :: Id -> UsageDetails -> (UsageDetails, [CallInfo])
callsForMe fn uds@MkUD { ud_binds = orig_dbs, ud_calls = orig_calls }
= -- pprTrace ("callsForMe")
-- (vcat [ppr fn,
-- text "Orig dbs =" <+> ppr (_dictBindBndrs orig_dbs),
-- text "Orig calls =" <+> ppr orig_calls,
-- text "Calls for me =" <+> ppr calls_for_me]) $
(uds_without_me, calls_for_me)
where
uds_without_me = uds { ud_calls = delDVarEnv orig_calls fn }
calls_for_me = case lookupDVarEnv orig_calls fn of
Nothing -> []
Just cis -> filterCalls cis orig_dbs
-- filterCalls: drop calls that (directly or indirectly)
-- refer to fn. See Note [Avoiding loops (DFuns)]
----------------------
filterCalls :: CallInfoSet -> FloatedDictBinds -> [CallInfo]
-- Remove dominated calls (Note [Specialising polymorphic dictionaries])
-- and loopy DFuns (Note [Avoiding loops (DFuns)])
filterCalls (CIS fn call_bag) (FDB { fdb_binds = dbs })
| isDFunId fn -- Note [Avoiding loops (DFuns)] applies only to DFuns
= filter ok_call de_dupd_calls
| otherwise -- Do not apply it to non-DFuns
= de_dupd_calls -- See Note [Avoiding loops (non-DFuns)]
where
de_dupd_calls = remove_dups call_bag
dump_set = foldl' go (unitVarSet fn) dbs
-- This dump-set could also be computed by splitDictBinds
-- (_,_,dump_set) = splitDictBinds dbs {fn}
-- But this variant is shorter
go so_far (DB { db_bind = bind, db_fvs = fvs })
| fvs `intersectsVarSet` so_far
= extendVarSetList so_far (bindersOf bind)
| otherwise = so_far
ok_call (CI { ci_fvs = fvs }) = fvs `disjointVarSet` dump_set
remove_dups :: Bag CallInfo -> [CallInfo]
-- Calls involving more generic instances beat more specific ones.
-- See (MP3) in Note [Specialising polymorphic dictionaries]
remove_dups calls = foldr add [] calls
where
add :: CallInfo -> [CallInfo] -> [CallInfo]
add ci [] = [ci]
add ci1 (ci2:cis) | ci2 `beats_or_same` ci1 = ci2:cis
| ci1 `beats_or_same` ci2 = ci1:cis
| otherwise = ci2 : add ci1 cis
beats_or_same :: CallInfo -> CallInfo -> Bool
beats_or_same (CI { ci_key = args1 }) (CI { ci_key = args2 })
= go args1 args2
where
go [] _ = True
go (arg1:args1) (arg2:args2) = go_arg arg1 arg2 && go args1 args2
go (_:_) [] = False
go_arg (SpecType ty1) (SpecType ty2) = isJust (tcMatchTy ty1 ty2)
go_arg UnspecType UnspecType = True
go_arg (SpecDict {}) (SpecDict {}) = True
go_arg UnspecArg UnspecArg = True
go_arg _ _ = False
----------------------
splitDictBinds :: FloatedDictBinds -> IdSet -> (FloatedDictBinds, OrdList DictBind, IdSet)
-- splitDictBinds dbs bndrs returns
-- (free_dbs, dump_dbs, dump_set)
-- where
-- * dump_dbs depends, transitively on bndrs
-- * free_dbs does not depend on bndrs
-- * dump_set = bndrs `union` bndrs(dump_dbs)
splitDictBinds (FDB { fdb_binds = dbs, fdb_bndrs = bs }) bndr_set
= (FDB { fdb_binds = free_dbs
, fdb_bndrs = bs `minusVarSet` dump_set }
, dump_dbs, dump_set)
where
(free_dbs, dump_dbs, dump_set)
= foldl' split_db (nilOL, nilOL, bndr_set) dbs
-- Important that it's foldl' not foldr;
-- we're accumulating the set of dumped ids in dump_set
split_db (free_dbs, dump_dbs, dump_idset) db
| DB { db_bind = bind, db_fvs = fvs } <- db
, dump_idset `intersectsVarSet` fvs -- Dump it
= (free_dbs, dump_dbs `snocOL` db,
extendVarSetList dump_idset (bindersOf bind))
| otherwise -- Don't dump it
= (free_dbs `snocOL` db, dump_dbs, dump_idset)
----------------------
deleteCallsMentioning :: VarSet -> CallDetails -> CallDetails
-- Remove calls mentioning any Id in bndrs
-- NB: The call is allowed to mention TyVars in bndrs
-- Note [Specialising polymorphic dictionaries]
-- ci_fvs are just the free /Ids/
deleteCallsMentioning bndrs calls
= mapDVarEnv (ciSetFilter keep_call) calls
where
keep_call (CI { ci_fvs = fvs }) = fvs `disjointVarSet` bndrs
deleteCallsFor :: [Id] -> CallDetails -> CallDetails
-- Remove calls *for* bndrs
deleteCallsFor bndrs calls = delDVarEnvList calls bndrs
{-
************************************************************************
* *
\subsubsection{Boring helper functions}
* *
************************************************************************
-}
type SpecM a = UniqSM a
runSpecM :: SpecM a -> CoreM a
runSpecM thing_inside
= do { us <- getUniqueSupplyM
; return (initUs_ us thing_inside) }
mapAndCombineSM :: (a -> SpecM (b, UsageDetails)) -> [a] -> SpecM ([b], UsageDetails)
mapAndCombineSM _ [] = return ([], emptyUDs)
mapAndCombineSM f (x:xs) = do (y, uds1) <- f x
(ys, uds2) <- mapAndCombineSM f xs
return (y:ys, uds1 `thenUDs` uds2)
extendTvSubst :: SpecEnv -> TyVar -> Type -> SpecEnv
extendTvSubst env tv ty
= env { se_subst = Core.extendTvSubst (se_subst env) tv ty }
extendInScope :: SpecEnv -> OutId -> SpecEnv
extendInScope env@(SE { se_subst = subst }) bndr
= env { se_subst = subst `Core.extendSubstInScope` bndr }
zapSubst :: SpecEnv -> SpecEnv
zapSubst env@(SE { se_subst = subst })
= env { se_subst = Core.zapSubst subst }
substTy :: SpecEnv -> Type -> Type
substTy env ty = substTyUnchecked (se_subst env) ty
substCo :: SpecEnv -> Coercion -> Coercion
substCo env co = Core.substCo (se_subst env) co
substBndr :: SpecEnv -> CoreBndr -> (SpecEnv, CoreBndr)
substBndr env bs = case Core.substBndr (se_subst env) bs of
(subst', bs') -> (env { se_subst = subst' }, bs')
substBndrs :: SpecEnv -> [CoreBndr] -> (SpecEnv, [CoreBndr])
substBndrs env bs = case Core.substBndrs (se_subst env) bs of
(subst', bs') -> (env { se_subst = subst' }, bs')
cloneBndrSM :: SpecEnv -> Id -> SpecM (SpecEnv, Id)
-- Clone the binders of the bind; return new bind with the cloned binders
-- Return the substitution to use for RHSs, and the one to use for the body
-- Discards non-Stable unfoldings
cloneBndrSM env@(SE { se_subst = subst }) bndr
= do { us <- getUniqueSupplyM
; let (subst', bndr') = Core.cloneIdBndr subst us bndr
; return (env { se_subst = subst' }, bndr') }
cloneRecBndrsSM :: SpecEnv -> [Id] -> SpecM (SpecEnv, [Id])
cloneRecBndrsSM env@(SE { se_subst = subst }) bndrs
= do { us <- getUniqueSupplyM
; let (subst', bndrs') = Core.cloneRecIdBndrs subst us bndrs
env' = env { se_subst = subst' }
; return (env', bndrs') }
newDictBndr :: SpecEnv -> CoreBndr -> SpecM (SpecEnv, CoreBndr)
-- Make up completely fresh binders for the dictionaries
-- Their bindings are going to float outwards
newDictBndr env@(SE { se_subst = subst }) b
= do { uniq <- getUniqueM
; let n = idName b
ty' = substTyUnchecked subst (idType b)
b' = mkUserLocal (nameOccName n) uniq ManyTy ty' (getSrcSpan n)
env' = env { se_subst = subst `Core.extendSubstInScope` b' }
; pure (env', b') }
newSpecIdSM :: Name -> Type -> IdDetails -> IdInfo -> SpecM Id
-- Give the new Id a similar occurrence name to the old one
newSpecIdSM old_name new_ty details info
= do { uniq <- getUniqueM
; let new_occ = mkSpecOcc (nameOccName old_name)
new_name = mkInternalName uniq new_occ (getSrcSpan old_name)
; return (assert (not (isCoVarType new_ty)) $
mkLocalVar details new_name ManyTy new_ty info) }
{-
Old (but interesting) stuff about unboxed bindings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What should we do when a value is specialised to a *strict* unboxed value?
map_*_* f (x:xs) = let h = f x
t = map f xs
in h:t
Could convert let to case:
map_*_Int# f (x:xs) = case f x of h# ->
let t = map f xs
in h#:t
This may be undesirable since it forces evaluation here, but the value
may not be used in all branches of the body. In the general case this
transformation is impossible since the mutual recursion in a letrec
cannot be expressed as a case.
There is also a problem with top-level unboxed values, since our
implementation cannot handle unboxed values at the top level.
Solution: Lift the binding of the unboxed value and extract it when it
is used:
map_*_Int# f (x:xs) = let h = case (f x) of h# -> _Lift h#
t = map f xs
in case h of
_Lift h# -> h#:t
Now give it to the simplifier and the _Lifting will be optimised away.
The benefit is that we have given the specialised "unboxed" values a
very simple lifted semantics and then leave it up to the simplifier to
optimise it --- knowing that the overheads will be removed in nearly
all cases.
In particular, the value will only be evaluated in the branches of the
program which use it, rather than being forced at the point where the
value is bound. For example:
filtermap_*_* p f (x:xs)
= let h = f x
t = ...
in case p x of
True -> h:t
False -> t
==>
filtermap_*_Int# p f (x:xs)
= let h = case (f x) of h# -> _Lift h#
t = ...
in case p x of
True -> case h of _Lift h#
-> h#:t
False -> t
The binding for h can still be inlined in the one branch and the
_Lifting eliminated.
Question: When won't the _Lifting be eliminated?
Answer: When they at the top-level (where it is necessary) or when
inlining would duplicate work (or possibly code depending on
options). However, the _Lifting will still be eliminated if the
strictness analyser deems the lifted binding strict.
-}
|