1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
************************************************************************
Static Argument Transformation pass
************************************************************************
May be seen as removing invariants from loops:
Arguments of recursive functions that do not change in recursive
calls are removed from the recursion, which is done locally
and only passes the arguments which effectively change.
Example:
map = /\ ab -> \f -> \xs -> case xs of
[] -> []
(a:b) -> f a : map f b
as map is recursively called with the same argument f (unmodified)
we transform it to
map = /\ ab -> \f -> \xs -> let map' ys = case ys of
[] -> []
(a:b) -> f a : map' b
in map' xs
Notice that for a compiler that uses lambda lifting this is
useless as map' will be transformed back to what map was.
We could possibly do the same for big lambdas, but we don't as
they will eventually be removed in later stages of the compiler,
therefore there is no penalty in keeping them.
We only apply the SAT when the number of static args is > 2. This
produces few bad cases. See
should_transform
in saTransform.
Here are the headline nofib results:
Size Allocs Runtime
Min +0.0% -13.7% -21.4%
Max +0.1% +0.0% +5.4%
Geometric Mean +0.0% -0.2% -6.9%
The previous patch, to fix polymorphic floatout demand signatures, is
essential to make this work well!
-}
module GHC.Core.Opt.StaticArgs ( doStaticArgs ) where
import GHC.Prelude
import GHC.Core
import GHC.Core.Utils
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.TyCo.Compare( eqType )
import GHC.Types.Var
import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Var.Env
import GHC.Types.Unique.Supply
import GHC.Types.Unique.FM
import GHC.Types.Var.Set
import GHC.Types.Unique
import GHC.Types.Unique.Set
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import Data.List (mapAccumL)
import GHC.Data.FastString
doStaticArgs :: UniqSupply -> CoreProgram -> CoreProgram
doStaticArgs us binds = snd $ mapAccumL sat_bind_threaded_us us binds
where
sat_bind_threaded_us us bind =
let (us1, us2) = splitUniqSupply us
in (us1, fst $ runSAT us2 (satBind bind emptyUniqSet))
-- We don't bother to SAT recursive groups since it can lead
-- to massive code expansion: see Andre Santos' thesis for details.
-- This means we only apply the actual SAT to Rec groups of one element,
-- but we want to recurse into the others anyway to discover other binds
satBind :: CoreBind -> IdSet -> SatM (CoreBind, IdSATInfo)
satBind (NonRec binder expr) interesting_ids = do
(expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids
return (NonRec binder expr', finalizeApp expr_app sat_info_expr)
satBind (Rec [(binder, rhs)]) interesting_ids = do
let interesting_ids' = interesting_ids `addOneToUniqSet` binder
(rhs_binders, rhs_body) = collectBinders rhs
(rhs_body', sat_info_rhs_body) <- satTopLevelExpr rhs_body interesting_ids'
let sat_info_rhs_from_args = unitVarEnv binder (bindersToSATInfo rhs_binders)
sat_info_rhs' = mergeIdSATInfo sat_info_rhs_from_args sat_info_rhs_body
shadowing = binder `elementOfUniqSet` interesting_ids
sat_info_rhs'' = if shadowing
then sat_info_rhs' `delFromUFM` binder -- For safety
else sat_info_rhs'
bind' <- saTransformMaybe binder (lookupUFM sat_info_rhs' binder)
rhs_binders rhs_body'
return (bind', sat_info_rhs'')
satBind (Rec pairs) interesting_ids = do
let (binders, rhss) = unzip pairs
rhss_SATed <- mapM (\e -> satTopLevelExpr e interesting_ids) rhss
let (rhss', sat_info_rhss') = unzip rhss_SATed
return (Rec (zipEqual "satBind" binders rhss'), mergeIdSATInfos sat_info_rhss')
data App = VarApp Id | TypeApp Type | CoApp Coercion
data Staticness a = Static a | NotStatic
type IdAppInfo = (Id, SATInfo)
type SATInfo = [Staticness App]
type IdSATInfo = IdEnv SATInfo
emptyIdSATInfo :: IdSATInfo
emptyIdSATInfo = emptyUFM
{-
pprIdSATInfo id_sat_info = vcat (map pprIdAndSATInfo (Map.toList id_sat_info))
where pprIdAndSATInfo (v, sat_info) = hang (ppr v <> colon) 4 (pprSATInfo sat_info)
-}
pprSATInfo :: SATInfo -> SDoc
pprSATInfo staticness = hcat $ map pprStaticness staticness
pprStaticness :: Staticness App -> SDoc
pprStaticness (Static (VarApp _)) = text "SV"
pprStaticness (Static (TypeApp _)) = text "ST"
pprStaticness (Static (CoApp _)) = text "SC"
pprStaticness NotStatic = text "NS"
mergeSATInfo :: SATInfo -> SATInfo -> SATInfo
mergeSATInfo l r = zipWith mergeSA l r
where
mergeSA NotStatic _ = NotStatic
mergeSA _ NotStatic = NotStatic
mergeSA (Static (VarApp v)) (Static (VarApp v'))
| v == v' = Static (VarApp v)
| otherwise = NotStatic
mergeSA (Static (TypeApp t)) (Static (TypeApp t'))
| t `eqType` t' = Static (TypeApp t)
| otherwise = NotStatic
mergeSA (Static (CoApp c)) (Static (CoApp c'))
| c `eqCoercion` c' = Static (CoApp c)
| otherwise = NotStatic
mergeSA _ _ = pprPanic "mergeSATInfo" $
text "Left:"
<> pprSATInfo l <> text ", "
<> text "Right:"
<> pprSATInfo r
mergeIdSATInfo :: IdSATInfo -> IdSATInfo -> IdSATInfo
mergeIdSATInfo = plusUFM_C mergeSATInfo
mergeIdSATInfos :: [IdSATInfo] -> IdSATInfo
mergeIdSATInfos = foldl' mergeIdSATInfo emptyIdSATInfo
bindersToSATInfo :: [Id] -> SATInfo
bindersToSATInfo vs = map (Static . binderToApp) vs
where binderToApp v | isId v = VarApp v
| isTyVar v = TypeApp $ mkTyVarTy v
| otherwise = CoApp $ mkCoVarCo v
finalizeApp :: Maybe IdAppInfo -> IdSATInfo -> IdSATInfo
finalizeApp Nothing id_sat_info = id_sat_info
finalizeApp (Just (v, sat_info')) id_sat_info =
let sat_info'' = case lookupUFM id_sat_info v of
Nothing -> sat_info'
Just sat_info -> mergeSATInfo sat_info sat_info'
in extendVarEnv id_sat_info v sat_info''
satTopLevelExpr :: CoreExpr -> IdSet -> SatM (CoreExpr, IdSATInfo)
satTopLevelExpr expr interesting_ids = do
(expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids
return (expr', finalizeApp expr_app sat_info_expr)
satExpr :: CoreExpr -> IdSet -> SatM (CoreExpr, IdSATInfo, Maybe IdAppInfo)
satExpr var@(Var v) interesting_ids = do
let app_info = if v `elementOfUniqSet` interesting_ids
then Just (v, [])
else Nothing
return (var, emptyIdSATInfo, app_info)
satExpr lit@(Lit _) _ =
return (lit, emptyIdSATInfo, Nothing)
satExpr (Lam binders body) interesting_ids = do
(body', sat_info, this_app) <- satExpr body interesting_ids
return (Lam binders body', finalizeApp this_app sat_info, Nothing)
satExpr (App fn arg) interesting_ids = do
(fn', sat_info_fn, fn_app) <- satExpr fn interesting_ids
let satRemainder = boring fn' sat_info_fn
case fn_app of
Nothing -> satRemainder Nothing
Just (fn_id, fn_app_info) ->
-- TODO: remove this use of append somehow (use a data structure with O(1) append but a left-to-right kind of interface)
let satRemainderWithStaticness arg_staticness = satRemainder $ Just (fn_id, fn_app_info ++ [arg_staticness])
in case arg of
Type t -> satRemainderWithStaticness $ Static (TypeApp t)
Coercion c -> satRemainderWithStaticness $ Static (CoApp c)
Var v -> satRemainderWithStaticness $ Static (VarApp v)
_ -> satRemainderWithStaticness $ NotStatic
where
boring :: CoreExpr -> IdSATInfo -> Maybe IdAppInfo -> SatM (CoreExpr, IdSATInfo, Maybe IdAppInfo)
boring fn' sat_info_fn app_info =
do (arg', sat_info_arg, arg_app) <- satExpr arg interesting_ids
let sat_info_arg' = finalizeApp arg_app sat_info_arg
sat_info = mergeIdSATInfo sat_info_fn sat_info_arg'
return (App fn' arg', sat_info, app_info)
satExpr (Case expr bndr ty alts) interesting_ids = do
(expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids
let sat_info_expr' = finalizeApp expr_app sat_info_expr
zipped_alts' <- mapM satAlt alts
let (alts', sat_infos_alts) = unzip zipped_alts'
return (Case expr' bndr ty alts', mergeIdSATInfo sat_info_expr' (mergeIdSATInfos sat_infos_alts), Nothing)
where
satAlt (Alt con bndrs expr) = do
(expr', sat_info_expr) <- satTopLevelExpr expr interesting_ids
return (Alt con bndrs expr', sat_info_expr)
satExpr (Let bind body) interesting_ids = do
(body', sat_info_body, body_app) <- satExpr body interesting_ids
(bind', sat_info_bind) <- satBind bind interesting_ids
return (Let bind' body', mergeIdSATInfo sat_info_body sat_info_bind, body_app)
satExpr (Tick tickish expr) interesting_ids = do
(expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids
return (Tick tickish expr', sat_info_expr, expr_app)
satExpr ty@(Type _) _ =
return (ty, emptyIdSATInfo, Nothing)
satExpr co@(Coercion _) _ =
return (co, emptyIdSATInfo, Nothing)
satExpr (Cast expr coercion) interesting_ids = do
(expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids
return (Cast expr' coercion, sat_info_expr, expr_app)
{-
************************************************************************
Static Argument Transformation Monad
************************************************************************
-}
type SatM result = UniqSM result
runSAT :: UniqSupply -> SatM a -> a
runSAT = initUs_
newUnique :: SatM Unique
newUnique = getUniqueM
{-
************************************************************************
Static Argument Transformation Monad
************************************************************************
To do the transformation, the game plan is to:
1. Create a small nonrecursive RHS that takes the
original arguments to the function but discards
the ones that are static and makes a call to the
SATed version with the remainder. We intend that
this will be inlined later, removing the overhead
2. Bind this nonrecursive RHS over the original body
WITH THE SAME UNIQUE as the original body so that
any recursive calls to the original now go via
the small wrapper
3. Rebind the original function to a new one which contains
our SATed function and just makes a call to it:
we call the thing making this call the local body
Example: transform this
map :: forall a b. (a->b) -> [a] -> [b]
map = /\ab. \(f:a->b) (as:[a]) -> body[map]
to
map :: forall a b. (a->b) -> [a] -> [b]
map = /\ab. \(f:a->b) (as:[a]) ->
letrec map' :: [a] -> [b]
-- The "worker function
map' = \(as:[a]) ->
let map :: forall a' b'. (a -> b) -> [a] -> [b]
-- The "shadow function
map = /\a'b'. \(f':(a->b) (as:[a]).
map' as
in body[map]
in map' as
Note [Shadow binding]
~~~~~~~~~~~~~~~~~~~~~
The calls to the inner map inside body[map] should get inlined
by the local re-binding of 'map'. We call this the "shadow binding".
But we can't use the original binder 'map' unchanged, because
it might be exported, in which case the shadow binding won't be
discarded as dead code after it is inlined.
So we use a hack: we make a new SysLocal binder with the *same* unique
as binder. (Another alternative would be to reset the export flag.)
Note [Binder type capture]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Notice that in the inner map (the "shadow function"), the static arguments
are discarded -- it's as if they were underscores. Instead, mentions
of these arguments (notably in the types of dynamic arguments) are bound
by the *outer* lambdas of the main function. So we must make up fresh
names for the static arguments so that they do not capture variables
mentioned in the types of dynamic args.
In the map example, the shadow function must clone the static type
argument a,b, giving a',b', to ensure that in the \(as:[a]), the 'a'
is bound by the outer forall. We clone f' too for consistency, but
that doesn't matter either way because static Id arguments aren't
mentioned in the shadow binding at all.
If we don't we get something like this:
[Exported]
[Arity 3]
GHC.Base.until =
\ (@ a_aiK)
(p_a6T :: a_aiK -> GHC.Types.Bool)
(f_a6V :: a_aiK -> a_aiK)
(x_a6X :: a_aiK) ->
letrec {
sat_worker_s1aU :: a_aiK -> a_aiK
[]
sat_worker_s1aU =
\ (x_a6X :: a_aiK) ->
let {
sat_shadow_r17 :: forall a_a3O.
(a_a3O -> GHC.Types.Bool) -> (a_a3O -> a_a3O) -> a_a3O -> a_a3O
[]
sat_shadow_r17 =
\ (@ a_aiK)
(p_a6T :: a_aiK -> GHC.Types.Bool)
(f_a6V :: a_aiK -> a_aiK)
(x_a6X :: a_aiK) ->
sat_worker_s1aU x_a6X } in
case p_a6T x_a6X of wild_X3y [ALWAYS Dead Nothing] {
GHC.Types.False -> GHC.Base.until @ a_aiK p_a6T f_a6V (f_a6V x_a6X);
GHC.Types.True -> x_a6X
}; } in
sat_worker_s1aU x_a6X
Where sat_shadow has captured the type variables of x_a6X etc as it has a a_aiK
type argument. This is bad because it means the application sat_worker_s1aU x_a6X
is not well typed.
-}
saTransformMaybe :: Id -> Maybe SATInfo -> [Id] -> CoreExpr -> SatM CoreBind
saTransformMaybe binder maybe_arg_staticness rhs_binders rhs_body
| Just arg_staticness <- maybe_arg_staticness
, should_transform arg_staticness
= saTransform binder arg_staticness rhs_binders rhs_body
| otherwise
= return (Rec [(binder, mkLams rhs_binders rhs_body)])
where
should_transform staticness = n_static_args > 1 -- THIS IS THE DECISION POINT
where
n_static_args = count isStaticValue staticness
saTransform :: Id -> SATInfo -> [Id] -> CoreExpr -> SatM CoreBind
saTransform binder arg_staticness rhs_binders rhs_body
= do { shadow_lam_bndrs <- mapM clone binders_w_staticness
; uniq <- newUnique
; return (NonRec binder (mk_new_rhs uniq shadow_lam_bndrs)) }
where
-- Running example: foldr
-- foldr \alpha \beta c n xs = e, for some e
-- arg_staticness = [Static TypeApp, Static TypeApp, Static VarApp, Static VarApp, NonStatic]
-- rhs_binders = [\alpha, \beta, c, n, xs]
-- rhs_body = e
binders_w_staticness = rhs_binders `zip` (arg_staticness ++ repeat NotStatic)
-- Any extra args are assumed NotStatic
non_static_args :: [Var]
-- non_static_args = [xs]
-- rhs_binders_without_type_capture = [\alpha', \beta', c, n, xs]
non_static_args = [v | (v, NotStatic) <- binders_w_staticness]
clone (bndr, NotStatic) = return bndr
clone (bndr, _ ) = do { uniq <- newUnique
; return (setVarUnique bndr uniq) }
-- new_rhs = \alpha beta c n xs ->
-- let sat_worker = \xs -> let sat_shadow = \alpha' beta' c n xs ->
-- sat_worker xs
-- in e
-- in sat_worker xs
mk_new_rhs uniq shadow_lam_bndrs
= mkLams rhs_binders $
Let (Rec [(rec_body_bndr, rec_body)])
local_body
where
local_body = mkVarApps (Var rec_body_bndr) non_static_args
rec_body = mkLams non_static_args $
Let (NonRec shadow_bndr shadow_rhs) rhs_body
-- See Note [Binder type capture]
shadow_rhs = mkLams shadow_lam_bndrs local_body
-- nonrec_rhs = \alpha' beta' c n xs -> sat_worker xs
rec_body_bndr = mkSysLocal (fsLit "sat_worker") uniq ManyTy (exprType rec_body)
-- rec_body_bndr = sat_worker
-- See Note [Shadow binding]; make a SysLocal
shadow_bndr = mkSysLocal (occNameFS (getOccName binder))
(idUnique binder)
ManyTy
(exprType shadow_rhs)
isStaticValue :: Staticness App -> Bool
isStaticValue (Static (VarApp _)) = True
isStaticValue _ = False
|