1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
{-
(c) The AQUA Project, Glasgow University, 1993-1998
-}
{-# LANGUAGE DerivingVia #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
module GHC.Core.Opt.Stats (
SimplCount, doSimplTick, doFreeSimplTick, simplCountN,
pprSimplCount, plusSimplCount, zeroSimplCount,
isZeroSimplCount, hasDetailedCounts, Tick(..)
) where
import GHC.Prelude
import GHC.Types.Var
import GHC.Types.Error
import GHC.Utils.Outputable as Outputable
import GHC.Data.FastString
import Data.List (sortOn)
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NE
import Data.Ord
import Data.Map (Map)
import qualified Data.Map as Map
import qualified Data.Map.Strict as MapStrict
import GHC.Utils.Panic (throwGhcException, GhcException(..))
getVerboseSimplStats :: (Bool -> SDoc) -> SDoc
getVerboseSimplStats = getPprDebug -- For now, anyway
zeroSimplCount :: Bool -- ^ -ddump-simpl-stats
-> SimplCount
isZeroSimplCount :: SimplCount -> Bool
hasDetailedCounts :: SimplCount -> Bool
pprSimplCount :: SimplCount -> SDoc
doSimplTick :: Int -- ^ History size of the elaborate counter
-> Tick -> SimplCount -> SimplCount
doFreeSimplTick :: Tick -> SimplCount -> SimplCount
plusSimplCount :: SimplCount -> SimplCount -> SimplCount
data SimplCount
= VerySimplCount !Int -- Used when don't want detailed stats
| SimplCount {
ticks :: !Int, -- Total ticks
details :: !TickCounts, -- How many of each type
n_log :: !Int, -- N
log1 :: [Tick], -- Last N events; <= opt_HistorySize,
-- most recent first
log2 :: [Tick] -- Last opt_HistorySize events before that
-- Having log1, log2 lets us accumulate the
-- recent history reasonably efficiently
}
type TickCounts = Map Tick Int
simplCountN :: SimplCount -> Int
simplCountN (VerySimplCount n) = n
simplCountN (SimplCount { ticks = n }) = n
zeroSimplCount dump_simpl_stats
-- This is where we decide whether to do
-- the VerySimpl version or the full-stats version
| dump_simpl_stats
= SimplCount {ticks = 0, details = Map.empty,
n_log = 0, log1 = [], log2 = []}
| otherwise
= VerySimplCount 0
isZeroSimplCount (VerySimplCount n) = n==0
isZeroSimplCount (SimplCount { ticks = n }) = n==0
hasDetailedCounts (VerySimplCount {}) = False
hasDetailedCounts (SimplCount {}) = True
doFreeSimplTick tick sc@SimplCount { details = dts }
= sc { details = dts `addTick` tick }
doFreeSimplTick _ sc = sc
doSimplTick history_size tick
sc@(SimplCount { ticks = tks, details = dts, n_log = nl, log1 = l1 })
| nl >= history_size = sc1 { n_log = 1, log1 = [tick], log2 = l1 }
| otherwise = sc1 { n_log = nl+1, log1 = tick : l1 }
where
sc1 = sc { ticks = tks+1, details = dts `addTick` tick }
doSimplTick _ _ (VerySimplCount n) = VerySimplCount (n+1)
addTick :: TickCounts -> Tick -> TickCounts
addTick fm tick = MapStrict.insertWith (+) tick 1 fm
plusSimplCount sc1@(SimplCount { ticks = tks1, details = dts1 })
sc2@(SimplCount { ticks = tks2, details = dts2 })
= log_base { ticks = tks1 + tks2
, details = MapStrict.unionWith (+) dts1 dts2 }
where
-- A hackish way of getting recent log info
log_base | null (log1 sc2) = sc1 -- Nothing at all in sc2
| null (log2 sc2) = sc2 { log2 = log1 sc1 }
| otherwise = sc2
plusSimplCount (VerySimplCount n) (VerySimplCount m) = VerySimplCount (n+m)
plusSimplCount lhs rhs =
throwGhcException . PprProgramError "plusSimplCount" $ vcat
[ text "lhs"
, pprSimplCount lhs
, text "rhs"
, pprSimplCount rhs
]
-- We use one or the other consistently
pprSimplCount (VerySimplCount n) = text "Total ticks:" <+> int n
pprSimplCount (SimplCount { ticks = tks, details = dts, log1 = l1, log2 = l2 })
= vcat [text "Total ticks: " <+> int tks,
blankLine,
pprTickCounts dts,
getVerboseSimplStats $ \dbg -> if dbg
then
vcat [blankLine,
text "Log (most recent first)",
nest 4 (vcat (map ppr l1) $$ vcat (map ppr l2))]
else Outputable.empty
]
{- Note [Which transformations are innocuous]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At one point (Jun 18) I wondered if some transformations (ticks)
might be "innocuous", in the sense that they do not unlock a later
transformation that does not occur in the same pass. If so, we could
refrain from bumping the overall tick-count for such innocuous
transformations, and perhaps terminate the simplifier one pass
earlier.
But alas I found that virtually nothing was innocuous! This Note
just records what I learned, in case anyone wants to try again.
These transformations are not innocuous:
*** NB: I think these ones could be made innocuous
EtaExpansion
LetFloatFromLet
LetFloatFromLet
x = K (let z = e2 in Just z)
prepareRhs transforms to
x2 = let z=e2 in Just z
x = K xs
And now more let-floating can happen in the
next pass, on x2
PreInlineUnconditionally
Example in spectral/cichelli/Auxil
hinsert = ...let lo = e in
let j = ...lo... in
case x of
False -> ()
True -> case lo of I# lo' ->
...j...
When we PreInlineUnconditionally j, lo's occ-info changes to once,
so it can be PreInlineUnconditionally in the next pass, and a
cascade of further things can happen.
PostInlineUnconditionally
let x = e in
let y = ...x.. in
case .. of { A -> ...x...y...
B -> ...x...y... }
Current postinlineUnconditinaly will inline y, and then x; sigh.
But PostInlineUnconditionally might also unlock subsequent
transformations for the same reason as PreInlineUnconditionally,
so it's probably not innocuous anyway.
KnownBranch, BetaReduction:
May drop chunks of code, and thereby enable PreInlineUnconditionally
for some let-binding which now occurs once
EtaExpansion:
Example in imaginary/digits-of-e1
fail = \void. e where e :: IO ()
--> etaExpandRhs
fail = \void. (\s. (e |> g) s) |> sym g where g :: IO () ~ S -> (S,())
--> Next iteration of simplify
fail1 = \void. \s. (e |> g) s
fail = fail1 |> Void# -> sym g
And now inline 'fail'
CaseMerge:
case x of y {
DEFAULT -> case y of z { pi -> ei }
alts2 }
---> CaseMerge
case x of { pi -> let z = y in ei
; alts2 }
The "let z=y" case-binder-swap gets dealt with in the next pass
-}
pprTickCounts :: Map Tick Int -> SDoc
pprTickCounts counts
= vcat (map pprTickGroup groups)
where
groups :: [NonEmpty (Tick, Int)] -- Each group shares a common tag
-- toList returns common tags adjacent
groups = NE.groupWith (tickToTag . fst) (Map.toList counts)
pprTickGroup :: NonEmpty (Tick, Int) -> SDoc
pprTickGroup group@((tick1,_) :| _)
= hang (int (sum (fmap snd group)) <+> pprTickType tick1)
2 (vcat [ int n <+> pprTickCts tick
-- flip as we want largest first
| (tick,n) <- sortOn (Down . snd) (NE.toList group)])
data Tick -- See Note [Which transformations are innocuous]
= PreInlineUnconditionally Id
| PostInlineUnconditionally Id
| UnfoldingDone Id
| RuleFired FastString -- Rule name
| LetFloatFromLet
| EtaExpansion Id -- LHS binder
| EtaReduction Id -- Binder on outer lambda
| BetaReduction Id -- Lambda binder
| CaseOfCase Id -- Bndr on *inner* case
| KnownBranch Id -- Case binder
| CaseMerge Id -- Binder on outer case
| AltMerge Id -- Case binder
| CaseElim Id -- Case binder
| CaseIdentity Id -- Case binder
| FillInCaseDefault Id -- Case binder
| SimplifierDone -- Ticked at each iteration of the simplifier
instance Outputable Tick where
ppr tick = pprTickType tick <+> pprTickCts tick
instance Eq Tick where
a == b = case a `cmpTick` b of
EQ -> True
_ -> False
instance Ord Tick where
compare = cmpTick
tickToTag :: Tick -> Int
tickToTag (PreInlineUnconditionally _) = 0
tickToTag (PostInlineUnconditionally _) = 1
tickToTag (UnfoldingDone _) = 2
tickToTag (RuleFired _) = 3
tickToTag LetFloatFromLet = 4
tickToTag (EtaExpansion _) = 5
tickToTag (EtaReduction _) = 6
tickToTag (BetaReduction _) = 7
tickToTag (CaseOfCase _) = 8
tickToTag (KnownBranch _) = 9
tickToTag (CaseMerge _) = 10
tickToTag (CaseElim _) = 11
tickToTag (CaseIdentity _) = 12
tickToTag (FillInCaseDefault _) = 13
tickToTag SimplifierDone = 16
tickToTag (AltMerge _) = 17
pprTickType :: Tick -> SDoc
pprTickType (PreInlineUnconditionally _) = text "PreInlineUnconditionally"
pprTickType (PostInlineUnconditionally _)= text "PostInlineUnconditionally"
pprTickType (UnfoldingDone _) = text "UnfoldingDone"
pprTickType (RuleFired _) = text "RuleFired"
pprTickType LetFloatFromLet = text "LetFloatFromLet"
pprTickType (EtaExpansion _) = text "EtaExpansion"
pprTickType (EtaReduction _) = text "EtaReduction"
pprTickType (BetaReduction _) = text "BetaReduction"
pprTickType (CaseOfCase _) = text "CaseOfCase"
pprTickType (KnownBranch _) = text "KnownBranch"
pprTickType (CaseMerge _) = text "CaseMerge"
pprTickType (AltMerge _) = text "AltMerge"
pprTickType (CaseElim _) = text "CaseElim"
pprTickType (CaseIdentity _) = text "CaseIdentity"
pprTickType (FillInCaseDefault _) = text "FillInCaseDefault"
pprTickType SimplifierDone = text "SimplifierDone"
pprTickCts :: Tick -> SDoc
pprTickCts (PreInlineUnconditionally v) = ppr v
pprTickCts (PostInlineUnconditionally v)= ppr v
pprTickCts (UnfoldingDone v) = ppr v
pprTickCts (RuleFired v) = ppr v
pprTickCts LetFloatFromLet = Outputable.empty
pprTickCts (EtaExpansion v) = ppr v
pprTickCts (EtaReduction v) = ppr v
pprTickCts (BetaReduction v) = ppr v
pprTickCts (CaseOfCase v) = ppr v
pprTickCts (KnownBranch v) = ppr v
pprTickCts (CaseMerge v) = ppr v
pprTickCts (AltMerge v) = ppr v
pprTickCts (CaseElim v) = ppr v
pprTickCts (CaseIdentity v) = ppr v
pprTickCts (FillInCaseDefault v) = ppr v
pprTickCts _ = Outputable.empty
cmpTick :: Tick -> Tick -> Ordering
cmpTick a b = case (tickToTag a `compare` tickToTag b) of
GT -> GT
EQ -> cmpEqTick a b
LT -> LT
cmpEqTick :: Tick -> Tick -> Ordering
cmpEqTick (PreInlineUnconditionally a) (PreInlineUnconditionally b) = a `compare` b
cmpEqTick (PostInlineUnconditionally a) (PostInlineUnconditionally b) = a `compare` b
cmpEqTick (UnfoldingDone a) (UnfoldingDone b) = a `compare` b
cmpEqTick (RuleFired a) (RuleFired b) = a `uniqCompareFS` b
cmpEqTick (EtaExpansion a) (EtaExpansion b) = a `compare` b
cmpEqTick (EtaReduction a) (EtaReduction b) = a `compare` b
cmpEqTick (BetaReduction a) (BetaReduction b) = a `compare` b
cmpEqTick (CaseOfCase a) (CaseOfCase b) = a `compare` b
cmpEqTick (KnownBranch a) (KnownBranch b) = a `compare` b
cmpEqTick (CaseMerge a) (CaseMerge b) = a `compare` b
cmpEqTick (AltMerge a) (AltMerge b) = a `compare` b
cmpEqTick (CaseElim a) (CaseElim b) = a `compare` b
cmpEqTick (CaseIdentity a) (CaseIdentity b) = a `compare` b
cmpEqTick (FillInCaseDefault a) (FillInCaseDefault b) = a `compare` b
cmpEqTick _ _ = EQ
|