1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -O2 -funbox-strict-fields #-}
#if MIN_VERSION_base(4,16,0)
#define HAS_TYPELITCHAR
#endif
-- We always optimise this, otherwise performance of a non-optimised
-- compiler is severely affected
--
-- (c) The University of Glasgow 2002-2006
--
-- Binary I/O library, with special tweaks for GHC
--
-- Based on the nhc98 Binary library, which is copyright
-- (c) Malcolm Wallace and Colin Runciman, University of York, 1998.
-- Under the terms of the license for that software, we must tell you
-- where you can obtain the original version of the Binary library, namely
-- http://www.cs.york.ac.uk/fp/nhc98/
module GHC.Utils.Binary
( {-type-} Bin,
{-class-} Binary(..),
{-type-} BinHandle,
SymbolTable, Dictionary,
BinData(..), dataHandle, handleData,
unsafeUnpackBinBuffer,
openBinMem,
-- closeBin,
seekBin,
tellBin,
castBin,
withBinBuffer,
foldGet,
writeBinMem,
readBinMem,
readBinMemN,
putAt, getAt,
forwardPut, forwardPut_, forwardGet,
-- * For writing instances
putByte,
getByte,
-- * Variable length encodings
putULEB128,
getULEB128,
putSLEB128,
getSLEB128,
-- * Fixed length encoding
FixedLengthEncoding(..),
-- * Lazy Binary I/O
lazyGet,
lazyPut,
lazyGetMaybe,
lazyPutMaybe,
-- * User data
UserData(..), getUserData, setUserData,
newReadState, newWriteState, noUserData,
-- * String table ("dictionary")
putDictionary, getDictionary, putFS,
FSTable, initFSTable, getDictFastString, putDictFastString,
-- * Newtype wrappers
BinSpan(..), BinSrcSpan(..), BinLocated(..)
) where
import GHC.Prelude
import Language.Haskell.Syntax.Module.Name (ModuleName(..))
import {-# SOURCE #-} GHC.Types.Name (Name)
import GHC.Data.FastString
import GHC.Utils.Panic.Plain
import GHC.Types.Unique.FM
import GHC.Data.FastMutInt
import GHC.Utils.Fingerprint
import GHC.Types.SrcLoc
import GHC.Types.Unique
import qualified GHC.Data.Strict as Strict
import Control.DeepSeq
import Foreign hiding (shiftL, shiftR, void)
import Data.Array
import Data.Array.IO
import Data.Array.Unsafe
import Data.ByteString (ByteString)
import qualified Data.ByteString.Internal as BS
import qualified Data.ByteString.Unsafe as BS
import Data.IORef
import Data.Char ( ord, chr )
import Data.List.NonEmpty ( NonEmpty(..))
import qualified Data.List.NonEmpty as NonEmpty
import Data.Set ( Set )
import qualified Data.Set as Set
import Data.Time
import Data.List (unfoldr)
import Control.Monad ( when, (<$!>), unless, forM_, void )
import System.IO as IO
import System.IO.Unsafe ( unsafeInterleaveIO )
import System.IO.Error ( mkIOError, eofErrorType )
import GHC.Real ( Ratio(..) )
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
#if MIN_VERSION_base(4,15,0)
import GHC.ForeignPtr ( unsafeWithForeignPtr )
#endif
type BinArray = ForeignPtr Word8
#if !MIN_VERSION_base(4,15,0)
unsafeWithForeignPtr :: ForeignPtr a -> (Ptr a -> IO b) -> IO b
unsafeWithForeignPtr = withForeignPtr
#endif
---------------------------------------------------------------
-- BinData
---------------------------------------------------------------
data BinData = BinData Int BinArray
instance NFData BinData where
rnf (BinData sz _) = rnf sz
instance Binary BinData where
put_ bh (BinData sz dat) = do
put_ bh sz
putPrim bh sz $ \dest ->
unsafeWithForeignPtr dat $ \orig ->
copyBytes dest orig sz
--
get bh = do
sz <- get bh
dat <- mallocForeignPtrBytes sz
getPrim bh sz $ \orig ->
unsafeWithForeignPtr dat $ \dest ->
copyBytes dest orig sz
return (BinData sz dat)
dataHandle :: BinData -> IO BinHandle
dataHandle (BinData size bin) = do
ixr <- newFastMutInt 0
szr <- newFastMutInt size
binr <- newIORef bin
return (BinMem noUserData ixr szr binr)
handleData :: BinHandle -> IO BinData
handleData (BinMem _ ixr _ binr) = BinData <$> readFastMutInt ixr <*> readIORef binr
---------------------------------------------------------------
-- BinHandle
---------------------------------------------------------------
data BinHandle
= BinMem { -- binary data stored in an unboxed array
bh_usr :: UserData, -- sigh, need parameterized modules :-)
_off_r :: !FastMutInt, -- the current offset
_sz_r :: !FastMutInt, -- size of the array (cached)
_arr_r :: !(IORef BinArray) -- the array (bounds: (0,size-1))
}
-- XXX: should really store a "high water mark" for dumping out
-- the binary data to a file.
getUserData :: BinHandle -> UserData
getUserData bh = bh_usr bh
setUserData :: BinHandle -> UserData -> BinHandle
setUserData bh us = bh { bh_usr = us }
-- | Get access to the underlying buffer.
withBinBuffer :: BinHandle -> (ByteString -> IO a) -> IO a
withBinBuffer (BinMem _ ix_r _ arr_r) action = do
arr <- readIORef arr_r
ix <- readFastMutInt ix_r
action $ BS.fromForeignPtr arr 0 ix
unsafeUnpackBinBuffer :: ByteString -> IO BinHandle
unsafeUnpackBinBuffer (BS.BS arr len) = do
arr_r <- newIORef arr
ix_r <- newFastMutInt 0
sz_r <- newFastMutInt len
return (BinMem noUserData ix_r sz_r arr_r)
---------------------------------------------------------------
-- Bin
---------------------------------------------------------------
newtype Bin a = BinPtr Int
deriving (Eq, Ord, Show, Bounded)
castBin :: Bin a -> Bin b
castBin (BinPtr i) = BinPtr i
---------------------------------------------------------------
-- class Binary
---------------------------------------------------------------
-- | Do not rely on instance sizes for general types,
-- we use variable length encoding for many of them.
class Binary a where
put_ :: BinHandle -> a -> IO ()
put :: BinHandle -> a -> IO (Bin a)
get :: BinHandle -> IO a
-- define one of put_, put. Use of put_ is recommended because it
-- is more likely that tail-calls can kick in, and we rarely need the
-- position return value.
put_ bh a = do _ <- put bh a; return ()
put bh a = do p <- tellBin bh; put_ bh a; return p
putAt :: Binary a => BinHandle -> Bin a -> a -> IO ()
putAt bh p x = do seekBin bh p; put_ bh x; return ()
getAt :: Binary a => BinHandle -> Bin a -> IO a
getAt bh p = do seekBin bh p; get bh
openBinMem :: Int -> IO BinHandle
openBinMem size
| size <= 0 = error "GHC.Utils.Binary.openBinMem: size must be >= 0"
| otherwise = do
arr <- mallocForeignPtrBytes size
arr_r <- newIORef arr
ix_r <- newFastMutInt 0
sz_r <- newFastMutInt size
return (BinMem noUserData ix_r sz_r arr_r)
tellBin :: BinHandle -> IO (Bin a)
tellBin (BinMem _ r _ _) = do ix <- readFastMutInt r; return (BinPtr ix)
seekBin :: BinHandle -> Bin a -> IO ()
seekBin h@(BinMem _ ix_r sz_r _) (BinPtr !p) = do
sz <- readFastMutInt sz_r
if (p >= sz)
then do expandBin h p; writeFastMutInt ix_r p
else writeFastMutInt ix_r p
-- | SeekBin but without calling expandBin
seekBinNoExpand :: BinHandle -> Bin a -> IO ()
seekBinNoExpand (BinMem _ ix_r sz_r _) (BinPtr !p) = do
sz <- readFastMutInt sz_r
if (p >= sz)
then panic "seekBinNoExpand: seek out of range"
else writeFastMutInt ix_r p
writeBinMem :: BinHandle -> FilePath -> IO ()
writeBinMem (BinMem _ ix_r _ arr_r) fn = do
h <- openBinaryFile fn WriteMode
arr <- readIORef arr_r
ix <- readFastMutInt ix_r
unsafeWithForeignPtr arr $ \p -> hPutBuf h p ix
hClose h
readBinMem :: FilePath -> IO BinHandle
readBinMem filename = do
withBinaryFile filename ReadMode $ \h -> do
filesize' <- hFileSize h
let filesize = fromIntegral filesize'
readBinMem_ filesize h
readBinMemN :: Int -> FilePath -> IO (Maybe BinHandle)
readBinMemN size filename = do
withBinaryFile filename ReadMode $ \h -> do
filesize' <- hFileSize h
let filesize = fromIntegral filesize'
if filesize < size
then pure Nothing
else Just <$> readBinMem_ size h
readBinMem_ :: Int -> Handle -> IO BinHandle
readBinMem_ filesize h = do
arr <- mallocForeignPtrBytes filesize
count <- unsafeWithForeignPtr arr $ \p -> hGetBuf h p filesize
when (count /= filesize) $
error ("Binary.readBinMem: only read " ++ show count ++ " bytes")
arr_r <- newIORef arr
ix_r <- newFastMutInt 0
sz_r <- newFastMutInt filesize
return (BinMem noUserData ix_r sz_r arr_r)
-- expand the size of the array to include a specified offset
expandBin :: BinHandle -> Int -> IO ()
expandBin (BinMem _ _ sz_r arr_r) !off = do
!sz <- readFastMutInt sz_r
let !sz' = getSize sz
arr <- readIORef arr_r
arr' <- mallocForeignPtrBytes sz'
withForeignPtr arr $ \old ->
withForeignPtr arr' $ \new ->
copyBytes new old sz
writeFastMutInt sz_r sz'
writeIORef arr_r arr'
where
getSize :: Int -> Int
getSize !sz
| sz > off
= sz
| otherwise
= getSize (sz * 2)
foldGet
:: Binary a
=> Word -- n elements
-> BinHandle
-> b -- initial accumulator
-> (Word -> a -> b -> IO b)
-> IO b
foldGet n bh init_b f = go 0 init_b
where
go i b
| i == n = return b
| otherwise = do
a <- get bh
b' <- f i a b
go (i+1) b'
-- -----------------------------------------------------------------------------
-- Low-level reading/writing of bytes
-- | Takes a size and action writing up to @size@ bytes.
-- After the action has run advance the index to the buffer
-- by size bytes.
putPrim :: BinHandle -> Int -> (Ptr Word8 -> IO ()) -> IO ()
putPrim h@(BinMem _ ix_r sz_r arr_r) size f = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
when (ix + size > sz) $
expandBin h (ix + size)
arr <- readIORef arr_r
unsafeWithForeignPtr arr $ \op -> f (op `plusPtr` ix)
writeFastMutInt ix_r (ix + size)
-- -- | Similar to putPrim but advances the index by the actual number of
-- -- bytes written.
-- putPrimMax :: BinHandle -> Int -> (Ptr Word8 -> IO Int) -> IO ()
-- putPrimMax h@(BinMem _ ix_r sz_r arr_r) size f = do
-- ix <- readFastMutInt ix_r
-- sz <- readFastMutInt sz_r
-- when (ix + size > sz) $
-- expandBin h (ix + size)
-- arr <- readIORef arr_r
-- written <- withForeignPtr arr $ \op -> f (op `plusPtr` ix)
-- writeFastMutInt ix_r (ix + written)
getPrim :: BinHandle -> Int -> (Ptr Word8 -> IO a) -> IO a
getPrim (BinMem _ ix_r sz_r arr_r) size f = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
when (ix + size > sz) $
ioError (mkIOError eofErrorType "Data.Binary.getPrim" Nothing Nothing)
arr <- readIORef arr_r
w <- unsafeWithForeignPtr arr $ \p -> f (p `plusPtr` ix)
-- This is safe WRT #17760 as we we guarantee that the above line doesn't
-- diverge
writeFastMutInt ix_r (ix + size)
return w
putWord8 :: BinHandle -> Word8 -> IO ()
putWord8 h !w = putPrim h 1 (\op -> poke op w)
getWord8 :: BinHandle -> IO Word8
getWord8 h = getPrim h 1 peek
putWord16 :: BinHandle -> Word16 -> IO ()
putWord16 h w = putPrim h 2 (\op -> do
pokeElemOff op 0 (fromIntegral (w `shiftR` 8))
pokeElemOff op 1 (fromIntegral (w .&. 0xFF))
)
getWord16 :: BinHandle -> IO Word16
getWord16 h = getPrim h 2 (\op -> do
w0 <- fromIntegral <$> peekElemOff op 0
w1 <- fromIntegral <$> peekElemOff op 1
return $! w0 `shiftL` 8 .|. w1
)
putWord32 :: BinHandle -> Word32 -> IO ()
putWord32 h w = putPrim h 4 (\op -> do
pokeElemOff op 0 (fromIntegral (w `shiftR` 24))
pokeElemOff op 1 (fromIntegral ((w `shiftR` 16) .&. 0xFF))
pokeElemOff op 2 (fromIntegral ((w `shiftR` 8) .&. 0xFF))
pokeElemOff op 3 (fromIntegral (w .&. 0xFF))
)
getWord32 :: BinHandle -> IO Word32
getWord32 h = getPrim h 4 (\op -> do
w0 <- fromIntegral <$> peekElemOff op 0
w1 <- fromIntegral <$> peekElemOff op 1
w2 <- fromIntegral <$> peekElemOff op 2
w3 <- fromIntegral <$> peekElemOff op 3
return $! (w0 `shiftL` 24) .|.
(w1 `shiftL` 16) .|.
(w2 `shiftL` 8) .|.
w3
)
putWord64 :: BinHandle -> Word64 -> IO ()
putWord64 h w = putPrim h 8 (\op -> do
pokeElemOff op 0 (fromIntegral (w `shiftR` 56))
pokeElemOff op 1 (fromIntegral ((w `shiftR` 48) .&. 0xFF))
pokeElemOff op 2 (fromIntegral ((w `shiftR` 40) .&. 0xFF))
pokeElemOff op 3 (fromIntegral ((w `shiftR` 32) .&. 0xFF))
pokeElemOff op 4 (fromIntegral ((w `shiftR` 24) .&. 0xFF))
pokeElemOff op 5 (fromIntegral ((w `shiftR` 16) .&. 0xFF))
pokeElemOff op 6 (fromIntegral ((w `shiftR` 8) .&. 0xFF))
pokeElemOff op 7 (fromIntegral (w .&. 0xFF))
)
getWord64 :: BinHandle -> IO Word64
getWord64 h = getPrim h 8 (\op -> do
w0 <- fromIntegral <$> peekElemOff op 0
w1 <- fromIntegral <$> peekElemOff op 1
w2 <- fromIntegral <$> peekElemOff op 2
w3 <- fromIntegral <$> peekElemOff op 3
w4 <- fromIntegral <$> peekElemOff op 4
w5 <- fromIntegral <$> peekElemOff op 5
w6 <- fromIntegral <$> peekElemOff op 6
w7 <- fromIntegral <$> peekElemOff op 7
return $! (w0 `shiftL` 56) .|.
(w1 `shiftL` 48) .|.
(w2 `shiftL` 40) .|.
(w3 `shiftL` 32) .|.
(w4 `shiftL` 24) .|.
(w5 `shiftL` 16) .|.
(w6 `shiftL` 8) .|.
w7
)
putByte :: BinHandle -> Word8 -> IO ()
putByte bh !w = putWord8 bh w
getByte :: BinHandle -> IO Word8
getByte h = getWord8 h
-- -----------------------------------------------------------------------------
-- Encode numbers in LEB128 encoding.
-- Requires one byte of space per 7 bits of data.
--
-- There are signed and unsigned variants.
-- Do NOT use the unsigned one for signed values, at worst it will
-- result in wrong results, at best it will lead to bad performance
-- when coercing negative values to an unsigned type.
--
-- We mark them as SPECIALIZE as it's extremely critical that they get specialized
-- to their specific types.
--
-- TODO: Each use of putByte performs a bounds check,
-- we should use putPrimMax here. However it's quite hard to return
-- the number of bytes written into putPrimMax without allocating an
-- Int for it, while the code below does not allocate at all.
-- So we eat the cost of the bounds check instead of increasing allocations
-- for now.
-- Unsigned numbers
{-# SPECIALISE putULEB128 :: BinHandle -> Word -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Word64 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Word32 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Word16 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Int -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Int64 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Int32 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Int16 -> IO () #-}
putULEB128 :: forall a. (Integral a, FiniteBits a) => BinHandle -> a -> IO ()
putULEB128 bh w =
#if defined(DEBUG)
(if w < 0 then panic "putULEB128: Signed number" else id) $
#endif
go w
where
go :: a -> IO ()
go w
| w <= (127 :: a)
= putByte bh (fromIntegral w :: Word8)
| otherwise = do
-- bit 7 (8th bit) indicates more to come.
let !byte = setBit (fromIntegral w) 7 :: Word8
putByte bh byte
go (w `unsafeShiftR` 7)
{-# SPECIALISE getULEB128 :: BinHandle -> IO Word #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Word64 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Word32 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Word16 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Int #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Int64 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Int32 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Int16 #-}
getULEB128 :: forall a. (Integral a, FiniteBits a) => BinHandle -> IO a
getULEB128 bh =
go 0 0
where
go :: Int -> a -> IO a
go shift w = do
b <- getByte bh
let !hasMore = testBit b 7
let !val = w .|. ((clearBit (fromIntegral b) 7) `unsafeShiftL` shift) :: a
if hasMore
then do
go (shift+7) val
else
return $! val
-- Signed numbers
{-# SPECIALISE putSLEB128 :: BinHandle -> Word -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Word64 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Word32 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Word16 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Int -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Int64 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Int32 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Int16 -> IO () #-}
putSLEB128 :: forall a. (Integral a, Bits a) => BinHandle -> a -> IO ()
putSLEB128 bh initial = go initial
where
go :: a -> IO ()
go val = do
let !byte = fromIntegral (clearBit val 7) :: Word8
let !val' = val `unsafeShiftR` 7
let !signBit = testBit byte 6
let !done =
-- Unsigned value, val' == 0 and last value can
-- be discriminated from a negative number.
((val' == 0 && not signBit) ||
-- Signed value,
(val' == -1 && signBit))
let !byte' = if done then byte else setBit byte 7
putByte bh byte'
unless done $ go val'
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Word #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Word64 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Word32 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Word16 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Int #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Int64 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Int32 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Int16 #-}
getSLEB128 :: forall a. (Show a, Integral a, FiniteBits a) => BinHandle -> IO a
getSLEB128 bh = do
(val,shift,signed) <- go 0 0
if signed && (shift < finiteBitSize val )
then return $! ((complement 0 `unsafeShiftL` shift) .|. val)
else return val
where
go :: Int -> a -> IO (a,Int,Bool)
go shift val = do
byte <- getByte bh
let !byteVal = fromIntegral (clearBit byte 7) :: a
let !val' = val .|. (byteVal `unsafeShiftL` shift)
let !more = testBit byte 7
let !shift' = shift+7
if more
then go (shift') val'
else do
let !signed = testBit byte 6
return (val',shift',signed)
-- -----------------------------------------------------------------------------
-- Fixed length encoding instances
-- Sometimes words are used to represent a certain bit pattern instead
-- of a number. Using FixedLengthEncoding we will write the pattern as
-- is to the interface file without the variable length encoding we usually
-- apply.
-- | Encode the argument in it's full length. This is different from many default
-- binary instances which make no guarantee about the actual encoding and
-- might do things use variable length encoding.
newtype FixedLengthEncoding a
= FixedLengthEncoding { unFixedLength :: a }
deriving (Eq,Ord,Show)
instance Binary (FixedLengthEncoding Word8) where
put_ h (FixedLengthEncoding x) = putByte h x
get h = FixedLengthEncoding <$> getByte h
instance Binary (FixedLengthEncoding Word16) where
put_ h (FixedLengthEncoding x) = putWord16 h x
get h = FixedLengthEncoding <$> getWord16 h
instance Binary (FixedLengthEncoding Word32) where
put_ h (FixedLengthEncoding x) = putWord32 h x
get h = FixedLengthEncoding <$> getWord32 h
instance Binary (FixedLengthEncoding Word64) where
put_ h (FixedLengthEncoding x) = putWord64 h x
get h = FixedLengthEncoding <$> getWord64 h
-- -----------------------------------------------------------------------------
-- Primitive Word writes
instance Binary Word8 where
put_ bh !w = putWord8 bh w
get = getWord8
instance Binary Word16 where
put_ = putULEB128
get = getULEB128
instance Binary Word32 where
put_ = putULEB128
get = getULEB128
instance Binary Word64 where
put_ = putULEB128
get = getULEB128
-- -----------------------------------------------------------------------------
-- Primitive Int writes
instance Binary Int8 where
put_ h w = put_ h (fromIntegral w :: Word8)
get h = do w <- get h; return $! (fromIntegral (w::Word8))
instance Binary Int16 where
put_ = putSLEB128
get = getSLEB128
instance Binary Int32 where
put_ = putSLEB128
get = getSLEB128
instance Binary Int64 where
put_ h w = putSLEB128 h w
get h = getSLEB128 h
-- -----------------------------------------------------------------------------
-- Instances for standard types
instance Binary () where
put_ _ () = return ()
get _ = return ()
instance Binary Bool where
put_ bh b = putByte bh (fromIntegral (fromEnum b))
get bh = do x <- getWord8 bh; return $! (toEnum (fromIntegral x))
instance Binary Char where
put_ bh c = put_ bh (fromIntegral (ord c) :: Word32)
get bh = do x <- get bh; return $! (chr (fromIntegral (x :: Word32)))
instance Binary Int where
put_ bh i = put_ bh (fromIntegral i :: Int64)
get bh = do
x <- get bh
return $! (fromIntegral (x :: Int64))
instance Binary a => Binary [a] where
put_ bh l = do
let len = length l
put_ bh len
mapM_ (put_ bh) l
get bh = do
len <- get bh :: IO Int -- Int is variable length encoded so only
-- one byte for small lists.
let loop 0 = return []
loop n = do a <- get bh; as <- loop (n-1); return (a:as)
loop len
-- | This instance doesn't rely on the determinism of the keys' 'Ord' instance,
-- so it works e.g. for 'Name's too.
instance (Binary a, Ord a) => Binary (Set a) where
put_ bh s = put_ bh (Set.toList s)
get bh = Set.fromList <$> get bh
instance Binary a => Binary (NonEmpty a) where
put_ bh = put_ bh . NonEmpty.toList
get bh = NonEmpty.fromList <$> get bh
instance (Ix a, Binary a, Binary b) => Binary (Array a b) where
put_ bh arr = do
put_ bh $ bounds arr
put_ bh $ elems arr
get bh = do
bounds <- get bh
xs <- get bh
return $ listArray bounds xs
instance (Binary a, Binary b) => Binary (a,b) where
put_ bh (a,b) = do put_ bh a; put_ bh b
get bh = do a <- get bh
b <- get bh
return (a,b)
instance (Binary a, Binary b, Binary c) => Binary (a,b,c) where
put_ bh (a,b,c) = do put_ bh a; put_ bh b; put_ bh c
get bh = do a <- get bh
b <- get bh
c <- get bh
return (a,b,c)
instance (Binary a, Binary b, Binary c, Binary d) => Binary (a,b,c,d) where
put_ bh (a,b,c,d) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
return (a,b,c,d)
instance (Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a,b,c,d, e) where
put_ bh (a,b,c,d, e) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e;
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
return (a,b,c,d,e)
instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a,b,c,d, e, f) where
put_ bh (a,b,c,d, e, f) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f;
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
f <- get bh
return (a,b,c,d,e,f)
instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g) => Binary (a,b,c,d,e,f,g) where
put_ bh (a,b,c,d,e,f,g) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f; put_ bh g
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
f <- get bh
g <- get bh
return (a,b,c,d,e,f,g)
instance Binary a => Binary (Maybe a) where
put_ bh Nothing = putByte bh 0
put_ bh (Just a) = do putByte bh 1; put_ bh a
get bh = do h <- getWord8 bh
case h of
0 -> return Nothing
_ -> do x <- get bh; return (Just x)
instance Binary a => Binary (Strict.Maybe a) where
put_ bh Strict.Nothing = putByte bh 0
put_ bh (Strict.Just a) = do putByte bh 1; put_ bh a
get bh =
do h <- getWord8 bh
case h of
0 -> return Strict.Nothing
_ -> do x <- get bh; return (Strict.Just x)
instance (Binary a, Binary b) => Binary (Either a b) where
put_ bh (Left a) = do putByte bh 0; put_ bh a
put_ bh (Right b) = do putByte bh 1; put_ bh b
get bh = do h <- getWord8 bh
case h of
0 -> do a <- get bh ; return (Left a)
_ -> do b <- get bh ; return (Right b)
instance Binary UTCTime where
put_ bh u = do put_ bh (utctDay u)
put_ bh (utctDayTime u)
get bh = do day <- get bh
dayTime <- get bh
return $ UTCTime { utctDay = day, utctDayTime = dayTime }
instance Binary Day where
put_ bh d = put_ bh (toModifiedJulianDay d)
get bh = do i <- get bh
return $ ModifiedJulianDay { toModifiedJulianDay = i }
instance Binary DiffTime where
put_ bh dt = put_ bh (toRational dt)
get bh = do r <- get bh
return $ fromRational r
{-
Finally - a reasonable portable Integer instance.
We used to encode values in the Int32 range as such,
falling back to a string of all things. In either case
we stored a tag byte to discriminate between the two cases.
This made some sense as it's highly portable but also not very
efficient.
However GHC stores a surprisingly large number off large Integer
values. In the examples looked at between 25% and 50% of Integers
serialized were outside of the Int32 range.
Consider a valie like `2724268014499746065`, some sort of hash
actually generated by GHC.
In the old scheme this was encoded as a list of 19 chars. This
gave a size of 77 Bytes, one for the length of the list and 76
since we encode chars as Word32 as well.
We can easily do better. The new plan is:
* Start with a tag byte
* 0 => Int64 (LEB128 encoded)
* 1 => Negative large integer
* 2 => Positive large integer
* Followed by the value:
* Int64 is encoded as usual
* Large integers are encoded as a list of bytes (Word8).
We use Data.Bits which defines a bit order independent of the representation.
Values are stored LSB first.
This means our example value `2724268014499746065` is now only 10 bytes large.
* One byte tag
* One byte for the length of the [Word8] list.
* 8 bytes for the actual date.
The new scheme also does not depend in any way on
architecture specific details.
We still use this scheme even with LEB128 available,
as it has less overhead for truly large numbers. (> maxBound :: Int64)
The instance is used for in Binary Integer and Binary Rational in GHC.Types.Literal
-}
instance Binary Integer where
put_ bh i
| i >= lo64 && i <= hi64 = do
putWord8 bh 0
put_ bh (fromIntegral i :: Int64)
| otherwise = do
if i < 0
then putWord8 bh 1
else putWord8 bh 2
put_ bh (unroll $ abs i)
where
lo64 = fromIntegral (minBound :: Int64)
hi64 = fromIntegral (maxBound :: Int64)
get bh = do
int_kind <- getWord8 bh
case int_kind of
0 -> fromIntegral <$!> (get bh :: IO Int64)
-- Large integer
1 -> negate <$!> getInt
2 -> getInt
_ -> panic "Binary Integer - Invalid byte"
where
getInt :: IO Integer
getInt = roll <$!> (get bh :: IO [Word8])
unroll :: Integer -> [Word8]
unroll = unfoldr step
where
step 0 = Nothing
step i = Just (fromIntegral i, i `shiftR` 8)
roll :: [Word8] -> Integer
roll = foldl' unstep 0 . reverse
where
unstep a b = a `shiftL` 8 .|. fromIntegral b
{-
-- This code is currently commented out.
-- See https://gitlab.haskell.org/ghc/ghc/issues/3379#note_104346 for
-- discussion.
put_ bh (S# i#) = do putByte bh 0; put_ bh (I# i#)
put_ bh (J# s# a#) = do
putByte bh 1
put_ bh (I# s#)
let sz# = sizeofByteArray# a# -- in *bytes*
put_ bh (I# sz#) -- in *bytes*
putByteArray bh a# sz#
get bh = do
b <- getByte bh
case b of
0 -> do (I# i#) <- get bh
return (S# i#)
_ -> do (I# s#) <- get bh
sz <- get bh
(BA a#) <- getByteArray bh sz
return (J# s# a#)
putByteArray :: BinHandle -> ByteArray# -> Int# -> IO ()
putByteArray bh a s# = loop 0#
where loop n#
| n# ==# s# = return ()
| otherwise = do
putByte bh (indexByteArray a n#)
loop (n# +# 1#)
getByteArray :: BinHandle -> Int -> IO ByteArray
getByteArray bh (I# sz) = do
(MBA arr) <- newByteArray sz
let loop n
| n ==# sz = return ()
| otherwise = do
w <- getByte bh
writeByteArray arr n w
loop (n +# 1#)
loop 0#
freezeByteArray arr
-}
{-
data ByteArray = BA ByteArray#
data MBA = MBA (MutableByteArray# RealWorld)
newByteArray :: Int# -> IO MBA
newByteArray sz = IO $ \s ->
case newByteArray# sz s of { (# s, arr #) ->
(# s, MBA arr #) }
freezeByteArray :: MutableByteArray# RealWorld -> IO ByteArray
freezeByteArray arr = IO $ \s ->
case unsafeFreezeByteArray# arr s of { (# s, arr #) ->
(# s, BA arr #) }
writeByteArray :: MutableByteArray# RealWorld -> Int# -> Word8 -> IO ()
writeByteArray arr i (W8# w) = IO $ \s ->
case writeWord8Array# arr i w s of { s ->
(# s, () #) }
indexByteArray :: ByteArray# -> Int# -> Word8
indexByteArray a# n# = W8# (indexWord8Array# a# n#)
-}
instance (Binary a) => Binary (Ratio a) where
put_ bh (a :% b) = do put_ bh a; put_ bh b
get bh = do a <- get bh; b <- get bh; return (a :% b)
-- Instance uses fixed-width encoding to allow inserting
-- Bin placeholders in the stream.
instance Binary (Bin a) where
put_ bh (BinPtr i) = putWord32 bh (fromIntegral i :: Word32)
get bh = do i <- getWord32 bh; return (BinPtr (fromIntegral (i :: Word32)))
-- -----------------------------------------------------------------------------
-- Forward reading/writing
-- | "forwardPut put_A put_B" outputs A after B but allows A to be read before B
-- by using a forward reference
forwardPut :: BinHandle -> (b -> IO a) -> IO b -> IO (a,b)
forwardPut bh put_A put_B = do
-- write placeholder pointer to A
pre_a <- tellBin bh
put_ bh pre_a
-- write B
r_b <- put_B
-- update A's pointer
a <- tellBin bh
putAt bh pre_a a
seekBinNoExpand bh a
-- write A
r_a <- put_A r_b
pure (r_a,r_b)
forwardPut_ :: BinHandle -> (b -> IO a) -> IO b -> IO ()
forwardPut_ bh put_A put_B = void $ forwardPut bh put_A put_B
-- | Read a value stored using a forward reference
forwardGet :: BinHandle -> IO a -> IO a
forwardGet bh get_A = do
-- read forward reference
p <- get bh -- a BinPtr
-- store current position
p_a <- tellBin bh
-- go read the forward value, then seek back
seekBinNoExpand bh p
r <- get_A
seekBinNoExpand bh p_a
pure r
-- -----------------------------------------------------------------------------
-- Lazy reading/writing
lazyPut :: Binary a => BinHandle -> a -> IO ()
lazyPut bh a = do
-- output the obj with a ptr to skip over it:
pre_a <- tellBin bh
put_ bh pre_a -- save a slot for the ptr
put_ bh a -- dump the object
q <- tellBin bh -- q = ptr to after object
putAt bh pre_a q -- fill in slot before a with ptr to q
seekBin bh q -- finally carry on writing at q
lazyGet :: Binary a => BinHandle -> IO a
lazyGet bh = do
p <- get bh -- a BinPtr
p_a <- tellBin bh
a <- unsafeInterleaveIO $ do
-- NB: Use a fresh off_r variable in the child thread, for thread
-- safety.
off_r <- newFastMutInt 0
getAt bh { _off_r = off_r } p_a
seekBin bh p -- skip over the object for now
return a
-- | Serialize the constructor strictly but lazily serialize a value inside a
-- 'Just'.
--
-- This way we can check for the presence of a value without deserializing the
-- value itself.
lazyPutMaybe :: Binary a => BinHandle -> Maybe a -> IO ()
lazyPutMaybe bh Nothing = putWord8 bh 0
lazyPutMaybe bh (Just x) = do
putWord8 bh 1
lazyPut bh x
-- | Deserialize a value serialized by 'lazyPutMaybe'.
lazyGetMaybe :: Binary a => BinHandle -> IO (Maybe a)
lazyGetMaybe bh = do
h <- getWord8 bh
case h of
0 -> pure Nothing
_ -> Just <$> lazyGet bh
-- -----------------------------------------------------------------------------
-- UserData
-- -----------------------------------------------------------------------------
-- | Information we keep around during interface file
-- serialization/deserialization. Namely we keep the functions for serializing
-- and deserializing 'Name's and 'FastString's. We do this because we actually
-- use serialization in two distinct settings,
--
-- * When serializing interface files themselves
--
-- * When computing the fingerprint of an IfaceDecl (which we computing by
-- hashing its Binary serialization)
--
-- These two settings have different needs while serializing Names:
--
-- * Names in interface files are serialized via a symbol table (see Note
-- [Symbol table representation of names] in "GHC.Iface.Binary").
--
-- * During fingerprinting a binding Name is serialized as the OccName and a
-- non-binding Name is serialized as the fingerprint of the thing they
-- represent. See Note [Fingerprinting IfaceDecls] for further discussion.
--
data UserData =
UserData {
-- for *deserialising* only:
ud_get_name :: BinHandle -> IO Name,
ud_get_fs :: BinHandle -> IO FastString,
-- for *serialising* only:
ud_put_nonbinding_name :: BinHandle -> Name -> IO (),
-- ^ serialize a non-binding 'Name' (e.g. a reference to another
-- binding).
ud_put_binding_name :: BinHandle -> Name -> IO (),
-- ^ serialize a binding 'Name' (e.g. the name of an IfaceDecl)
ud_put_fs :: BinHandle -> FastString -> IO ()
}
newReadState :: (BinHandle -> IO Name) -- ^ how to deserialize 'Name's
-> (BinHandle -> IO FastString)
-> UserData
newReadState get_name get_fs
= UserData { ud_get_name = get_name,
ud_get_fs = get_fs,
ud_put_nonbinding_name = undef "put_nonbinding_name",
ud_put_binding_name = undef "put_binding_name",
ud_put_fs = undef "put_fs"
}
newWriteState :: (BinHandle -> Name -> IO ())
-- ^ how to serialize non-binding 'Name's
-> (BinHandle -> Name -> IO ())
-- ^ how to serialize binding 'Name's
-> (BinHandle -> FastString -> IO ())
-> UserData
newWriteState put_nonbinding_name put_binding_name put_fs
= UserData { ud_get_name = undef "get_name",
ud_get_fs = undef "get_fs",
ud_put_nonbinding_name = put_nonbinding_name,
ud_put_binding_name = put_binding_name,
ud_put_fs = put_fs
}
noUserData :: UserData
noUserData = UserData
{ ud_get_name = undef "get_name"
, ud_get_fs = undef "get_fs"
, ud_put_nonbinding_name = undef "put_nonbinding_name"
, ud_put_binding_name = undef "put_binding_name"
, ud_put_fs = undef "put_fs"
}
undef :: String -> a
undef s = panic ("Binary.UserData: no " ++ s)
---------------------------------------------------------
-- The Dictionary
---------------------------------------------------------
type Dictionary = Array Int FastString -- The dictionary
-- Should be 0-indexed
putDictionary :: BinHandle -> Int -> UniqFM FastString (Int,FastString) -> IO ()
putDictionary bh sz dict = do
put_ bh sz
mapM_ (putFS bh) (elems (array (0,sz-1) (nonDetEltsUFM dict)))
-- It's OK to use nonDetEltsUFM here because the elements have indices
-- that array uses to create order
getDictionary :: BinHandle -> IO Dictionary
getDictionary bh = do
sz <- get bh :: IO Int
mut_arr <- newArray_ (0, sz-1) :: IO (IOArray Int FastString)
forM_ [0..(sz-1)] $ \i -> do
fs <- getFS bh
writeArray mut_arr i fs
unsafeFreeze mut_arr
getDictFastString :: Dictionary -> BinHandle -> IO FastString
getDictFastString dict bh = do
j <- get bh
return $! (dict ! fromIntegral (j :: Word32))
initFSTable :: BinHandle -> IO (BinHandle, FSTable, IO Int)
initFSTable bh = do
dict_next_ref <- newFastMutInt 0
dict_map_ref <- newIORef emptyUFM
let bin_dict = FSTable
{ fs_tab_next = dict_next_ref
, fs_tab_map = dict_map_ref
}
let put_dict = do
fs_count <- readFastMutInt dict_next_ref
dict_map <- readIORef dict_map_ref
putDictionary bh fs_count dict_map
pure fs_count
-- BinHandle with FastString writing support
let ud = getUserData bh
let ud_fs = ud { ud_put_fs = putDictFastString bin_dict }
let bh_fs = setUserData bh ud_fs
return (bh_fs,bin_dict,put_dict)
putDictFastString :: FSTable -> BinHandle -> FastString -> IO ()
putDictFastString dict bh fs = allocateFastString dict fs >>= put_ bh
allocateFastString :: FSTable -> FastString -> IO Word32
allocateFastString FSTable { fs_tab_next = j_r
, fs_tab_map = out_r
} f = do
out <- readIORef out_r
let !uniq = getUnique f
case lookupUFM_Directly out uniq of
Just (j, _) -> return (fromIntegral j :: Word32)
Nothing -> do
j <- readFastMutInt j_r
writeFastMutInt j_r (j + 1)
writeIORef out_r $! addToUFM_Directly out uniq (j, f)
return (fromIntegral j :: Word32)
-- FSTable is an exact copy of Haddock.InterfaceFile.BinDictionary. We rename to
-- avoid a collision and copy to avoid a dependency.
data FSTable = FSTable { fs_tab_next :: !FastMutInt -- The next index to use
, fs_tab_map :: !(IORef (UniqFM FastString (Int,FastString)))
-- indexed by FastString
}
---------------------------------------------------------
-- The Symbol Table
---------------------------------------------------------
-- On disk, the symbol table is an array of IfExtName, when
-- reading it in we turn it into a SymbolTable.
type SymbolTable = Array Int Name
---------------------------------------------------------
-- Reading and writing FastStrings
---------------------------------------------------------
putFS :: BinHandle -> FastString -> IO ()
putFS bh fs = putBS bh $ bytesFS fs
getFS :: BinHandle -> IO FastString
getFS bh = do
l <- get bh :: IO Int
getPrim bh l (\src -> pure $! mkFastStringBytes src l )
putBS :: BinHandle -> ByteString -> IO ()
putBS bh bs =
BS.unsafeUseAsCStringLen bs $ \(ptr, l) -> do
put_ bh l
putPrim bh l (\op -> copyBytes op (castPtr ptr) l)
getBS :: BinHandle -> IO ByteString
getBS bh = do
l <- get bh :: IO Int
BS.create l $ \dest -> do
getPrim bh l (\src -> copyBytes dest src l)
instance Binary ByteString where
put_ bh f = putBS bh f
get bh = getBS bh
instance Binary FastString where
put_ bh f =
case getUserData bh of
UserData { ud_put_fs = put_fs } -> put_fs bh f
get bh =
case getUserData bh of
UserData { ud_get_fs = get_fs } -> get_fs bh
deriving instance Binary NonDetFastString
deriving instance Binary LexicalFastString
instance Binary Fingerprint where
put_ h (Fingerprint w1 w2) = do put_ h w1; put_ h w2
get h = do w1 <- get h; w2 <- get h; return (Fingerprint w1 w2)
instance Binary ModuleName where
put_ bh (ModuleName fs) = put_ bh fs
get bh = do fs <- get bh; return (ModuleName fs)
-- instance Binary FunctionOrData where
-- put_ bh IsFunction = putByte bh 0
-- put_ bh IsData = putByte bh 1
-- get bh = do
-- h <- getByte bh
-- case h of
-- 0 -> return IsFunction
-- 1 -> return IsData
-- _ -> panic "Binary FunctionOrData"
-- instance Binary TupleSort where
-- put_ bh BoxedTuple = putByte bh 0
-- put_ bh UnboxedTuple = putByte bh 1
-- put_ bh ConstraintTuple = putByte bh 2
-- get bh = do
-- h <- getByte bh
-- case h of
-- 0 -> do return BoxedTuple
-- 1 -> do return UnboxedTuple
-- _ -> do return ConstraintTuple
-- instance Binary Activation where
-- put_ bh NeverActive = do
-- putByte bh 0
-- put_ bh FinalActive = do
-- putByte bh 1
-- put_ bh AlwaysActive = do
-- putByte bh 2
-- put_ bh (ActiveBefore src aa) = do
-- putByte bh 3
-- put_ bh src
-- put_ bh aa
-- put_ bh (ActiveAfter src ab) = do
-- putByte bh 4
-- put_ bh src
-- put_ bh ab
-- get bh = do
-- h <- getByte bh
-- case h of
-- 0 -> do return NeverActive
-- 1 -> do return FinalActive
-- 2 -> do return AlwaysActive
-- 3 -> do src <- get bh
-- aa <- get bh
-- return (ActiveBefore src aa)
-- _ -> do src <- get bh
-- ab <- get bh
-- return (ActiveAfter src ab)
-- instance Binary InlinePragma where
-- put_ bh (InlinePragma s a b c d) = do
-- put_ bh s
-- put_ bh a
-- put_ bh b
-- put_ bh c
-- put_ bh d
-- get bh = do
-- s <- get bh
-- a <- get bh
-- b <- get bh
-- c <- get bh
-- d <- get bh
-- return (InlinePragma s a b c d)
-- instance Binary RuleMatchInfo where
-- put_ bh FunLike = putByte bh 0
-- put_ bh ConLike = putByte bh 1
-- get bh = do
-- h <- getByte bh
-- if h == 1 then return ConLike
-- else return FunLike
-- instance Binary InlineSpec where
-- put_ bh NoUserInlinePrag = putByte bh 0
-- put_ bh Inline = putByte bh 1
-- put_ bh Inlinable = putByte bh 2
-- put_ bh NoInline = putByte bh 3
-- get bh = do h <- getByte bh
-- case h of
-- 0 -> return NoUserInlinePrag
-- 1 -> return Inline
-- 2 -> return Inlinable
-- _ -> return NoInline
-- instance Binary RecFlag where
-- put_ bh Recursive = do
-- putByte bh 0
-- put_ bh NonRecursive = do
-- putByte bh 1
-- get bh = do
-- h <- getByte bh
-- case h of
-- 0 -> do return Recursive
-- _ -> do return NonRecursive
-- instance Binary OverlapMode where
-- put_ bh (NoOverlap s) = putByte bh 0 >> put_ bh s
-- put_ bh (Overlaps s) = putByte bh 1 >> put_ bh s
-- put_ bh (Incoherent s) = putByte bh 2 >> put_ bh s
-- put_ bh (Overlapping s) = putByte bh 3 >> put_ bh s
-- put_ bh (Overlappable s) = putByte bh 4 >> put_ bh s
-- get bh = do
-- h <- getByte bh
-- case h of
-- 0 -> (get bh) >>= \s -> return $ NoOverlap s
-- 1 -> (get bh) >>= \s -> return $ Overlaps s
-- 2 -> (get bh) >>= \s -> return $ Incoherent s
-- 3 -> (get bh) >>= \s -> return $ Overlapping s
-- 4 -> (get bh) >>= \s -> return $ Overlappable s
-- _ -> panic ("get OverlapMode" ++ show h)
-- instance Binary OverlapFlag where
-- put_ bh flag = do put_ bh (overlapMode flag)
-- put_ bh (isSafeOverlap flag)
-- get bh = do
-- h <- get bh
-- b <- get bh
-- return OverlapFlag { overlapMode = h, isSafeOverlap = b }
-- instance Binary FixityDirection where
-- put_ bh InfixL = do
-- putByte bh 0
-- put_ bh InfixR = do
-- putByte bh 1
-- put_ bh InfixN = do
-- putByte bh 2
-- get bh = do
-- h <- getByte bh
-- case h of
-- 0 -> do return InfixL
-- 1 -> do return InfixR
-- _ -> do return InfixN
-- instance Binary Fixity where
-- put_ bh (Fixity src aa ab) = do
-- put_ bh src
-- put_ bh aa
-- put_ bh ab
-- get bh = do
-- src <- get bh
-- aa <- get bh
-- ab <- get bh
-- return (Fixity src aa ab)
-- instance Binary WarningTxt where
-- put_ bh (WarningTxt s w) = do
-- putByte bh 0
-- put_ bh s
-- put_ bh w
-- put_ bh (DeprecatedTxt s d) = do
-- putByte bh 1
-- put_ bh s
-- put_ bh d
-- get bh = do
-- h <- getByte bh
-- case h of
-- 0 -> do s <- get bh
-- w <- get bh
-- return (WarningTxt s w)
-- _ -> do s <- get bh
-- d <- get bh
-- return (DeprecatedTxt s d)
-- instance Binary StringLiteral where
-- put_ bh (StringLiteral st fs _) = do
-- put_ bh st
-- put_ bh fs
-- get bh = do
-- st <- get bh
-- fs <- get bh
-- return (StringLiteral st fs Nothing)
newtype BinLocated a = BinLocated { unBinLocated :: Located a }
instance Binary a => Binary (BinLocated a) where
put_ bh (BinLocated (L l x)) = do
put_ bh $ BinSrcSpan l
put_ bh x
get bh = do
l <- unBinSrcSpan <$> get bh
x <- get bh
return $ BinLocated (L l x)
newtype BinSpan = BinSpan { unBinSpan :: RealSrcSpan }
-- See Note [Source Location Wrappers]
instance Binary BinSpan where
put_ bh (BinSpan ss) = do
put_ bh (srcSpanFile ss)
put_ bh (srcSpanStartLine ss)
put_ bh (srcSpanStartCol ss)
put_ bh (srcSpanEndLine ss)
put_ bh (srcSpanEndCol ss)
get bh = do
f <- get bh
sl <- get bh
sc <- get bh
el <- get bh
ec <- get bh
return $ BinSpan (mkRealSrcSpan (mkRealSrcLoc f sl sc)
(mkRealSrcLoc f el ec))
instance Binary UnhelpfulSpanReason where
put_ bh r = case r of
UnhelpfulNoLocationInfo -> putByte bh 0
UnhelpfulWiredIn -> putByte bh 1
UnhelpfulInteractive -> putByte bh 2
UnhelpfulGenerated -> putByte bh 3
UnhelpfulOther fs -> putByte bh 4 >> put_ bh fs
get bh = do
h <- getByte bh
case h of
0 -> return UnhelpfulNoLocationInfo
1 -> return UnhelpfulWiredIn
2 -> return UnhelpfulInteractive
3 -> return UnhelpfulGenerated
_ -> UnhelpfulOther <$> get bh
newtype BinSrcSpan = BinSrcSpan { unBinSrcSpan :: SrcSpan }
-- See Note [Source Location Wrappers]
instance Binary BinSrcSpan where
put_ bh (BinSrcSpan (RealSrcSpan ss _sb)) = do
putByte bh 0
-- BufSpan doesn't ever get serialised because the positions depend
-- on build location.
put_ bh $ BinSpan ss
put_ bh (BinSrcSpan (UnhelpfulSpan s)) = do
putByte bh 1
put_ bh s
get bh = do
h <- getByte bh
case h of
0 -> do BinSpan ss <- get bh
return $ BinSrcSpan (RealSrcSpan ss Strict.Nothing)
_ -> do s <- get bh
return $ BinSrcSpan (UnhelpfulSpan s)
{-
Note [Source Location Wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Source locations are banned from interface files, to
prevent filepaths affecting interface hashes.
Unfortunately, we can't remove all binary instances,
as they're used to serialise .hie files, and we don't
want to break binary compatibility.
To this end, the Bin[Src]Span newtypes wrappers were
introduced to prevent accidentally serialising a
source location as part of a larger structure.
-}
--------------------------------------------------------------------------------
-- Instances for the containers package
--------------------------------------------------------------------------------
instance (Binary v) => Binary (IntMap v) where
put_ bh m = put_ bh (IntMap.toList m)
get bh = IntMap.fromList <$> get bh
|