1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Safe #-}
{-# LANGUAGE DeriveGeneric #-}
#endif
#if __GLASGOW_HASKELL__ >= 710 && __GLASGOW_HASKELL__ < 802
{-# LANGUAGE AutoDeriveTypeable #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Module : Control.Applicative.Lift
-- Copyright : (c) Ross Paterson 2010
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : R.Paterson@city.ac.uk
-- Stability : experimental
-- Portability : portable
--
-- Adding a new kind of pure computation to an applicative functor.
-----------------------------------------------------------------------------
module Control.Applicative.Lift (
-- * Lifting an applicative
Lift(..),
unLift,
mapLift,
elimLift,
-- * Collecting errors
Errors,
runErrors,
failure,
eitherToErrors
) where
#if MIN_VERSION_base(4,18,0)
import Data.Foldable1 (Foldable1(foldMap1))
#endif
import Data.Functor.Classes
import Control.Applicative
import Data.Functor.Constant
#if !(MIN_VERSION_base(4,8,0))
import Data.Foldable (Foldable(foldMap))
import Data.Monoid (Monoid(..))
import Data.Traversable (Traversable(traverse))
#endif
#if __GLASGOW_HASKELL__ >= 704
import GHC.Generics
#endif
-- | Applicative functor formed by adding pure computations to a given
-- applicative functor.
data Lift f a = Pure a | Other (f a)
#if __GLASGOW_HASKELL__ >= 710
deriving (Generic, Generic1)
#elif __GLASGOW_HASKELL__ >= 704
deriving (Generic)
#endif
instance (Eq1 f) => Eq1 (Lift f) where
liftEq eq (Pure x1) (Pure x2) = eq x1 x2
liftEq _ (Pure _) (Other _) = False
liftEq _ (Other _) (Pure _) = False
liftEq eq (Other y1) (Other y2) = liftEq eq y1 y2
{-# INLINE liftEq #-}
instance (Ord1 f) => Ord1 (Lift f) where
liftCompare comp (Pure x1) (Pure x2) = comp x1 x2
liftCompare _ (Pure _) (Other _) = LT
liftCompare _ (Other _) (Pure _) = GT
liftCompare comp (Other y1) (Other y2) = liftCompare comp y1 y2
{-# INLINE liftCompare #-}
instance (Read1 f) => Read1 (Lift f) where
liftReadsPrec rp rl = readsData $
readsUnaryWith rp "Pure" Pure `mappend`
readsUnaryWith (liftReadsPrec rp rl) "Other" Other
instance (Show1 f) => Show1 (Lift f) where
liftShowsPrec sp _ d (Pure x) = showsUnaryWith sp "Pure" d x
liftShowsPrec sp sl d (Other y) =
showsUnaryWith (liftShowsPrec sp sl) "Other" d y
instance (Eq1 f, Eq a) => Eq (Lift f a) where (==) = eq1
instance (Ord1 f, Ord a) => Ord (Lift f a) where compare = compare1
instance (Read1 f, Read a) => Read (Lift f a) where readsPrec = readsPrec1
instance (Show1 f, Show a) => Show (Lift f a) where showsPrec = showsPrec1
instance (Functor f) => Functor (Lift f) where
fmap f (Pure x) = Pure (f x)
fmap f (Other y) = Other (fmap f y)
{-# INLINE fmap #-}
instance (Foldable f) => Foldable (Lift f) where
foldMap f (Pure x) = f x
foldMap f (Other y) = foldMap f y
{-# INLINE foldMap #-}
instance (Traversable f) => Traversable (Lift f) where
traverse f (Pure x) = Pure <$> f x
traverse f (Other y) = Other <$> traverse f y
{-# INLINE traverse #-}
-- | A combination is 'Pure' only if both parts are.
instance (Applicative f) => Applicative (Lift f) where
pure = Pure
{-# INLINE pure #-}
Pure f <*> ax = f <$> ax
Other f <*> ax = Other (f <*> unLift ax)
{-# INLINE (<*>) #-}
-- | A combination is 'Pure' only either part is.
instance (Alternative f) => Alternative (Lift f) where
empty = Other empty
{-# INLINE empty #-}
Pure x <|> _ = Pure x
Other _ <|> Pure y = Pure y
Other x <|> Other y = Other (x <|> y)
{-# INLINE (<|>) #-}
#if MIN_VERSION_base(4,18,0)
instance (Foldable1 f) => Foldable1 (Lift f) where
foldMap1 f (Pure x) = f x
foldMap1 f (Other y) = foldMap1 f y
{-# INLINE foldMap1 #-}
#endif
-- | Projection to the other functor.
unLift :: (Applicative f) => Lift f a -> f a
unLift (Pure x) = pure x
unLift (Other e) = e
{-# INLINE unLift #-}
-- | Apply a transformation to the other computation.
mapLift :: (f a -> g a) -> Lift f a -> Lift g a
mapLift _ (Pure x) = Pure x
mapLift f (Other e) = Other (f e)
{-# INLINE mapLift #-}
-- | Eliminator for 'Lift'.
--
-- * @'elimLift' f g . 'pure' = f@
--
-- * @'elimLift' f g . 'Other' = g@
--
elimLift :: (a -> r) -> (f a -> r) -> Lift f a -> r
elimLift f _ (Pure x) = f x
elimLift _ g (Other e) = g e
{-# INLINE elimLift #-}
-- | An applicative functor that collects a monoid (e.g. lists) of errors.
-- A sequence of computations fails if any of its components do, but
-- unlike monads made with 'Control.Monad.Trans.Except.ExceptT' from
-- "Control.Monad.Trans.Except", these computations continue after an
-- error, collecting all the errors.
--
-- * @'pure' f '<*>' 'pure' x = 'pure' (f x)@
--
-- * @'pure' f '<*>' 'failure' e = 'failure' e@
--
-- * @'failure' e '<*>' 'pure' x = 'failure' e@
--
-- * @'failure' e1 '<*>' 'failure' e2 = 'failure' (e1 '<>' e2)@
--
type Errors e = Lift (Constant e)
-- | Extractor for computations with accumulating errors.
--
-- * @'runErrors' ('pure' x) = 'Right' x@
--
-- * @'runErrors' ('failure' e) = 'Left' e@
--
runErrors :: Errors e a -> Either e a
runErrors (Other (Constant e)) = Left e
runErrors (Pure x) = Right x
{-# INLINE runErrors #-}
-- | Report an error.
failure :: e -> Errors e a
failure e = Other (Constant e)
{-# INLINE failure #-}
-- | Convert from 'Either' to 'Errors' (inverse of 'runErrors').
eitherToErrors :: Either e a -> Errors e a
eitherToErrors = either failure Pure
|