1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
|
-- -*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------
{
{-# OPTIONS -Wwarn -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details
{-# OPTIONS_GHC -O0 -fno-ignore-interface-pragmas #-}
{-
Careful optimisation of the parser: we don't want to throw everything
at it, because that takes too long and doesn't buy much, but we do want
to inline certain key external functions, so we instruct GHC not to
throw away inlinings as it would normally do in -O0 mode.
-}
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
parseHeader ) where
import HsSyn
import RdrHsSyn
import HscTypes ( IsBootInterface, WarningTxt(..) )
import Lexer
import RdrName
import TysWiredIn ( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
unboxedSingletonTyCon, unboxedSingletonDataCon,
listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type ( funTyCon )
import ForeignCall ( Safety(..), CExportSpec(..), CLabelString,
CCallConv(..), CCallTarget(..), defaultCCallConv
)
import OccName ( varName, dataName, tcClsName, tvName )
import DataCon ( DataCon, dataConName )
import SrcLoc ( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
SrcSpan, combineLocs, srcLocFile,
mkSrcLoc, mkSrcSpan )
import Module
import StaticFlags ( opt_SccProfilingOn, opt_Hpc )
import Type ( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
import Class ( FunDep )
import BasicTypes ( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
Activation(..), RuleMatchInfo(..), defaultInlineSpec )
import DynFlags
import OrdList
import HaddockUtils
import FastString
import Maybes ( orElse )
import Outputable
import Control.Monad ( unless )
import GHC.Exts
import Data.Char
import Control.Monad ( mplus )
}
{-
-----------------------------------------------------------------------------
24 Februar 2006
Conflicts: 33 shift/reduce
1 reduce/reduce
The reduce/reduce conflict is weird. It's between tyconsym and consym, and I
would think the two should never occur in the same context.
-=chak
-----------------------------------------------------------------------------
31 December 2006
Conflicts: 34 shift/reduce
1 reduce/reduce
The reduce/reduce conflict is weird. It's between tyconsym and consym, and I
would think the two should never occur in the same context.
-=chak
-----------------------------------------------------------------------------
6 December 2006
Conflicts: 32 shift/reduce
1 reduce/reduce
The reduce/reduce conflict is weird. It's between tyconsym and consym, and I
would think the two should never occur in the same context.
-=chak
-----------------------------------------------------------------------------
26 July 2006
Conflicts: 37 shift/reduce
1 reduce/reduce
The reduce/reduce conflict is weird. It's between tyconsym and consym, and I
would think the two should never occur in the same context.
-=chak
-----------------------------------------------------------------------------
Conflicts: 38 shift/reduce (1.25)
10 for abiguity in 'if x then y else z + 1' [State 178]
(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM
1 for ambiguity in 'if x then y else z :: T' [State 178]
(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)
4 for ambiguity in 'if x then y else z -< e' [State 178]
(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
There are four such operators: -<, >-, -<<, >>-
2 for ambiguity in 'case v of { x :: T -> T ... } ' [States 11, 253]
Which of these two is intended?
case v of
(x::T) -> T -- Rhs is T
or
case v of
(x::T -> T) -> .. -- Rhs is ...
10 for ambiguity in 'e :: a `b` c'. Does this mean [States 11, 253]
(e::a) `b` c, or
(e :: (a `b` c))
As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
Same duplication between states 11 and 253 as the previous case
1 for ambiguity in 'let ?x ...' [State 329]
the parser can't tell whether the ?x is the lhs of a normal binding or
an implicit binding. Fortunately resolving as shift gives it the only
sensible meaning, namely the lhs of an implicit binding.
1 for ambiguity in '{-# RULES "name" [ ... #-} [State 382]
we don't know whether the '[' starts the activation or not: it
might be the start of the declaration with the activation being
empty. --SDM 1/4/2002
1 for ambiguity in '{-# RULES "name" forall = ... #-}' [State 474]
since 'forall' is a valid variable name, we don't know whether
to treat a forall on the input as the beginning of a quantifier
or the beginning of the rule itself. Resolving to shift means
it's always treated as a quantifier, hence the above is disallowed.
This saves explicitly defining a grammar for the rule lhs that
doesn't include 'forall'.
1 for ambiguity when the source file starts with "-- | doc". We need another
token of lookahead to determine if a top declaration or the 'module' keyword
follows. Shift parses as if the 'module' keyword follows.
-- ---------------------------------------------------------------------------
-- Adding location info
This is done in a stylised way using the three macros below, L0, L1
and LL. Each of these macros can be thought of as having type
L0, L1, LL :: a -> Located a
They each add a SrcSpan to their argument.
L0 adds 'noSrcSpan', used for empty productions
-- This doesn't seem to work anymore -=chak
L1 for a production with a single token on the lhs. Grabs the SrcSpan
from that token.
LL for a production with >1 token on the lhs. Makes up a SrcSpan from
the first and last tokens.
These suffice for the majority of cases. However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span. In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.
| 'newtype' tycl_hdr '=' newconstr deriving
{ L (comb3 $1 $4 $5)
(mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }
We provide comb3 and comb4 functions which are useful in such cases.
Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.
/*
* We must expand these macros *before* running Happy, which is why this file is
* Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
*/
#define L0 L noSrcSpan
#define L1 sL (getLoc $1)
#define LL sL (comb2 $1 $>)
-- -----------------------------------------------------------------------------
-}
%token
'_' { L _ ITunderscore } -- Haskell keywords
'as' { L _ ITas }
'case' { L _ ITcase }
'class' { L _ ITclass }
'data' { L _ ITdata }
'default' { L _ ITdefault }
'deriving' { L _ ITderiving }
'do' { L _ ITdo }
'else' { L _ ITelse }
'hiding' { L _ IThiding }
'if' { L _ ITif }
'import' { L _ ITimport }
'in' { L _ ITin }
'infix' { L _ ITinfix }
'infixl' { L _ ITinfixl }
'infixr' { L _ ITinfixr }
'instance' { L _ ITinstance }
'let' { L _ ITlet }
'module' { L _ ITmodule }
'newtype' { L _ ITnewtype }
'of' { L _ ITof }
'qualified' { L _ ITqualified }
'then' { L _ ITthen }
'type' { L _ ITtype }
'where' { L _ ITwhere }
'_scc_' { L _ ITscc } -- ToDo: remove
'forall' { L _ ITforall } -- GHC extension keywords
'foreign' { L _ ITforeign }
'export' { L _ ITexport }
'label' { L _ ITlabel }
'dynamic' { L _ ITdynamic }
'safe' { L _ ITsafe }
'threadsafe' { L _ ITthreadsafe } -- ToDo: remove deprecated alias
'unsafe' { L _ ITunsafe }
'mdo' { L _ ITmdo }
'family' { L _ ITfamily }
'stdcall' { L _ ITstdcallconv }
'ccall' { L _ ITccallconv }
'prim' { L _ ITprimcallconv }
'proc' { L _ ITproc } -- for arrow notation extension
'rec' { L _ ITrec } -- for arrow notation extension
'group' { L _ ITgroup } -- for list transform extension
'by' { L _ ITby } -- for list transform extension
'using' { L _ ITusing } -- for list transform extension
'{-# INLINE' { L _ (ITinline_prag _) }
'{-# INLINE_CONLIKE' { L _ (ITinline_conlike_prag _) }
'{-# SPECIALISE' { L _ ITspec_prag }
'{-# SPECIALISE_INLINE' { L _ (ITspec_inline_prag _) }
'{-# SOURCE' { L _ ITsource_prag }
'{-# RULES' { L _ ITrules_prag }
'{-# CORE' { L _ ITcore_prag } -- hdaume: annotated core
'{-# SCC' { L _ ITscc_prag }
'{-# GENERATED' { L _ ITgenerated_prag }
'{-# DEPRECATED' { L _ ITdeprecated_prag }
'{-# WARNING' { L _ ITwarning_prag }
'{-# UNPACK' { L _ ITunpack_prag }
'{-# ANN' { L _ ITann_prag }
'#-}' { L _ ITclose_prag }
'..' { L _ ITdotdot } -- reserved symbols
':' { L _ ITcolon }
'::' { L _ ITdcolon }
'=' { L _ ITequal }
'\\' { L _ ITlam }
'|' { L _ ITvbar }
'<-' { L _ ITlarrow }
'->' { L _ ITrarrow }
'@' { L _ ITat }
'~' { L _ ITtilde }
'=>' { L _ ITdarrow }
'-' { L _ ITminus }
'!' { L _ ITbang }
'*' { L _ ITstar }
'-<' { L _ ITlarrowtail } -- for arrow notation
'>-' { L _ ITrarrowtail } -- for arrow notation
'-<<' { L _ ITLarrowtail } -- for arrow notation
'>>-' { L _ ITRarrowtail } -- for arrow notation
'.' { L _ ITdot }
'{' { L _ ITocurly } -- special symbols
'}' { L _ ITccurly }
'{|' { L _ ITocurlybar }
'|}' { L _ ITccurlybar }
vocurly { L _ ITvocurly } -- virtual open curly (from layout)
vccurly { L _ ITvccurly } -- virtual close curly (from layout)
'[' { L _ ITobrack }
']' { L _ ITcbrack }
'[:' { L _ ITopabrack }
':]' { L _ ITcpabrack }
'(' { L _ IToparen }
')' { L _ ITcparen }
'(#' { L _ IToubxparen }
'#)' { L _ ITcubxparen }
'(|' { L _ IToparenbar }
'|)' { L _ ITcparenbar }
';' { L _ ITsemi }
',' { L _ ITcomma }
'`' { L _ ITbackquote }
VARID { L _ (ITvarid _) } -- identifiers
CONID { L _ (ITconid _) }
VARSYM { L _ (ITvarsym _) }
CONSYM { L _ (ITconsym _) }
QVARID { L _ (ITqvarid _) }
QCONID { L _ (ITqconid _) }
QVARSYM { L _ (ITqvarsym _) }
QCONSYM { L _ (ITqconsym _) }
PREFIXQVARSYM { L _ (ITprefixqvarsym _) }
PREFIXQCONSYM { L _ (ITprefixqconsym _) }
IPDUPVARID { L _ (ITdupipvarid _) } -- GHC extension
CHAR { L _ (ITchar _) }
STRING { L _ (ITstring _) }
INTEGER { L _ (ITinteger _) }
RATIONAL { L _ (ITrational _) }
PRIMCHAR { L _ (ITprimchar _) }
PRIMSTRING { L _ (ITprimstring _) }
PRIMINTEGER { L _ (ITprimint _) }
PRIMWORD { L _ (ITprimword _) }
PRIMFLOAT { L _ (ITprimfloat _) }
PRIMDOUBLE { L _ (ITprimdouble _) }
DOCNEXT { L _ (ITdocCommentNext _) }
DOCPREV { L _ (ITdocCommentPrev _) }
DOCNAMED { L _ (ITdocCommentNamed _) }
DOCSECTION { L _ (ITdocSection _ _) }
-- Template Haskell
'[|' { L _ ITopenExpQuote }
'[p|' { L _ ITopenPatQuote }
'[t|' { L _ ITopenTypQuote }
'[d|' { L _ ITopenDecQuote }
'|]' { L _ ITcloseQuote }
TH_ID_SPLICE { L _ (ITidEscape _) } -- $x
'$(' { L _ ITparenEscape } -- $( exp )
TH_VAR_QUOTE { L _ ITvarQuote } -- 'x
TH_TY_QUOTE { L _ ITtyQuote } -- ''T
TH_QUASIQUOTE { L _ (ITquasiQuote _) }
%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt maybe_stmt
%name parseIdentifier identifier
%name parseType ctype
%partial parseHeader header
%tokentype { (Located Token) }
%%
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
: qvar { $1 }
| qcon { $1 }
| qvarop { $1 }
| qconop { $1 }
| '(' '->' ')' { LL $ getRdrName funTyCon }
-----------------------------------------------------------------------------
-- Module Header
-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)
module :: { Located (HsModule RdrName) }
: maybedocheader 'module' modid maybemodwarning maybeexports 'where' body
{% fileSrcSpan >>= \ loc ->
return (L loc (HsModule (Just $3) $5 (fst $7) (snd $7) $4 $1
) )}
| body2
{% fileSrcSpan >>= \ loc ->
return (L loc (HsModule Nothing Nothing
(fst $1) (snd $1) Nothing Nothing
)) }
maybedocheader :: { Maybe LHsDocString }
: moduleheader { $1 }
| {- empty -} { Nothing }
missing_module_keyword :: { () }
: {- empty -} {% pushCurrentContext }
maybemodwarning :: { Maybe WarningTxt }
: '{-# DEPRECATED' strings '#-}' { Just (DeprecatedTxt $ unLoc $2) }
| '{-# WARNING' strings '#-}' { Just (WarningTxt $ unLoc $2) }
| {- empty -} { Nothing }
body :: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
: '{' top '}' { $2 }
| vocurly top close { $2 }
body2 :: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
: '{' top '}' { $2 }
| missing_module_keyword top close { $2 }
top :: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
: importdecls { (reverse $1,[]) }
| importdecls ';' cvtopdecls { (reverse $1,$3) }
| cvtopdecls { ([],$1) }
cvtopdecls :: { [LHsDecl RdrName] }
: topdecls { cvTopDecls $1 }
-----------------------------------------------------------------------------
-- Module declaration & imports only
header :: { Located (HsModule RdrName) }
: maybedocheader 'module' modid maybemodwarning maybeexports 'where' header_body
{% fileSrcSpan >>= \ loc ->
return (L loc (HsModule (Just $3) $5 $7 [] $4 $1
))}
| missing_module_keyword importdecls
{% fileSrcSpan >>= \ loc ->
return (L loc (HsModule Nothing Nothing $2 [] Nothing
Nothing)) }
header_body :: { [LImportDecl RdrName] }
: '{' importdecls { $2 }
| vocurly importdecls { $2 }
-----------------------------------------------------------------------------
-- The Export List
maybeexports :: { Maybe [LIE RdrName] }
: '(' exportlist ')' { Just $2 }
| {- empty -} { Nothing }
exportlist :: { [LIE RdrName] }
: expdoclist ',' expdoclist { $1 ++ $3 }
| exportlist1 { $1 }
exportlist1 :: { [LIE RdrName] }
: expdoclist export expdoclist ',' exportlist { $1 ++ ($2 : $3) ++ $5 }
| expdoclist export expdoclist { $1 ++ ($2 : $3) }
| expdoclist { $1 }
expdoclist :: { [LIE RdrName] }
: exp_doc expdoclist { $1 : $2 }
| {- empty -} { [] }
exp_doc :: { LIE RdrName }
: docsection { L1 (case (unLoc $1) of (n, doc) -> IEGroup n doc) }
| docnamed { L1 (IEDocNamed ((fst . unLoc) $1)) }
| docnext { L1 (IEDoc (unLoc $1)) }
-- No longer allow things like [] and (,,,) to be exported
-- They are built in syntax, always available
export :: { LIE RdrName }
: qvar { L1 (IEVar (unLoc $1)) }
| oqtycon { L1 (IEThingAbs (unLoc $1)) }
| oqtycon '(' '..' ')' { LL (IEThingAll (unLoc $1)) }
| oqtycon '(' ')' { LL (IEThingWith (unLoc $1) []) }
| oqtycon '(' qcnames ')' { LL (IEThingWith (unLoc $1) (reverse $3)) }
| 'module' modid { LL (IEModuleContents (unLoc $2)) }
qcnames :: { [RdrName] }
: qcnames ',' qcname_ext { unLoc $3 : $1 }
| qcname_ext { [unLoc $1] }
qcname_ext :: { Located RdrName } -- Variable or data constructor
-- or tagged type constructor
: qcname { $1 }
| 'type' qcon { sL (comb2 $1 $2)
(setRdrNameSpace (unLoc $2)
tcClsName) }
-- Cannot pull into qcname_ext, as qcname is also used in expression.
qcname :: { Located RdrName } -- Variable or data constructor
: qvar { $1 }
| qcon { $1 }
-----------------------------------------------------------------------------
-- Import Declarations
-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.
importdecls :: { [LImportDecl RdrName] }
: importdecls ';' importdecl { $3 : $1 }
| importdecls ';' { $1 }
| importdecl { [ $1 ] }
| {- empty -} { [] }
importdecl :: { LImportDecl RdrName }
: 'import' maybe_src optqualified maybe_pkg modid maybeas maybeimpspec
{ L (comb4 $1 $5 $6 $7) (ImportDecl $5 $4 $2 $3 (unLoc $6) (unLoc $7)) }
maybe_src :: { IsBootInterface }
: '{-# SOURCE' '#-}' { True }
| {- empty -} { False }
maybe_pkg :: { Maybe FastString }
: STRING { Just (getSTRING $1) }
| {- empty -} { Nothing }
optqualified :: { Bool }
: 'qualified' { True }
| {- empty -} { False }
maybeas :: { Located (Maybe ModuleName) }
: 'as' modid { LL (Just (unLoc $2)) }
| {- empty -} { noLoc Nothing }
maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
: impspec { L1 (Just (unLoc $1)) }
| {- empty -} { noLoc Nothing }
impspec :: { Located (Bool, [LIE RdrName]) }
: '(' exportlist ')' { LL (False, $2) }
| 'hiding' '(' exportlist ')' { LL (True, $3) }
-----------------------------------------------------------------------------
-- Fixity Declarations
prec :: { Int }
: {- empty -} { 9 }
| INTEGER {% checkPrecP (L1 (fromInteger (getINTEGER $1))) }
infix :: { Located FixityDirection }
: 'infix' { L1 InfixN }
| 'infixl' { L1 InfixL }
| 'infixr' { L1 InfixR }
ops :: { Located [Located RdrName] }
: ops ',' op { LL ($3 : unLoc $1) }
| op { L1 [$1] }
-----------------------------------------------------------------------------
-- Top-Level Declarations
topdecls :: { OrdList (LHsDecl RdrName) }
: topdecls ';' topdecl { $1 `appOL` $3 }
| topdecls ';' { $1 }
| topdecl { $1 }
topdecl :: { OrdList (LHsDecl RdrName) }
: cl_decl { unitOL (L1 (TyClD (unLoc $1))) }
| ty_decl { unitOL (L1 (TyClD (unLoc $1))) }
| 'instance' inst_type where_inst
{ let (binds, sigs, ats, _) = cvBindsAndSigs (unLoc $3)
in
unitOL (L (comb3 $1 $2 $3) (InstD (InstDecl $2 binds sigs ats)))}
| stand_alone_deriving { unitOL (LL (DerivD (unLoc $1))) }
| 'default' '(' comma_types0 ')' { unitOL (LL $ DefD (DefaultDecl $3)) }
| 'foreign' fdecl { unitOL (LL (unLoc $2)) }
| '{-# DEPRECATED' deprecations '#-}' { $2 }
| '{-# WARNING' warnings '#-}' { $2 }
| '{-# RULES' rules '#-}' { $2 }
| annotation { unitOL $1 }
| decl { unLoc $1 }
-- Template Haskell Extension
-- The $(..) form is one possible form of infixexp
-- but we treat an arbitrary expression just as if
-- it had a $(..) wrapped around it
| infixexp { unitOL (LL $ mkTopSpliceDecl $1) }
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
: 'class' tycl_hdr fds where_cls {% mkClassDecl (comb4 $1 $2 $3 $4) $2 $3 $4 }
-- Type declarations (toplevel)
--
ty_decl :: { LTyClDecl RdrName }
-- ordinary type synonyms
: 'type' type '=' ctypedoc
-- Note ctype, not sigtype, on the right of '='
-- We allow an explicit for-all but we don't insert one
-- in type Foo a = (b,b)
-- Instead we just say b is out of scope
--
-- Note the use of type for the head; this allows
-- infix type constructors to be declared
{% mkTySynonym (comb2 $1 $4) False $2 $4 }
-- type family declarations
| 'type' 'family' type opt_kind_sig
-- Note the use of type for the head; this allows
-- infix type constructors to be declared
{% mkTyFamily (comb3 $1 $3 $4) TypeFamily $3 (unLoc $4) }
-- type instance declarations
| 'type' 'instance' type '=' ctype
-- Note the use of type for the head; this allows
-- infix type constructors and type patterns
{% mkTySynonym (comb2 $1 $5) True $3 $5 }
-- ordinary data type or newtype declaration
| data_or_newtype tycl_hdr constrs deriving
{% mkTyData (comb4 $1 $2 $3 $4) (unLoc $1) False $2
Nothing (reverse (unLoc $3)) (unLoc $4) }
-- We need the location on tycl_hdr in case
-- constrs and deriving are both empty
-- ordinary GADT declaration
| data_or_newtype tycl_hdr opt_kind_sig
gadt_constrlist
deriving
{% mkTyData (comb4 $1 $2 $4 $5) (unLoc $1) False $2
(unLoc $3) (unLoc $4) (unLoc $5) }
-- We need the location on tycl_hdr in case
-- constrs and deriving are both empty
-- data/newtype family
| 'data' 'family' type opt_kind_sig
{% mkTyFamily (comb3 $1 $2 $4) DataFamily $3 (unLoc $4) }
-- data/newtype instance declaration
| data_or_newtype 'instance' tycl_hdr constrs deriving
{% mkTyData (comb4 $1 $3 $4 $5) (unLoc $1) True $3
Nothing (reverse (unLoc $4)) (unLoc $5) }
-- GADT instance declaration
| data_or_newtype 'instance' tycl_hdr opt_kind_sig
gadt_constrlist
deriving
{% mkTyData (comb4 $1 $3 $5 $6) (unLoc $1) True $3
(unLoc $4) (unLoc $5) (unLoc $6) }
-- Associated type family declarations
--
-- * They have a different syntax than on the toplevel (no family special
-- identifier).
--
-- * They also need to be separate from instances; otherwise, data family
-- declarations without a kind signature cause parsing conflicts with empty
-- data declarations.
--
at_decl_cls :: { LTyClDecl RdrName }
-- type family declarations
: 'type' type opt_kind_sig
-- Note the use of type for the head; this allows
-- infix type constructors to be declared
{% mkTyFamily (comb3 $1 $2 $3) TypeFamily $2 (unLoc $3) }
-- default type instance
| 'type' type '=' ctype
-- Note the use of type for the head; this allows
-- infix type constructors and type patterns
{% mkTySynonym (comb2 $1 $4) True $2 $4 }
-- data/newtype family declaration
| 'data' type opt_kind_sig
{% mkTyFamily (comb3 $1 $2 $3) DataFamily $2 (unLoc $3) }
-- Associated type instances
--
at_decl_inst :: { LTyClDecl RdrName }
-- type instance declarations
: 'type' type '=' ctype
-- Note the use of type for the head; this allows
-- infix type constructors and type patterns
{% mkTySynonym (comb2 $1 $4) True $2 $4 }
-- data/newtype instance declaration
| data_or_newtype tycl_hdr constrs deriving
{% mkTyData (comb4 $1 $2 $3 $4) (unLoc $1) True $2
Nothing (reverse (unLoc $3)) (unLoc $4) }
-- GADT instance declaration
| data_or_newtype tycl_hdr opt_kind_sig
gadt_constrlist
deriving
{% mkTyData (comb4 $1 $2 $4 $5) (unLoc $1) True $2
(unLoc $3) (unLoc $4) (unLoc $5) }
data_or_newtype :: { Located NewOrData }
: 'data' { L1 DataType }
| 'newtype' { L1 NewType }
opt_kind_sig :: { Located (Maybe Kind) }
: { noLoc Nothing }
| '::' kind { LL (Just (unLoc $2)) }
-- tycl_hdr parses the header of a class or data type decl,
-- which takes the form
-- T a b
-- Eq a => T a
-- (Eq a, Ord b) => T a b
-- T Int [a] -- for associated types
-- Rather a lot of inlining here, else we get reduce/reduce errors
tycl_hdr :: { Located (LHsContext RdrName, LHsType RdrName) }
: context '=>' type { LL ($1, $3) }
| type { L1 (noLoc [], $1) }
-----------------------------------------------------------------------------
-- Stand-alone deriving
-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl RdrName }
: 'deriving' 'instance' inst_type { LL (DerivDecl $3) }
-----------------------------------------------------------------------------
-- Nested declarations
-- Declaration in class bodies
--
decl_cls :: { Located (OrdList (LHsDecl RdrName)) }
decl_cls : at_decl_cls { LL (unitOL (L1 (TyClD (unLoc $1)))) }
| decl { $1 }
decls_cls :: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
: decls_cls ';' decl_cls { LL (unLoc $1 `appOL` unLoc $3) }
| decls_cls ';' { LL (unLoc $1) }
| decl_cls { $1 }
| {- empty -} { noLoc nilOL }
decllist_cls
:: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
: '{' decls_cls '}' { LL (unLoc $2) }
| vocurly decls_cls close { $2 }
-- Class body
--
where_cls :: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
-- No implicit parameters
-- May have type declarations
: 'where' decllist_cls { LL (unLoc $2) }
| {- empty -} { noLoc nilOL }
-- Declarations in instance bodies
--
decl_inst :: { Located (OrdList (LHsDecl RdrName)) }
decl_inst : at_decl_inst { LL (unitOL (L1 (TyClD (unLoc $1)))) }
| decl { $1 }
decls_inst :: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
: decls_inst ';' decl_inst { LL (unLoc $1 `appOL` unLoc $3) }
| decls_inst ';' { LL (unLoc $1) }
| decl_inst { $1 }
| {- empty -} { noLoc nilOL }
decllist_inst
:: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
: '{' decls_inst '}' { LL (unLoc $2) }
| vocurly decls_inst close { $2 }
-- Instance body
--
where_inst :: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
-- No implicit parameters
-- May have type declarations
: 'where' decllist_inst { LL (unLoc $2) }
| {- empty -} { noLoc nilOL }
-- Declarations in binding groups other than classes and instances
--
decls :: { Located (OrdList (LHsDecl RdrName)) }
: decls ';' decl { let { this = unLoc $3;
rest = unLoc $1;
these = rest `appOL` this }
in rest `seq` this `seq` these `seq`
LL these }
| decls ';' { LL (unLoc $1) }
| decl { $1 }
| {- empty -} { noLoc nilOL }
decllist :: { Located (OrdList (LHsDecl RdrName)) }
: '{' decls '}' { LL (unLoc $2) }
| vocurly decls close { $2 }
-- Binding groups other than those of class and instance declarations
--
binds :: { Located (HsLocalBinds RdrName) } -- May have implicit parameters
-- No type declarations
: decllist { L1 (HsValBinds (cvBindGroup (unLoc $1))) }
| '{' dbinds '}' { LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
| vocurly dbinds close { L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
wherebinds :: { Located (HsLocalBinds RdrName) } -- May have implicit parameters
-- No type declarations
: 'where' binds { LL (unLoc $2) }
| {- empty -} { noLoc emptyLocalBinds }
-----------------------------------------------------------------------------
-- Transformation Rules
rules :: { OrdList (LHsDecl RdrName) }
: rules ';' rule { $1 `snocOL` $3 }
| rules ';' { $1 }
| rule { unitOL $1 }
| {- empty -} { nilOL }
rule :: { LHsDecl RdrName }
: STRING activation rule_forall infixexp '=' exp
{ LL $ RuleD (HsRule (getSTRING $1)
($2 `orElse` AlwaysActive)
$3 $4 placeHolderNames $6 placeHolderNames) }
activation :: { Maybe Activation }
: {- empty -} { Nothing }
| explicit_activation { Just $1 }
explicit_activation :: { Activation } -- In brackets
: '[' INTEGER ']' { ActiveAfter (fromInteger (getINTEGER $2)) }
| '[' '~' INTEGER ']' { ActiveBefore (fromInteger (getINTEGER $3)) }
rule_forall :: { [RuleBndr RdrName] }
: 'forall' rule_var_list '.' { $2 }
| {- empty -} { [] }
rule_var_list :: { [RuleBndr RdrName] }
: rule_var { [$1] }
| rule_var rule_var_list { $1 : $2 }
rule_var :: { RuleBndr RdrName }
: varid { RuleBndr $1 }
| '(' varid '::' ctype ')' { RuleBndrSig $2 $4 }
-----------------------------------------------------------------------------
-- Warnings and deprecations (c.f. rules)
warnings :: { OrdList (LHsDecl RdrName) }
: warnings ';' warning { $1 `appOL` $3 }
| warnings ';' { $1 }
| warning { $1 }
| {- empty -} { nilOL }
-- SUP: TEMPORARY HACK, not checking for `module Foo'
warning :: { OrdList (LHsDecl RdrName) }
: namelist strings
{ toOL [ LL $ WarningD (Warning n (WarningTxt $ unLoc $2))
| n <- unLoc $1 ] }
deprecations :: { OrdList (LHsDecl RdrName) }
: deprecations ';' deprecation { $1 `appOL` $3 }
| deprecations ';' { $1 }
| deprecation { $1 }
| {- empty -} { nilOL }
-- SUP: TEMPORARY HACK, not checking for `module Foo'
deprecation :: { OrdList (LHsDecl RdrName) }
: namelist strings
{ toOL [ LL $ WarningD (Warning n (DeprecatedTxt $ unLoc $2))
| n <- unLoc $1 ] }
strings :: { Located [FastString] }
: STRING { L1 [getSTRING $1] }
| '[' stringlist ']' { LL $ fromOL (unLoc $2) }
stringlist :: { Located (OrdList FastString) }
: stringlist ',' STRING { LL (unLoc $1 `snocOL` getSTRING $3) }
| STRING { LL (unitOL (getSTRING $1)) }
-----------------------------------------------------------------------------
-- Annotations
annotation :: { LHsDecl RdrName }
: '{-# ANN' name_var aexp '#-}' { LL (AnnD $ HsAnnotation (ValueAnnProvenance (unLoc $2)) $3) }
| '{-# ANN' 'type' tycon aexp '#-}' { LL (AnnD $ HsAnnotation (TypeAnnProvenance (unLoc $3)) $4) }
| '{-# ANN' 'module' aexp '#-}' { LL (AnnD $ HsAnnotation ModuleAnnProvenance $3) }
-----------------------------------------------------------------------------
-- Foreign import and export declarations
fdecl :: { LHsDecl RdrName }
fdecl : 'import' callconv safety fspec
{% mkImport $2 $3 (unLoc $4) >>= return.LL }
| 'import' callconv fspec
{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
return (LL d) } }
| 'export' callconv fspec
{% mkExport $2 (unLoc $3) >>= return.LL }
callconv :: { CCallConv }
: 'stdcall' { StdCallConv }
| 'ccall' { CCallConv }
| 'prim' { PrimCallConv}
safety :: { Safety }
: 'unsafe' { PlayRisky }
| 'safe' { PlaySafe False }
| 'threadsafe' { PlaySafe True } -- deprecated alias
fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
: STRING var '::' sigtypedoc { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
| var '::' sigtypedoc { LL (noLoc nilFS, $1, $3) }
-- if the entity string is missing, it defaults to the empty string;
-- the meaning of an empty entity string depends on the calling
-- convention
-----------------------------------------------------------------------------
-- Type signatures
opt_sig :: { Maybe (LHsType RdrName) }
: {- empty -} { Nothing }
| '::' sigtype { Just $2 }
opt_asig :: { Maybe (LHsType RdrName) }
: {- empty -} { Nothing }
| '::' atype { Just $2 }
sigtype :: { LHsType RdrName } -- Always a HsForAllTy,
-- to tell the renamer where to generalise
: ctype { L1 (mkImplicitHsForAllTy (noLoc []) $1) }
-- Wrap an Implicit forall if there isn't one there already
sigtypedoc :: { LHsType RdrName } -- Always a HsForAllTy
: ctypedoc { L1 (mkImplicitHsForAllTy (noLoc []) $1) }
-- Wrap an Implicit forall if there isn't one there already
sig_vars :: { Located [Located RdrName] }
: sig_vars ',' var { LL ($3 : unLoc $1) }
| var { L1 [$1] }
sigtypes1 :: { [LHsType RdrName] } -- Always HsForAllTys
: sigtype { [ $1 ] }
| sigtype ',' sigtypes1 { $1 : $3 }
-----------------------------------------------------------------------------
-- Types
infixtype :: { LHsType RdrName }
: btype qtyconop type { LL $ HsOpTy $1 $2 $3 }
| btype tyvarop type { LL $ HsOpTy $1 $2 $3 }
strict_mark :: { Located HsBang }
: '!' { L1 HsStrict }
| '{-# UNPACK' '#-}' '!' { LL HsUnbox }
-- A ctype is a for-all type
ctype :: { LHsType RdrName }
: 'forall' tv_bndrs '.' ctype { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
| context '=>' ctype { LL $ mkImplicitHsForAllTy $1 $3 }
-- A type of form (context => type) is an *implicit* HsForAllTy
| ipvar '::' type { LL (HsPredTy (HsIParam (unLoc $1) $3)) }
| type { $1 }
----------------------
-- Notes for 'ctypedoc'
-- It would have been nice to simplify the grammar by unifying `ctype` and
-- ctypedoc` into one production, allowing comments on types everywhere (and
-- rejecting them after parsing, where necessary). This is however not possible
-- since it leads to ambiguity. The reason is the support for comments on record
-- fields:
-- data R = R { field :: Int -- ^ comment on the field }
-- If we allow comments on types here, it's not clear if the comment applies
-- to 'field' or to 'Int'. So we must use `ctype` to describe the type.
ctypedoc :: { LHsType RdrName }
: 'forall' tv_bndrs '.' ctypedoc { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
| context '=>' ctypedoc { LL $ mkImplicitHsForAllTy $1 $3 }
-- A type of form (context => type) is an *implicit* HsForAllTy
| ipvar '::' type { LL (HsPredTy (HsIParam (unLoc $1) $3)) }
| typedoc { $1 }
----------------------
-- Notes for 'context'
-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype. The basic problem is that
-- (Eq a, Ord a)
-- looks so much like a tuple type. We can't tell until we find the =>
-- We have the t1 ~ t2 form both in 'context' and in type,
-- to permit an individual equational constraint without parenthesis.
-- Thus for some reason we allow f :: a~b => blah
-- but not f :: ?x::Int => blah
context :: { LHsContext RdrName }
: btype '~' btype {% checkContext
(LL $ HsPredTy (HsEqualP $1 $3)) }
| btype {% checkContext $1 }
type :: { LHsType RdrName }
: btype { $1 }
| btype qtyconop type { LL $ HsOpTy $1 $2 $3 }
| btype tyvarop type { LL $ HsOpTy $1 $2 $3 }
| btype '->' ctype { LL $ HsFunTy $1 $3 }
| btype '~' btype { LL $ HsPredTy (HsEqualP $1 $3) }
typedoc :: { LHsType RdrName }
: btype { $1 }
| btype docprev { LL $ HsDocTy $1 $2 }
| btype qtyconop type { LL $ HsOpTy $1 $2 $3 }
| btype qtyconop type docprev { LL $ HsDocTy (L (comb3 $1 $2 $3) (HsOpTy $1 $2 $3)) $4 }
| btype tyvarop type { LL $ HsOpTy $1 $2 $3 }
| btype tyvarop type docprev { LL $ HsDocTy (L (comb3 $1 $2 $3) (HsOpTy $1 $2 $3)) $4 }
| btype '->' ctypedoc { LL $ HsFunTy $1 $3 }
| btype docprev '->' ctypedoc { LL $ HsFunTy (L (comb2 $1 $2) (HsDocTy $1 $2)) $4 }
| btype '~' btype { LL $ HsPredTy (HsEqualP $1 $3) }
btype :: { LHsType RdrName }
: btype atype { LL $ HsAppTy $1 $2 }
| atype { $1 }
atype :: { LHsType RdrName }
: gtycon { L1 (HsTyVar (unLoc $1)) }
| tyvar { L1 (HsTyVar (unLoc $1)) }
| strict_mark atype { LL (HsBangTy (unLoc $1) $2) } -- Constructor sigs only
| '{' fielddecls '}' { LL $ HsRecTy $2 } -- Constructor sigs only
| '(' ctype ',' comma_types1 ')' { LL $ HsTupleTy Boxed ($2:$4) }
| '(#' comma_types1 '#)' { LL $ HsTupleTy Unboxed $2 }
| '[' ctype ']' { LL $ HsListTy $2 }
| '[:' ctype ':]' { LL $ HsPArrTy $2 }
| '(' ctype ')' { LL $ HsParTy $2 }
| '(' ctype '::' kind ')' { LL $ HsKindSig $2 (unLoc $4) }
| '$(' exp ')' { LL $ HsSpliceTy (mkHsSplice $2 ) }
| TH_ID_SPLICE { LL $ HsSpliceTy (mkHsSplice
(L1 $ HsVar (mkUnqual varName
(getTH_ID_SPLICE $1)))) } -- $x
-- Generics
| INTEGER { L1 (HsNumTy (getINTEGER $1)) }
-- An inst_type is what occurs in the head of an instance decl
-- e.g. (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
: sigtype {% checkInstType $1 }
inst_types1 :: { [LHsType RdrName] }
: inst_type { [$1] }
| inst_type ',' inst_types1 { $1 : $3 }
comma_types0 :: { [LHsType RdrName] }
: comma_types1 { $1 }
| {- empty -} { [] }
comma_types1 :: { [LHsType RdrName] }
: ctype { [$1] }
| ctype ',' comma_types1 { $1 : $3 }
tv_bndrs :: { [LHsTyVarBndr RdrName] }
: tv_bndr tv_bndrs { $1 : $2 }
| {- empty -} { [] }
tv_bndr :: { LHsTyVarBndr RdrName }
: tyvar { L1 (UserTyVar (unLoc $1)) }
| '(' tyvar '::' kind ')' { LL (KindedTyVar (unLoc $2)
(unLoc $4)) }
fds :: { Located [Located (FunDep RdrName)] }
: {- empty -} { noLoc [] }
| '|' fds1 { LL (reverse (unLoc $2)) }
fds1 :: { Located [Located (FunDep RdrName)] }
: fds1 ',' fd { LL ($3 : unLoc $1) }
| fd { L1 [$1] }
fd :: { Located (FunDep RdrName) }
: varids0 '->' varids0 { L (comb3 $1 $2 $3)
(reverse (unLoc $1), reverse (unLoc $3)) }
varids0 :: { Located [RdrName] }
: {- empty -} { noLoc [] }
| varids0 tyvar { LL (unLoc $2 : unLoc $1) }
-----------------------------------------------------------------------------
-- Kinds
kind :: { Located Kind }
: akind { $1 }
| akind '->' kind { LL (mkArrowKind (unLoc $1) (unLoc $3)) }
akind :: { Located Kind }
: '*' { L1 liftedTypeKind }
| '!' { L1 unliftedTypeKind }
| '(' kind ')' { LL (unLoc $2) }
-----------------------------------------------------------------------------
-- Datatype declarations
gadt_constrlist :: { Located [LConDecl RdrName] } -- Returned in order
: 'where' '{' gadt_constrs '}' { L (comb2 $1 $3) (unLoc $3) }
| 'where' vocurly gadt_constrs close { L (comb2 $1 $3) (unLoc $3) }
| {- empty -} { noLoc [] }
gadt_constrs :: { Located [LConDecl RdrName] }
: gadt_constr ';' gadt_constrs { L (comb2 (head $1) $3) ($1 ++ unLoc $3) }
| gadt_constr { L (getLoc (head $1)) $1 }
| {- empty -} { noLoc [] }
-- We allow the following forms:
-- C :: Eq a => a -> T a
-- C :: forall a. Eq a => !a -> T a
-- D { x,y :: a } :: T a
-- forall a. Eq a => D { x,y :: a } :: T a
gadt_constr :: { [LConDecl RdrName] } -- Returns a list because of: C,D :: ty
: con_list '::' sigtype
{ map (sL (comb2 $1 $3)) (mkGadtDecl (unLoc $1) $3) }
-- Deprecated syntax for GADT record declarations
| oqtycon '{' fielddecls '}' '::' sigtype
{% do { cd <- mkDeprecatedGadtRecordDecl (comb2 $1 $6) $1 $3 $6
; return [cd] } }
constrs :: { Located [LConDecl RdrName] }
: maybe_docnext '=' constrs1 { L (comb2 $2 $3) (addConDocs (unLoc $3) $1) }
constrs1 :: { Located [LConDecl RdrName] }
: constrs1 maybe_docnext '|' maybe_docprev constr { LL (addConDoc $5 $2 : addConDocFirst (unLoc $1) $4) }
| constr { L1 [$1] }
constr :: { LConDecl RdrName }
: maybe_docnext forall context '=>' constr_stuff maybe_docprev
{ let (con,details) = unLoc $5 in
addConDoc (L (comb4 $2 $3 $4 $5) (mkSimpleConDecl con (unLoc $2) $3 details))
($1 `mplus` $6) }
| maybe_docnext forall constr_stuff maybe_docprev
{ let (con,details) = unLoc $3 in
addConDoc (L (comb2 $2 $3) (mkSimpleConDecl con (unLoc $2) (noLoc []) details))
($1 `mplus` $4) }
forall :: { Located [LHsTyVarBndr RdrName] }
: 'forall' tv_bndrs '.' { LL $2 }
| {- empty -} { noLoc [] }
constr_stuff :: { Located (Located RdrName, HsConDeclDetails RdrName) }
-- We parse the constructor declaration
-- C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor. Reason: it might continue like this:
-- C t1 t2 %: D Int
-- in which case C really would be a type constructor. We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
: btype {% splitCon $1 >>= return.LL }
| btype conop btype { LL ($2, InfixCon $1 $3) }
fielddecls :: { [ConDeclField RdrName] }
: {- empty -} { [] }
| fielddecls1 { $1 }
fielddecls1 :: { [ConDeclField RdrName] }
: fielddecl maybe_docnext ',' maybe_docprev fielddecls1
{ [ addFieldDoc f $4 | f <- $1 ] ++ addFieldDocs $5 $2 }
-- This adds the doc $4 to each field separately
| fielddecl { $1 }
fielddecl :: { [ConDeclField RdrName] } -- A list because of f,g :: Int
: maybe_docnext sig_vars '::' ctype maybe_docprev { [ ConDeclField fld $4 ($1 `mplus` $5)
| fld <- reverse (unLoc $2) ] }
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
deriving :: { Located (Maybe [LHsType RdrName]) }
: {- empty -} { noLoc Nothing }
| 'deriving' qtycon {% do { let { L loc tv = $2 }
; p <- checkInstType (L loc (HsTyVar tv))
; return (LL (Just [p])) } }
| 'deriving' '(' ')' { LL (Just []) }
| 'deriving' '(' inst_types1 ')' { LL (Just $3) }
-- Glasgow extension: allow partial
-- applications in derivings
-----------------------------------------------------------------------------
-- Value definitions
{- There's an awkward overlap with a type signature. Consider
f :: Int -> Int = ...rhs...
Then we can't tell whether it's a type signature or a value
definition with a result signature until we see the '='.
So we have to inline enough to postpone reductions until we know.
-}
{-
ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
instead of qvar, we get another shift/reduce-conflict. Consider the
following programs:
{ (^^) :: Int->Int ; } Type signature; only var allowed
{ (^^) :: Int->Int = ... ; } Value defn with result signature;
qvar allowed (because of instance decls)
We can't tell whether to reduce var to qvar until after we've read the signatures.
-}
docdecl :: { LHsDecl RdrName }
: docdecld { L1 (DocD (unLoc $1)) }
docdecld :: { LDocDecl }
: docnext { L1 (DocCommentNext (unLoc $1)) }
| docprev { L1 (DocCommentPrev (unLoc $1)) }
| docnamed { L1 (case (unLoc $1) of (n, doc) -> DocCommentNamed n doc) }
| docsection { L1 (case (unLoc $1) of (n, doc) -> DocGroup n doc) }
decl :: { Located (OrdList (LHsDecl RdrName)) }
: sigdecl { $1 }
| '!' aexp rhs {% do { pat <- checkPattern $2;
return (LL $ unitOL $ LL $ ValD (
PatBind (LL $ BangPat pat) (unLoc $3)
placeHolderType placeHolderNames)) } }
| infixexp opt_sig rhs {% do { r <- checkValDef $1 $2 $3;
let { l = comb2 $1 $> };
return $! (sL l (unitOL $! (sL l $ ValD r))) } }
| docdecl { LL $ unitOL $1 }
rhs :: { Located (GRHSs RdrName) }
: '=' exp wherebinds { sL (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
| gdrhs wherebinds { LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
gdrhs :: { Located [LGRHS RdrName] }
: gdrhs gdrh { LL ($2 : unLoc $1) }
| gdrh { L1 [$1] }
gdrh :: { LGRHS RdrName }
: '|' guardquals '=' exp { sL (comb2 $1 $>) $ GRHS (unLoc $2) $4 }
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
: infixexp '::' sigtypedoc
{% do s <- checkValSig $1 $3;
return (LL $ unitOL (LL $ SigD s)) }
-- See the above notes for why we need infixexp here
| var ',' sig_vars '::' sigtypedoc
{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
| infix prec ops { LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
| n <- unLoc $3 ] }
| '{-# INLINE' activation qvar '#-}'
{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 FunLike (getINLINE $1)))) }
| '{-# INLINE_CONLIKE' activation qvar '#-}'
{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 ConLike (getINLINE_CONLIKE $1)))) }
| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec)
| t <- $4] }
| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 FunLike (getSPEC_INLINE $1)))
| t <- $5] }
| '{-# SPECIALISE' 'instance' inst_type '#-}'
{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
-----------------------------------------------------------------------------
-- Expressions
exp :: { LHsExpr RdrName }
: infixexp '::' sigtype { LL $ ExprWithTySig $1 $3 }
| infixexp '-<' exp { LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
| infixexp '>-' exp { LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
| infixexp '-<<' exp { LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
| infixexp '>>-' exp { LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
| infixexp { $1 }
infixexp :: { LHsExpr RdrName }
: exp10 { $1 }
| infixexp qop exp10 { LL (OpApp $1 $2 (panic "fixity") $3) }
exp10 :: { LHsExpr RdrName }
: '\\' apat apats opt_asig '->' exp
{ LL $ HsLam (mkMatchGroup [LL $ Match ($2:$3) $4
(unguardedGRHSs $6)
]) }
| 'let' binds 'in' exp { LL $ HsLet (unLoc $2) $4 }
| 'if' exp 'then' exp 'else' exp { LL $ HsIf $2 $4 $6 }
| 'case' exp 'of' altslist { LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
| '-' fexp { LL $ NegApp $2 noSyntaxExpr }
| 'do' stmtlist {% let loc = comb2 $1 $2 in
checkDo loc (unLoc $2) >>= \ (stmts,body) ->
return (L loc (mkHsDo DoExpr stmts body)) }
| 'mdo' stmtlist {% let loc = comb2 $1 $2 in
checkDo loc (unLoc $2) >>= \ (stmts,body) ->
return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
| scc_annot exp { LL $ if opt_SccProfilingOn
then HsSCC (unLoc $1) $2
else HsPar $2 }
| hpc_annot exp { LL $ if opt_Hpc
then HsTickPragma (unLoc $1) $2
else HsPar $2 }
| 'proc' aexp '->' exp
{% checkPattern $2 >>= \ p ->
return (LL $ HsProc p (LL $ HsCmdTop $4 []
placeHolderType undefined)) }
-- TODO: is LL right here?
| '{-# CORE' STRING '#-}' exp { LL $ HsCoreAnn (getSTRING $2) $4 }
-- hdaume: core annotation
| fexp { $1 }
scc_annot :: { Located FastString }
: '_scc_' STRING {% (addWarning Opt_WarnWarningsDeprecations (getLoc $1) (text "_scc_ is deprecated; use an SCC pragma instead")) >>= \_ ->
( do scc <- getSCC $2; return $ LL scc ) }
| '{-# SCC' STRING '#-}' {% do scc <- getSCC $2; return $ LL scc }
hpc_annot :: { Located (FastString,(Int,Int),(Int,Int)) }
: '{-# GENERATED' STRING INTEGER ':' INTEGER '-' INTEGER ':' INTEGER '#-}'
{ LL $ (getSTRING $2
,( fromInteger $ getINTEGER $3
, fromInteger $ getINTEGER $5
)
,( fromInteger $ getINTEGER $7
, fromInteger $ getINTEGER $9
)
)
}
fexp :: { LHsExpr RdrName }
: fexp aexp { LL $ HsApp $1 $2 }
| aexp { $1 }
aexp :: { LHsExpr RdrName }
: qvar '@' aexp { LL $ EAsPat $1 $3 }
| '~' aexp { LL $ ELazyPat $2 }
| aexp1 { $1 }
aexp1 :: { LHsExpr RdrName }
: aexp1 '{' fbinds '}' {% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) $3
; return (LL r) }}
| aexp2 { $1 }
-- Here was the syntax for type applications that I was planning
-- but there are difficulties (e.g. what order for type args)
-- so it's not enabled yet.
-- But this case *is* used for the left hand side of a generic definition,
-- which is parsed as an expression before being munged into a pattern
| qcname '{|' type '|}' { LL $ HsApp (sL (getLoc $1) (HsVar (unLoc $1)))
(sL (getLoc $3) (HsType $3)) }
aexp2 :: { LHsExpr RdrName }
: ipvar { L1 (HsIPVar $! unLoc $1) }
| qcname { L1 (HsVar $! unLoc $1) }
| literal { L1 (HsLit $! unLoc $1) }
-- This will enable overloaded strings permanently. Normally the renamer turns HsString
-- into HsOverLit when -foverloaded-strings is on.
-- | STRING { sL (getLoc $1) (HsOverLit $! mkHsIsString (getSTRING $1) placeHolderType) }
| INTEGER { sL (getLoc $1) (HsOverLit $! mkHsIntegral (getINTEGER $1) placeHolderType) }
| RATIONAL { sL (getLoc $1) (HsOverLit $! mkHsFractional (getRATIONAL $1) placeHolderType) }
-- N.B.: sections get parsed by these next two productions.
-- This allows you to write, e.g., '(+ 3, 4 -)', which isn't correct Haskell98
-- (you'd have to write '((+ 3), (4 -))')
-- but the less cluttered version fell out of having texps.
| '(' texp ')' { LL (HsPar $2) }
| '(' tup_exprs ')' { LL (ExplicitTuple $2 Boxed) }
| '(#' texp '#)' { LL (ExplicitTuple [Present $2] Unboxed) }
| '(#' tup_exprs '#)' { LL (ExplicitTuple $2 Unboxed) }
| '[' list ']' { LL (unLoc $2) }
| '[:' parr ':]' { LL (unLoc $2) }
| '_' { L1 EWildPat }
-- Template Haskell Extension
| TH_ID_SPLICE { L1 $ HsSpliceE (mkHsSplice
(L1 $ HsVar (mkUnqual varName
(getTH_ID_SPLICE $1)))) } -- $x
| '$(' exp ')' { LL $ HsSpliceE (mkHsSplice $2) } -- $( exp )
| TH_QUASIQUOTE { let { loc = getLoc $1
; ITquasiQuote (quoter, quote, quoteSpan) = unLoc $1
; quoterId = mkUnqual varName quoter
}
in sL loc $ HsQuasiQuoteE (mkHsQuasiQuote quoterId quoteSpan quote) }
| TH_VAR_QUOTE qvar { LL $ HsBracket (VarBr (unLoc $2)) }
| TH_VAR_QUOTE qcon { LL $ HsBracket (VarBr (unLoc $2)) }
| TH_TY_QUOTE tyvar { LL $ HsBracket (VarBr (unLoc $2)) }
| TH_TY_QUOTE gtycon { LL $ HsBracket (VarBr (unLoc $2)) }
| '[|' exp '|]' { LL $ HsBracket (ExpBr $2) }
| '[t|' ctype '|]' { LL $ HsBracket (TypBr $2) }
| '[p|' infixexp '|]' {% checkPattern $2 >>= \p ->
return (LL $ HsBracket (PatBr p)) }
| '[d|' cvtopbody '|]' {% checkDecBrGroup $2 >>= \g ->
return (LL $ HsBracket (DecBr g)) }
-- arrow notation extension
| '(|' aexp2 cmdargs '|)' { LL $ HsArrForm $2 Nothing (reverse $3) }
cmdargs :: { [LHsCmdTop RdrName] }
: cmdargs acmd { $2 : $1 }
| {- empty -} { [] }
acmd :: { LHsCmdTop RdrName }
: aexp2 { L1 $ HsCmdTop $1 [] placeHolderType undefined }
cvtopbody :: { [LHsDecl RdrName] }
: '{' cvtopdecls0 '}' { $2 }
| vocurly cvtopdecls0 close { $2 }
cvtopdecls0 :: { [LHsDecl RdrName] }
: {- empty -} { [] }
| cvtopdecls { $1 }
-----------------------------------------------------------------------------
-- Tuple expressions
-- "texp" is short for tuple expressions:
-- things that can appear unparenthesized as long as they're
-- inside parens or delimitted by commas
texp :: { LHsExpr RdrName }
: exp { $1 }
-- Note [Parsing sections]
-- ~~~~~~~~~~~~~~~~~~~~~~~
-- We include left and right sections here, which isn't
-- technically right according to Haskell 98. For example
-- (3 +, True) isn't legal
-- However, we want to parse bang patterns like
-- (!x, !y)
-- and it's convenient to do so here as a section
-- Then when converting expr to pattern we unravel it again
-- Meanwhile, the renamer checks that real sections appear
-- inside parens.
| infixexp qop { LL $ SectionL $1 $2 }
| qopm infixexp { LL $ SectionR $1 $2 }
-- View patterns get parenthesized above
| exp '->' exp { LL $ EViewPat $1 $3 }
-- Always at least one comma
tup_exprs :: { [HsTupArg RdrName] }
: texp commas_tup_tail { Present $1 : $2 }
| commas tup_tail { replicate $1 missingTupArg ++ $2 }
-- Always starts with commas; always follows an expr
commas_tup_tail :: { [HsTupArg RdrName] }
commas_tup_tail : commas tup_tail { replicate ($1-1) missingTupArg ++ $2 }
-- Always follows a comma
tup_tail :: { [HsTupArg RdrName] }
: texp commas_tup_tail { Present $1 : $2 }
| texp { [Present $1] }
| {- empty -} { [missingTupArg] }
-----------------------------------------------------------------------------
-- List expressions
-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.
list :: { LHsExpr RdrName }
: texp { L1 $ ExplicitList placeHolderType [$1] }
| lexps { L1 $ ExplicitList placeHolderType (reverse (unLoc $1)) }
| texp '..' { LL $ ArithSeq noPostTcExpr (From $1) }
| texp ',' exp '..' { LL $ ArithSeq noPostTcExpr (FromThen $1 $3) }
| texp '..' exp { LL $ ArithSeq noPostTcExpr (FromTo $1 $3) }
| texp ',' exp '..' exp { LL $ ArithSeq noPostTcExpr (FromThenTo $1 $3 $5) }
| texp '|' flattenedpquals { sL (comb2 $1 $>) $ mkHsDo ListComp (unLoc $3) $1 }
lexps :: { Located [LHsExpr RdrName] }
: lexps ',' texp { LL (((:) $! $3) $! unLoc $1) }
| texp ',' texp { LL [$3,$1] }
-----------------------------------------------------------------------------
-- List Comprehensions
flattenedpquals :: { Located [LStmt RdrName] }
: pquals { case (unLoc $1) of
[qs] -> L1 qs
-- We just had one thing in our "parallel" list so
-- we simply return that thing directly
qss -> L1 [L1 $ ParStmt [(qs, undefined) | qs <- qss]]
-- We actually found some actual parallel lists so
-- we wrap them into as a ParStmt
}
pquals :: { Located [[LStmt RdrName]] }
: squals '|' pquals { L (getLoc $2) (reverse (unLoc $1) : unLoc $3) }
| squals { L (getLoc $1) [reverse (unLoc $1)] }
squals :: { Located [LStmt RdrName] } -- In reverse order, because the last
-- one can "grab" the earlier ones
: squals ',' transformqual { LL [L (getLoc $3) ((unLoc $3) (reverse (unLoc $1)))] }
| squals ',' qual { LL ($3 : unLoc $1) }
| transformqual { LL [L (getLoc $1) ((unLoc $1) [])] }
| qual { L1 [$1] }
-- | transformquals1 ',' '{|' pquals '|}' { LL ($4 : unLoc $1) }
-- | '{|' pquals '|}' { L1 [$2] }
-- It is possible to enable bracketing (associating) qualifier lists by uncommenting the lines with {| |}
-- above. Due to a lack of consensus on the syntax, this feature is not being used until we get user
-- demand. Note that the {| |} symbols are reused from -XGenerics and hence if you want to compile
-- a program that makes use of this temporary syntax you must supply that flag to GHC
transformqual :: { Located ([LStmt RdrName] -> Stmt RdrName) }
-- Function is applied to a list of stmts *in order*
: 'then' exp { LL $ \leftStmts -> (mkTransformStmt leftStmts $2) }
-- >>>
| 'then' exp 'by' exp { LL $ \leftStmts -> (mkTransformByStmt leftStmts $2 $4) }
| 'then' 'group' 'by' exp { LL $ \leftStmts -> (mkGroupByStmt leftStmts $4) }
-- <<<
-- These two productions deliberately have a shift-reduce conflict. I have made 'group' into a special_id,
-- which means you can enable TransformListComp while still using Data.List.group. However, this makes the two
-- productions ambiguous. I've set things up so that Happy chooses to resolve the conflict in that case by
-- choosing the "group by" variant, which is what we want.
--
-- This is rather dubious: the user might be confused as to how to parse this statement. However, it is a good
-- practical choice. NB: Data.List.group :: [a] -> [[a]], so using the first production would not even type check
-- if /that/ is the group function we conflict with.
| 'then' 'group' 'using' exp { LL $ \leftStmts -> (mkGroupUsingStmt leftStmts $4) }
| 'then' 'group' 'by' exp 'using' exp { LL $ \leftStmts -> (mkGroupByUsingStmt leftStmts $4 $6) }
-----------------------------------------------------------------------------
-- Parallel array expressions
-- The rules below are little bit contorted; see the list case for details.
-- Note that, in contrast to lists, we only have finite arithmetic sequences.
-- Moreover, we allow explicit arrays with no element (represented by the nil
-- constructor in the list case).
parr :: { LHsExpr RdrName }
: { noLoc (ExplicitPArr placeHolderType []) }
| texp { L1 $ ExplicitPArr placeHolderType [$1] }
| lexps { L1 $ ExplicitPArr placeHolderType
(reverse (unLoc $1)) }
| texp '..' exp { LL $ PArrSeq noPostTcExpr (FromTo $1 $3) }
| texp ',' exp '..' exp { LL $ PArrSeq noPostTcExpr (FromThenTo $1 $3 $5) }
| texp '|' flattenedpquals { LL $ mkHsDo PArrComp (unLoc $3) $1 }
-- We are reusing `lexps' and `flattenedpquals' from the list case.
-----------------------------------------------------------------------------
-- Guards
guardquals :: { Located [LStmt RdrName] }
: guardquals1 { L (getLoc $1) (reverse (unLoc $1)) }
guardquals1 :: { Located [LStmt RdrName] }
: guardquals1 ',' qual { LL ($3 : unLoc $1) }
| qual { L1 [$1] }
-----------------------------------------------------------------------------
-- Case alternatives
altslist :: { Located [LMatch RdrName] }
: '{' alts '}' { LL (reverse (unLoc $2)) }
| vocurly alts close { L (getLoc $2) (reverse (unLoc $2)) }
alts :: { Located [LMatch RdrName] }
: alts1 { L1 (unLoc $1) }
| ';' alts { LL (unLoc $2) }
alts1 :: { Located [LMatch RdrName] }
: alts1 ';' alt { LL ($3 : unLoc $1) }
| alts1 ';' { LL (unLoc $1) }
| alt { L1 [$1] }
alt :: { LMatch RdrName }
: pat opt_sig alt_rhs { LL (Match [$1] $2 (unLoc $3)) }
alt_rhs :: { Located (GRHSs RdrName) }
: ralt wherebinds { LL (GRHSs (unLoc $1) (unLoc $2)) }
ralt :: { Located [LGRHS RdrName] }
: '->' exp { LL (unguardedRHS $2) }
| gdpats { L1 (reverse (unLoc $1)) }
gdpats :: { Located [LGRHS RdrName] }
: gdpats gdpat { LL ($2 : unLoc $1) }
| gdpat { L1 [$1] }
gdpat :: { LGRHS RdrName }
: '|' guardquals '->' exp { sL (comb2 $1 $>) $ GRHS (unLoc $2) $4 }
-- 'pat' recognises a pattern, including one with a bang at the top
-- e.g. "!x" or "!(x,y)" or "C a b" etc
-- Bangs inside are parsed as infix operator applications, so that
-- we parse them right when bang-patterns are off
pat :: { LPat RdrName }
pat : exp {% checkPattern $1 }
| '!' aexp {% checkPattern (LL (SectionR (L1 (HsVar bang_RDR)) $2)) }
apat :: { LPat RdrName }
apat : aexp {% checkPattern $1 }
| '!' aexp {% checkPattern (LL (SectionR (L1 (HsVar bang_RDR)) $2)) }
apats :: { [LPat RdrName] }
: apat apats { $1 : $2 }
| {- empty -} { [] }
-----------------------------------------------------------------------------
-- Statement sequences
stmtlist :: { Located [LStmt RdrName] }
: '{' stmts '}' { LL (unLoc $2) }
| vocurly stmts close { $2 }
-- do { ;; s ; s ; ; s ;; }
-- The last Stmt should be an expression, but that's hard to enforce
-- here, because we need too much lookahead if we see do { e ; }
-- So we use ExprStmts throughout, and switch the last one over
-- in ParseUtils.checkDo instead
stmts :: { Located [LStmt RdrName] }
: stmt stmts_help { LL ($1 : unLoc $2) }
| ';' stmts { LL (unLoc $2) }
| {- empty -} { noLoc [] }
stmts_help :: { Located [LStmt RdrName] } -- might be empty
: ';' stmts { LL (unLoc $2) }
| {- empty -} { noLoc [] }
-- For typing stmts at the GHCi prompt, where
-- the input may consist of just comments.
maybe_stmt :: { Maybe (LStmt RdrName) }
: stmt { Just $1 }
| {- nothing -} { Nothing }
stmt :: { LStmt RdrName }
: qual { $1 }
| 'rec' stmtlist { LL $ mkRecStmt (unLoc $2) }
qual :: { LStmt RdrName }
: pat '<-' exp { LL $ mkBindStmt $1 $3 }
| exp { L1 $ mkExprStmt $1 }
| 'let' binds { LL $ LetStmt (unLoc $2) }
-----------------------------------------------------------------------------
-- Record Field Update/Construction
fbinds :: { ([HsRecField RdrName (LHsExpr RdrName)], Bool) }
: fbinds1 { $1 }
| {- empty -} { ([], False) }
fbinds1 :: { ([HsRecField RdrName (LHsExpr RdrName)], Bool) }
: fbind ',' fbinds1 { case $3 of (flds, dd) -> ($1 : flds, dd) }
| fbind { ([$1], False) }
| '..' { ([], True) }
fbind :: { HsRecField RdrName (LHsExpr RdrName) }
: qvar '=' exp { HsRecField $1 $3 False }
| qvar { HsRecField $1 (L (getLoc $1) placeHolderPunRhs) True }
-- Here's where we say that plain 'x'
-- means exactly 'x = x'. The pun-flag boolean is
-- there so we can still print it right
-----------------------------------------------------------------------------
-- Implicit Parameter Bindings
dbinds :: { Located [LIPBind RdrName] }
: dbinds ';' dbind { let { this = $3; rest = unLoc $1 }
in rest `seq` this `seq` LL (this : rest) }
| dbinds ';' { LL (unLoc $1) }
| dbind { let this = $1 in this `seq` L1 [this] }
-- | {- empty -} { [] }
dbind :: { LIPBind RdrName }
dbind : ipvar '=' exp { LL (IPBind (unLoc $1) $3) }
ipvar :: { Located (IPName RdrName) }
: IPDUPVARID { L1 (IPName (mkUnqual varName (getIPDUPVARID $1))) }
-----------------------------------------------------------------------------
-- Warnings and deprecations
namelist :: { Located [RdrName] }
namelist : name_var { L1 [unLoc $1] }
| name_var ',' namelist { LL (unLoc $1 : unLoc $3) }
name_var :: { Located RdrName }
name_var : var { $1 }
| con { $1 }
-----------------------------------------
-- Data constructors
qcon :: { Located RdrName }
: qconid { $1 }
| '(' qconsym ')' { LL (unLoc $2) }
| sysdcon { L1 $ nameRdrName (dataConName (unLoc $1)) }
-- The case of '[:' ':]' is part of the production `parr'
con :: { Located RdrName }
: conid { $1 }
| '(' consym ')' { LL (unLoc $2) }
| sysdcon { L1 $ nameRdrName (dataConName (unLoc $1)) }
con_list :: { Located [Located RdrName] }
con_list : con { L1 [$1] }
| con ',' con_list { LL ($1 : unLoc $3) }
sysdcon :: { Located DataCon } -- Wired in data constructors
: '(' ')' { LL unitDataCon }
| '(' commas ')' { LL $ tupleCon Boxed ($2 + 1) }
| '(#' '#)' { LL $ unboxedSingletonDataCon }
| '(#' commas '#)' { LL $ tupleCon Unboxed ($2 + 1) }
| '[' ']' { LL nilDataCon }
conop :: { Located RdrName }
: consym { $1 }
| '`' conid '`' { LL (unLoc $2) }
qconop :: { Located RdrName }
: qconsym { $1 }
| '`' qconid '`' { LL (unLoc $2) }
-----------------------------------------------------------------------------
-- Type constructors
gtycon :: { Located RdrName } -- A "general" qualified tycon
: oqtycon { $1 }
| '(' ')' { LL $ getRdrName unitTyCon }
| '(' commas ')' { LL $ getRdrName (tupleTyCon Boxed ($2 + 1)) }
| '(#' '#)' { LL $ getRdrName unboxedSingletonTyCon }
| '(#' commas '#)' { LL $ getRdrName (tupleTyCon Unboxed ($2 + 1)) }
| '(' '->' ')' { LL $ getRdrName funTyCon }
| '[' ']' { LL $ listTyCon_RDR }
| '[:' ':]' { LL $ parrTyCon_RDR }
oqtycon :: { Located RdrName } -- An "ordinary" qualified tycon
: qtycon { $1 }
| '(' qtyconsym ')' { LL (unLoc $2) }
qtyconop :: { Located RdrName } -- Qualified or unqualified
: qtyconsym { $1 }
| '`' qtycon '`' { LL (unLoc $2) }
qtycon :: { Located RdrName } -- Qualified or unqualified
: QCONID { L1 $! mkQual tcClsName (getQCONID $1) }
| PREFIXQCONSYM { L1 $! mkQual tcClsName (getPREFIXQCONSYM $1) }
| tycon { $1 }
tycon :: { Located RdrName } -- Unqualified
: CONID { L1 $! mkUnqual tcClsName (getCONID $1) }
qtyconsym :: { Located RdrName }
: QCONSYM { L1 $! mkQual tcClsName (getQCONSYM $1) }
| tyconsym { $1 }
tyconsym :: { Located RdrName }
: CONSYM { L1 $! mkUnqual tcClsName (getCONSYM $1) }
-----------------------------------------------------------------------------
-- Operators
op :: { Located RdrName } -- used in infix decls
: varop { $1 }
| conop { $1 }
varop :: { Located RdrName }
: varsym { $1 }
| '`' varid '`' { LL (unLoc $2) }
qop :: { LHsExpr RdrName } -- used in sections
: qvarop { L1 $ HsVar (unLoc $1) }
| qconop { L1 $ HsVar (unLoc $1) }
qopm :: { LHsExpr RdrName } -- used in sections
: qvaropm { L1 $ HsVar (unLoc $1) }
| qconop { L1 $ HsVar (unLoc $1) }
qvarop :: { Located RdrName }
: qvarsym { $1 }
| '`' qvarid '`' { LL (unLoc $2) }
qvaropm :: { Located RdrName }
: qvarsym_no_minus { $1 }
| '`' qvarid '`' { LL (unLoc $2) }
-----------------------------------------------------------------------------
-- Type variables
tyvar :: { Located RdrName }
tyvar : tyvarid { $1 }
| '(' tyvarsym ')' { LL (unLoc $2) }
tyvarop :: { Located RdrName }
tyvarop : '`' tyvarid '`' { LL (unLoc $2) }
| tyvarsym { $1 }
| '.' {% parseErrorSDoc (getLoc $1)
(vcat [ptext (sLit "Illegal symbol '.' in type"),
ptext (sLit "Perhaps you intended -XRankNTypes or similar flag"),
ptext (sLit "to enable explicit-forall syntax: forall <tvs>. <type>")])
}
tyvarid :: { Located RdrName }
: VARID { L1 $! mkUnqual tvName (getVARID $1) }
| special_id { L1 $! mkUnqual tvName (unLoc $1) }
| 'unsafe' { L1 $! mkUnqual tvName (fsLit "unsafe") }
| 'safe' { L1 $! mkUnqual tvName (fsLit "safe") }
| 'threadsafe' { L1 $! mkUnqual tvName (fsLit "threadsafe") }
tyvarsym :: { Located RdrName }
-- Does not include "!", because that is used for strictness marks
-- or ".", because that separates the quantified type vars from the rest
-- or "*", because that's used for kinds
tyvarsym : VARSYM { L1 $! mkUnqual tvName (getVARSYM $1) }
-----------------------------------------------------------------------------
-- Variables
var :: { Located RdrName }
: varid { $1 }
| '(' varsym ')' { LL (unLoc $2) }
qvar :: { Located RdrName }
: qvarid { $1 }
| '(' varsym ')' { LL (unLoc $2) }
| '(' qvarsym1 ')' { LL (unLoc $2) }
-- We've inlined qvarsym here so that the decision about
-- whether it's a qvar or a var can be postponed until
-- *after* we see the close paren.
qvarid :: { Located RdrName }
: varid { $1 }
| QVARID { L1 $! mkQual varName (getQVARID $1) }
| PREFIXQVARSYM { L1 $! mkQual varName (getPREFIXQVARSYM $1) }
varid :: { Located RdrName }
: VARID { L1 $! mkUnqual varName (getVARID $1) }
| special_id { L1 $! mkUnqual varName (unLoc $1) }
| 'unsafe' { L1 $! mkUnqual varName (fsLit "unsafe") }
| 'safe' { L1 $! mkUnqual varName (fsLit "safe") }
| 'threadsafe' { L1 $! mkUnqual varName (fsLit "threadsafe") }
| 'forall' { L1 $! mkUnqual varName (fsLit "forall") }
| 'family' { L1 $! mkUnqual varName (fsLit "family") }
qvarsym :: { Located RdrName }
: varsym { $1 }
| qvarsym1 { $1 }
qvarsym_no_minus :: { Located RdrName }
: varsym_no_minus { $1 }
| qvarsym1 { $1 }
qvarsym1 :: { Located RdrName }
qvarsym1 : QVARSYM { L1 $ mkQual varName (getQVARSYM $1) }
varsym :: { Located RdrName }
: varsym_no_minus { $1 }
| '-' { L1 $ mkUnqual varName (fsLit "-") }
varsym_no_minus :: { Located RdrName } -- varsym not including '-'
: VARSYM { L1 $ mkUnqual varName (getVARSYM $1) }
| special_sym { L1 $ mkUnqual varName (unLoc $1) }
-- These special_ids are treated as keywords in various places,
-- but as ordinary ids elsewhere. 'special_id' collects all these
-- except 'unsafe', 'forall', and 'family' whose treatment differs
-- depending on context
special_id :: { Located FastString }
special_id
: 'as' { L1 (fsLit "as") }
| 'qualified' { L1 (fsLit "qualified") }
| 'hiding' { L1 (fsLit "hiding") }
| 'export' { L1 (fsLit "export") }
| 'label' { L1 (fsLit "label") }
| 'dynamic' { L1 (fsLit "dynamic") }
| 'stdcall' { L1 (fsLit "stdcall") }
| 'ccall' { L1 (fsLit "ccall") }
| 'prim' { L1 (fsLit "prim") }
| 'group' { L1 (fsLit "group") }
special_sym :: { Located FastString }
special_sym : '!' { L1 (fsLit "!") }
| '.' { L1 (fsLit ".") }
| '*' { L1 (fsLit "*") }
-----------------------------------------------------------------------------
-- Data constructors
qconid :: { Located RdrName } -- Qualified or unqualified
: conid { $1 }
| QCONID { L1 $! mkQual dataName (getQCONID $1) }
| PREFIXQCONSYM { L1 $! mkQual dataName (getPREFIXQCONSYM $1) }
conid :: { Located RdrName }
: CONID { L1 $ mkUnqual dataName (getCONID $1) }
qconsym :: { Located RdrName } -- Qualified or unqualified
: consym { $1 }
| QCONSYM { L1 $ mkQual dataName (getQCONSYM $1) }
consym :: { Located RdrName }
: CONSYM { L1 $ mkUnqual dataName (getCONSYM $1) }
-- ':' means only list cons
| ':' { L1 $ consDataCon_RDR }
-----------------------------------------------------------------------------
-- Literals
literal :: { Located HsLit }
: CHAR { L1 $ HsChar $ getCHAR $1 }
| STRING { L1 $ HsString $ getSTRING $1 }
| PRIMINTEGER { L1 $ HsIntPrim $ getPRIMINTEGER $1 }
| PRIMWORD { L1 $ HsWordPrim $ getPRIMWORD $1 }
| PRIMCHAR { L1 $ HsCharPrim $ getPRIMCHAR $1 }
| PRIMSTRING { L1 $ HsStringPrim $ getPRIMSTRING $1 }
| PRIMFLOAT { L1 $ HsFloatPrim $ getPRIMFLOAT $1 }
| PRIMDOUBLE { L1 $ HsDoublePrim $ getPRIMDOUBLE $1 }
-----------------------------------------------------------------------------
-- Layout
close :: { () }
: vccurly { () } -- context popped in lexer.
| error {% popContext }
-----------------------------------------------------------------------------
-- Miscellaneous (mostly renamings)
modid :: { Located ModuleName }
: CONID { L1 $ mkModuleNameFS (getCONID $1) }
| QCONID { L1 $ let (mod,c) = getQCONID $1 in
mkModuleNameFS
(mkFastString
(unpackFS mod ++ '.':unpackFS c))
}
commas :: { Int }
: commas ',' { $1 + 1 }
| ',' { 1 }
-----------------------------------------------------------------------------
-- Documentation comments
docnext :: { LHsDocString }
: DOCNEXT {% return (L1 (HsDocString (mkFastString (getDOCNEXT $1)))) }
docprev :: { LHsDocString }
: DOCPREV {% return (L1 (HsDocString (mkFastString (getDOCPREV $1)))) }
docnamed :: { Located (String, HsDocString) }
: DOCNAMED {%
let string = getDOCNAMED $1
(name, rest) = break isSpace string
in return (L1 (name, HsDocString (mkFastString rest))) }
docsection :: { Located (Int, HsDocString) }
: DOCSECTION {% let (n, doc) = getDOCSECTION $1 in
return (L1 (n, HsDocString (mkFastString doc))) }
moduleheader :: { Maybe LHsDocString }
: DOCNEXT {% let string = getDOCNEXT $1 in
return (Just (L1 (HsDocString (mkFastString string)))) }
maybe_docprev :: { Maybe LHsDocString }
: docprev { Just $1 }
| {- empty -} { Nothing }
maybe_docnext :: { Maybe LHsDocString }
: docnext { Just $1 }
| {- empty -} { Nothing }
{
happyError :: P a
happyError = srcParseFail
getVARID (L _ (ITvarid x)) = x
getCONID (L _ (ITconid x)) = x
getVARSYM (L _ (ITvarsym x)) = x
getCONSYM (L _ (ITconsym x)) = x
getQVARID (L _ (ITqvarid x)) = x
getQCONID (L _ (ITqconid x)) = x
getQVARSYM (L _ (ITqvarsym x)) = x
getQCONSYM (L _ (ITqconsym x)) = x
getPREFIXQVARSYM (L _ (ITprefixqvarsym x)) = x
getPREFIXQCONSYM (L _ (ITprefixqconsym x)) = x
getIPDUPVARID (L _ (ITdupipvarid x)) = x
getCHAR (L _ (ITchar x)) = x
getSTRING (L _ (ITstring x)) = x
getINTEGER (L _ (ITinteger x)) = x
getRATIONAL (L _ (ITrational x)) = x
getPRIMCHAR (L _ (ITprimchar x)) = x
getPRIMSTRING (L _ (ITprimstring x)) = x
getPRIMINTEGER (L _ (ITprimint x)) = x
getPRIMWORD (L _ (ITprimword x)) = x
getPRIMFLOAT (L _ (ITprimfloat x)) = x
getPRIMDOUBLE (L _ (ITprimdouble x)) = x
getTH_ID_SPLICE (L _ (ITidEscape x)) = x
getINLINE (L _ (ITinline_prag b)) = b
getINLINE_CONLIKE (L _ (ITinline_conlike_prag b)) = b
getSPEC_INLINE (L _ (ITspec_inline_prag b)) = b
getDOCNEXT (L _ (ITdocCommentNext x)) = x
getDOCPREV (L _ (ITdocCommentPrev x)) = x
getDOCNAMED (L _ (ITdocCommentNamed x)) = x
getDOCSECTION (L _ (ITdocSection n x)) = (n, x)
getSCC :: Located Token -> P FastString
getSCC lt = do let s = getSTRING lt
err = "Spaces are not allowed in SCCs"
-- We probably actually want to be more restrictive than this
if ' ' `elem` unpackFS s
then failSpanMsgP (getLoc lt) (text err)
else return s
-- Utilities for combining source spans
comb2 :: Located a -> Located b -> SrcSpan
comb2 a b = a `seq` b `seq` combineLocs a b
comb3 :: Located a -> Located b -> Located c -> SrcSpan
comb3 a b c = a `seq` b `seq` c `seq`
combineSrcSpans (getLoc a) (combineSrcSpans (getLoc b) (getLoc c))
comb4 :: Located a -> Located b -> Located c -> Located d -> SrcSpan
comb4 a b c d = a `seq` b `seq` c `seq` d `seq`
(combineSrcSpans (getLoc a) $ combineSrcSpans (getLoc b) $
combineSrcSpans (getLoc c) (getLoc d))
-- strict constructor version:
{-# INLINE sL #-}
sL :: SrcSpan -> a -> Located a
sL span a = span `seq` a `seq` L span a
-- Make a source location for the file. We're a bit lazy here and just
-- make a point SrcSpan at line 1, column 0. Strictly speaking we should
-- try to find the span of the whole file (ToDo).
fileSrcSpan :: P SrcSpan
fileSrcSpan = do
l <- getSrcLoc;
let loc = mkSrcLoc (srcLocFile l) 1 0;
return (mkSrcSpan loc loc)
}
|