1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
{
{-# OPTIONS -Wwarn -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details
module ParserCore ( parseCore ) where
import IfaceSyn
import ForeignCall
import RdrHsSyn
import HsSyn
import RdrName
import OccName
import Type ( Kind,
liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon,
argTypeKindTyCon, ubxTupleKindTyCon, mkArrowKind, mkTyConApp
)
import Name( Name, nameOccName, nameModule, mkExternalName )
import Module
import ParserCoreUtils
import LexCore
import Literal
import SrcLoc
import TysPrim( wordPrimTyCon, intPrimTyCon, charPrimTyCon,
floatPrimTyCon, doublePrimTyCon, addrPrimTyCon )
import TyCon ( TyCon, tyConName )
import FastString
import Outputable
import Data.Char
import Unique
#include "../HsVersions.h"
}
%name parseCore
%expect 0
%tokentype { Token }
%token
'%module' { TKmodule }
'%data' { TKdata }
'%newtype' { TKnewtype }
'%forall' { TKforall }
'%rec' { TKrec }
'%let' { TKlet }
'%in' { TKin }
'%case' { TKcase }
'%of' { TKof }
'%cast' { TKcast }
'%note' { TKnote }
'%external' { TKexternal }
'%local' { TKlocal }
'%_' { TKwild }
'(' { TKoparen }
')' { TKcparen }
'{' { TKobrace }
'}' { TKcbrace }
'#' { TKhash}
'=' { TKeq }
':' { TKcolon }
'::' { TKcoloncolon }
':=:' { TKcoloneqcolon }
'*' { TKstar }
'->' { TKrarrow }
'\\' { TKlambda}
'@' { TKat }
'.' { TKdot }
'?' { TKquestion}
';' { TKsemicolon }
NAME { TKname $$ }
CNAME { TKcname $$ }
INTEGER { TKinteger $$ }
RATIONAL { TKrational $$ }
STRING { TKstring $$ }
CHAR { TKchar $$ }
%monad { P } { thenP } { returnP }
%lexer { lexer } { TKEOF }
%%
module :: { HsExtCore RdrName }
-- : '%module' modid tdefs vdefgs { HsExtCore $2 $3 $4 }
: '%module' modid tdefs vdefgs { HsExtCore $2 [] [] }
-------------------------------------------------------------
-- Names: the trickiest bit in here
-- A name of the form A.B.C could be:
-- module A.B.C
-- dcon C in module A.B
-- tcon C in module A.B
modid :: { Module }
: NAME ':' mparts { undefined }
q_dc_name :: { Name }
: NAME ':' mparts { undefined }
q_tc_name :: { Name }
: NAME ':' mparts { undefined }
q_var_occ :: { Name }
: NAME ':' vparts { undefined }
mparts :: { [String] }
: CNAME { [$1] }
| CNAME '.' mparts { $1:$3 }
vparts :: { [String] }
: var_occ { [$1] }
| CNAME '.' vparts { $1:$3 }
-------------------------------------------------------------
-- Type and newtype declarations are in HsSyn syntax
tdefs :: { [TyClDecl RdrName] }
: {- empty -} {[]}
| tdef tdefs {$1:$2}
tdef :: { TyClDecl RdrName }
: '%data' q_tc_name tv_bndrs '=' '{' cons '}' ';'
{ TyData { tcdND = DataType, tcdCtxt = noLoc []
, tcdLName = noLoc (ifaceExtRdrName $2)
, tcdTyVars = map toHsTvBndr $3
, tcdTyPats = Nothing, tcdKindSig = Nothing
, tcdCons = $6, tcdDerivs = Nothing } }
| '%newtype' q_tc_name tv_bndrs trep ';'
{ let tc_rdr = ifaceExtRdrName $2 in
TyData { tcdND = NewType, tcdCtxt = noLoc []
, tcdLName = noLoc tc_rdr
, tcdTyVars = map toHsTvBndr $3
, tcdTyPats = Nothing, tcdKindSig = Nothing
, tcdCons = $4 (rdrNameOcc tc_rdr), tcdDerivs = Nothing } }
-- For a newtype we have to invent a fake data constructor name
-- It doesn't matter what it is, because it won't be used
trep :: { OccName -> [LConDecl RdrName] }
: {- empty -} { (\ tc_occ -> []) }
| '=' ty { (\ tc_occ -> let { dc_name = mkRdrUnqual (setOccNameSpace dataName tc_occ) ;
con_info = PrefixCon [toHsType $2] }
in [noLoc $ mkSimpleConDecl (noLoc dc_name) []
(noLoc []) con_info]) }
cons :: { [LConDecl RdrName] }
: {- empty -} { [] } -- 20060420 Empty data types allowed. jds
| con { [$1] }
| con ';' cons { $1:$3 }
con :: { LConDecl RdrName }
: d_pat_occ attv_bndrs hs_atys
{ noLoc $ mkSimpleConDecl (noLoc (mkRdrUnqual $1)) $2 (noLoc []) (PrefixCon $3) }
-- ToDo: parse record-style declarations
attv_bndrs :: { [LHsTyVarBndr RdrName] }
: {- empty -} { [] }
| '@' tv_bndr attv_bndrs { toHsTvBndr $2 : $3 }
hs_atys :: { [LHsType RdrName] }
: atys { map toHsType $1 }
---------------------------------------
-- Types
---------------------------------------
atys :: { [IfaceType] }
: {- empty -} { [] }
| aty atys { $1:$2 }
aty :: { IfaceType }
: fs_var_occ { IfaceTyVar $1 }
| q_tc_name { IfaceTyConApp (IfaceTc $1) [] }
| '(' ty ')' { $2 }
bty :: { IfaceType }
: fs_var_occ atys { foldl IfaceAppTy (IfaceTyVar $1) $2 }
| q_var_occ atys { undefined }
| q_tc_name atys { IfaceTyConApp (IfaceTc $1) $2 }
| '(' ty ')' { $2 }
ty :: { IfaceType }
: bty { $1 }
| bty '->' ty { IfaceFunTy $1 $3 }
| '%forall' tv_bndrs '.' ty { foldr IfaceForAllTy $4 $2 }
----------------------------------------------
-- Bindings are in Iface syntax
vdefgs :: { [IfaceBinding] }
: {- empty -} { [] }
| let_bind ';' vdefgs { $1 : $3 }
let_bind :: { IfaceBinding }
: '%rec' '{' vdefs1 '}' { IfaceRec $3 } -- Can be empty. Do we care?
| vdef { let (b,r) = $1
in IfaceNonRec b r }
vdefs1 :: { [(IfaceLetBndr, IfaceExpr)] }
: vdef { [$1] }
| vdef ';' vdefs1 { $1:$3 }
vdef :: { (IfaceLetBndr, IfaceExpr) }
: fs_var_occ '::' ty '=' exp { (IfLetBndr $1 $3 NoInfo, $5) }
| '%local' vdef { $2 }
-- NB: qd_occ includes data constructors, because
-- we allow data-constructor wrappers at top level
-- But we discard the module name, because it must be the
-- same as the module being compiled, and Iface syntax only
-- has OccNames in binding positions. Ah, but it has Names now!
---------------------------------------
-- Binders
bndr :: { IfaceBndr }
: '@' tv_bndr { IfaceTvBndr $2 }
| id_bndr { IfaceIdBndr $1 }
bndrs :: { [IfaceBndr] }
: bndr { [$1] }
| bndr bndrs { $1:$2 }
id_bndr :: { IfaceIdBndr }
: '(' fs_var_occ '::' ty ')' { ($2,$4) }
tv_bndr :: { IfaceTvBndr }
: fs_var_occ { ($1, ifaceLiftedTypeKind) }
| '(' fs_var_occ '::' akind ')' { ($2, $4) }
tv_bndrs :: { [IfaceTvBndr] }
: {- empty -} { [] }
| tv_bndr tv_bndrs { $1:$2 }
akind :: { IfaceKind }
: '*' { ifaceLiftedTypeKind }
| '#' { ifaceUnliftedTypeKind }
| '?' { ifaceOpenTypeKind }
| '(' kind ')' { $2 }
kind :: { IfaceKind }
: akind { $1 }
| akind '->' kind { ifaceArrow $1 $3 }
| ty ':=:' ty { ifaceEq $1 $3 }
-----------------------------------------
-- Expressions
aexp :: { IfaceExpr }
: fs_var_occ { IfaceLcl $1 }
| q_var_occ { IfaceExt $1 }
| q_dc_name { IfaceExt $1 }
| lit { IfaceLit $1 }
| '(' exp ')' { $2 }
fexp :: { IfaceExpr }
: fexp aexp { IfaceApp $1 $2 }
| fexp '@' aty { IfaceApp $1 (IfaceType $3) }
| aexp { $1 }
exp :: { IfaceExpr }
: fexp { $1 }
| '\\' bndrs '->' exp { foldr IfaceLam $4 $2 }
| '%let' let_bind '%in' exp { IfaceLet $2 $4 }
-- gaw 2004
| '%case' '(' ty ')' aexp '%of' id_bndr
'{' alts1 '}' { IfaceCase $5 (fst $7) $3 $9 }
| '%cast' aexp aty { IfaceCast $2 $3 }
| '%note' STRING exp
{ case $2 of
--"SCC" -> IfaceNote (IfaceSCC "scc") $3
"InlineMe" -> IfaceNote IfaceInlineMe $3
}
| '%external' STRING aty { IfaceFCall (ForeignCall.CCall
(CCallSpec (StaticTarget (mkFastString $2))
CCallConv (PlaySafe False)))
$3 }
alts1 :: { [IfaceAlt] }
: alt { [$1] }
| alt ';' alts1 { $1:$3 }
alt :: { IfaceAlt }
: q_dc_name bndrs '->' exp
{ (IfaceDataAlt $1, map ifaceBndrName $2, $4) }
-- The external syntax currently includes the types of the
-- the args, but they aren't needed internally
-- Nor is the module qualifier
| q_dc_name '->' exp
{ (IfaceDataAlt $1, [], $3) }
| lit '->' exp
{ (IfaceLitAlt $1, [], $3) }
| '%_' '->' exp
{ (IfaceDefault, [], $3) }
lit :: { Literal }
: '(' INTEGER '::' aty ')' { convIntLit $2 $4 }
| '(' RATIONAL '::' aty ')' { convRatLit $2 $4 }
| '(' CHAR '::' aty ')' { MachChar $2 }
| '(' STRING '::' aty ')' { MachStr (mkFastString $2) }
fs_var_occ :: { FastString }
: NAME { mkFastString $1 }
var_occ :: { String }
: NAME { $1 }
-- Data constructor in a pattern or data type declaration; use the dataName,
-- because that's what we expect in Core case patterns
d_pat_occ :: { OccName }
: CNAME { mkOccName dataName $1 }
{
ifaceKind kc = IfaceTyConApp kc []
ifaceBndrName (IfaceIdBndr (n,_)) = n
ifaceBndrName (IfaceTvBndr (n,_)) = n
convIntLit :: Integer -> IfaceType -> Literal
convIntLit i (IfaceTyConApp tc [])
| tc `eqTc` intPrimTyCon = MachInt i
| tc `eqTc` wordPrimTyCon = MachWord i
| tc `eqTc` charPrimTyCon = MachChar (chr (fromInteger i))
| tc `eqTc` addrPrimTyCon && i == 0 = MachNullAddr
convIntLit i aty
= pprPanic "Unknown integer literal type" (ppr aty)
convRatLit :: Rational -> IfaceType -> Literal
convRatLit r (IfaceTyConApp tc [])
| tc `eqTc` floatPrimTyCon = MachFloat r
| tc `eqTc` doublePrimTyCon = MachDouble r
convRatLit i aty
= pprPanic "Unknown rational literal type" (ppr aty)
eqTc :: IfaceTyCon -> TyCon -> Bool -- Ugh!
eqTc (IfaceTc name) tycon = name == tyConName tycon
-- Tiresomely, we have to generate both HsTypes (in type/class decls)
-- and IfaceTypes (in Core expressions). So we parse them as IfaceTypes,
-- and convert to HsTypes here. But the IfaceTypes we can see here
-- are very limited (see the productions for 'ty', so the translation
-- isn't hard
toHsType :: IfaceType -> LHsType RdrName
toHsType (IfaceTyVar v) = noLoc $ HsTyVar (mkRdrUnqual (mkTyVarOccFS v))
toHsType (IfaceAppTy t1 t2) = noLoc $ HsAppTy (toHsType t1) (toHsType t2)
toHsType (IfaceFunTy t1 t2) = noLoc $ HsFunTy (toHsType t1) (toHsType t2)
toHsType (IfaceTyConApp (IfaceTc tc) ts) = foldl mkHsAppTy (noLoc $ HsTyVar (ifaceExtRdrName tc)) (map toHsType ts)
toHsType (IfaceForAllTy tv t) = add_forall (toHsTvBndr tv) (toHsType t)
-- We also need to convert IfaceKinds to Kinds (now that they are different).
-- Only a limited form of kind will be encountered... hopefully
toKind :: IfaceKind -> Kind
toKind (IfaceFunTy ifK1 ifK2) = mkArrowKind (toKind ifK1) (toKind ifK2)
toKind (IfaceTyConApp ifKc []) = mkTyConApp (toKindTc ifKc) []
toKind other = pprPanic "toKind" (ppr other)
toKindTc :: IfaceTyCon -> TyCon
toKindTc IfaceLiftedTypeKindTc = liftedTypeKindTyCon
toKindTc IfaceOpenTypeKindTc = openTypeKindTyCon
toKindTc IfaceUnliftedTypeKindTc = unliftedTypeKindTyCon
toKindTc IfaceUbxTupleKindTc = ubxTupleKindTyCon
toKindTc IfaceArgTypeKindTc = argTypeKindTyCon
toKindTc other = pprPanic "toKindTc" (ppr other)
ifaceTcType ifTc = IfaceTyConApp ifTc []
ifaceLiftedTypeKind = ifaceTcType IfaceLiftedTypeKindTc
ifaceOpenTypeKind = ifaceTcType IfaceOpenTypeKindTc
ifaceUnliftedTypeKind = ifaceTcType IfaceUnliftedTypeKindTc
ifaceArrow ifT1 ifT2 = IfaceFunTy ifT1 ifT2
ifaceEq ifT1 ifT2 = IfacePredTy (IfaceEqPred ifT1 ifT2)
toHsTvBndr :: IfaceTvBndr -> LHsTyVarBndr RdrName
toHsTvBndr (tv,k) = noLoc $ KindedTyVar (mkRdrUnqual (mkTyVarOccFS tv)) (toKind k)
ifaceExtRdrName :: Name -> RdrName
ifaceExtRdrName name = mkOrig (nameModule name) (nameOccName name)
ifaceExtRdrName other = pprPanic "ParserCore.ifaceExtRdrName" (ppr other)
add_forall tv (L _ (HsForAllTy exp tvs cxt t))
= noLoc $ HsForAllTy exp (tv:tvs) cxt t
add_forall tv t
= noLoc $ HsForAllTy Explicit [tv] (noLoc []) t
happyError :: P a
happyError s l = failP (show l ++ ": Parse error\n") (take 100 s) l
}
|