1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
|
-- -----------------------------------------------------------------
--
-- Copyright 2019 IEEE P1076 WG Authors
--
-- See the LICENSE file distributed with this work for copyright and
-- licensing information and the AUTHORS file.
--
-- This file to you under the Apache License, Version 2.0 (the "License").
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
-- implied. See the License for the specific language governing
-- permissions and limitations under the License.
--
-- Title : Floating-point package (Generic package body)
-- :
-- Library : This package shall be compiled into a library
-- : symbolically named IEEE.
-- :
-- Developers: Accellera VHDL-TC and IEEE P1076 Working Group
-- :
-- Purpose : This packages defines basic binary floating point
-- : arithmetic functions
-- :
-- Note : This package may be modified to include additional data
-- : required by tools, but it must in no way change the
-- : external interfaces or simulation behavior of the
-- : description. It is permissible to add comments and/or
-- : attributes to the package declarations, but not to change
-- : or delete any original lines of the package declaration.
-- : The package body may be changed only in accordance with
-- : the terms of Clause 16 of this standard.
-- :
-- --------------------------------------------------------------------
-- $Revision: 1220 $
-- $Date: 2008-04-10 17:16:09 +0930 (Thu, 10 Apr 2008) $
-- --------------------------------------------------------------------
package body float_generic_pkg is
-- Author David Bishop (dbishop@vhdl.org)
-----------------------------------------------------------------------------
-- type declarations
-----------------------------------------------------------------------------
-- This deferred constant will tell you if the package body is synthesizable
-- or implemented as real numbers, set to "true" if synthesizable.
constant fphdlsynth_or_real : BOOLEAN := true; -- deferred constant
-- types of boundary conditions
type boundary_type is (normal, infinity, zero, denormal);
-- null range array constant
constant NAFP : UNRESOLVED_float (0 downto 1) := (others => '0');
constant NSLV : STD_ULOGIC_VECTOR (0 downto 1) := (others => '0');
-- Special version of "minimum" to do some boundary checking
function mine (L, R : INTEGER)
return INTEGER is
begin -- function minimum
if (L = INTEGER'low or R = INTEGER'low) then
report float_generic_pkg'instance_name
& " Unbounded number passed, was a literal used?"
severity error;
return 0;
end if;
return minimum (L, R);
end function mine;
-- Generates the base number for the exponent normalization offset.
function gen_expon_base (
constant exponent_width : NATURAL)
return SIGNED
is
variable result : SIGNED (exponent_width-1 downto 0);
begin
result := (others => '1');
result (exponent_width-1) := '0';
return result;
end function gen_expon_base;
-- Integer version of the "log2" command (contributed by Peter Ashenden)
function log2 (A : NATURAL) return NATURAL is
variable quotient : NATURAL;
variable result : NATURAL := 0;
begin
quotient := A / 2;
while quotient > 0 loop
quotient := quotient / 2;
result := result + 1;
end loop;
return result;
end function log2;
-- Function similar to the ILOGB function in MATH_REAL
function log2 (A : REAL) return INTEGER is
variable Y : REAL;
variable N : INTEGER := 0;
begin
if (A = 1.0 or A = 0.0) then
return 0;
end if;
Y := A;
if(A > 1.0) then
while Y >= 2.0 loop
Y := Y / 2.0;
N := N + 1;
end loop;
return N;
end if;
-- O < Y < 1
while Y < 1.0 loop
Y := Y * 2.0;
N := N - 1;
end loop;
return N;
end function log2;
-- purpose: Test the boundary conditions of a Real number
procedure test_boundary (
arg : in REAL; -- Input, converted to real
constant fraction_width : in NATURAL; -- length of FP output fraction
constant exponent_width : in NATURAL; -- length of FP exponent
constant denormalize : in BOOLEAN := true; -- Use IEEE extended FP
variable btype : out boundary_type;
variable log2i : out INTEGER
) is
constant expon_base : SIGNED (exponent_width-1 downto 0) :=
gen_expon_base(exponent_width); -- exponent offset
constant exp_min : SIGNED (12 downto 0) :=
-(resize(expon_base, 13)) + 1; -- Minimum normal exponent
constant exp_ext_min : SIGNED (12 downto 0) :=
exp_min - fraction_width; -- Minimum for denormal exponent
variable log2arg : INTEGER; -- log2 of argument
begin -- function test_boundary
-- Check to see if the exponent is big enough
-- Note that the argument is always an absolute value at this point.
log2arg := log2(arg);
if arg = 0.0 then
btype := zero;
elsif exponent_width > 11 then -- Exponent for Real is 11 (64 bit)
btype := normal;
else
if log2arg < to_integer(exp_min) then
if denormalize then
if log2arg < to_integer(exp_ext_min) then
btype := zero;
else
btype := denormal;
end if;
else
if log2arg < to_integer(exp_min)-1 then
btype := zero;
else
btype := normal; -- Can still represent this number
end if;
end if;
elsif exponent_width < 11 then
if log2arg > to_integer(expon_base)+1 then
btype := infinity;
else
btype := normal;
end if;
else
btype := normal;
end if;
end if;
log2i := log2arg;
end procedure test_boundary;
-- purpose: Rounds depending on the state of the "round_style"
-- Logic taken from
-- "What Every Computer Scientist Should Know About Floating Point Arithmetic"
-- by David Goldberg (1991)
function check_round (
fract_in : STD_ULOGIC; -- input fraction
sign : STD_ULOGIC; -- sign bit
remainder : UNSIGNED; -- remainder to round from
sticky : STD_ULOGIC := '0'; -- Sticky bit
constant round_style : round_type) -- rounding type
return BOOLEAN
is
variable result : BOOLEAN;
variable or_reduced : STD_ULOGIC;
begin -- function check_round
result := false;
if (remainder'length > 0) then -- if remainder in a null array
or_reduced := or (remainder & sticky);
rounding_case : case round_style is
when round_nearest => -- Round Nearest, default mode
if remainder(remainder'high) = '1' then -- round
if (remainder'length > 1) then
if ((or (remainder(remainder'high-1
downto remainder'low)) = '1'
or sticky = '1')
or fract_in = '1') then
-- Make the bottom bit zero if possible if we are at 1/2
result := true;
end if;
else
result := (fract_in = '1' or sticky = '1');
end if;
end if;
when round_inf => -- round up if positive, else truncate.
if or_reduced = '1' and sign = '0' then
result := true;
end if;
when round_neginf => -- round down if negative, else truncate.
if or_reduced = '1' and sign = '1' then
result := true;
end if;
when round_zero => -- round toward 0 Truncate
null;
end case rounding_case;
end if;
return result;
end function check_round;
-- purpose: Rounds depending on the state of the "round_style"
-- unsigned version
procedure fp_round (
fract_in : in UNSIGNED; -- input fraction
expon_in : in SIGNED; -- input exponent
fract_out : out UNSIGNED; -- output fraction
expon_out : out SIGNED) is -- output exponent
begin -- procedure fp_round
if and (fract_in) = '1' then -- Fraction is all "1"
expon_out := expon_in + 1;
fract_out := to_unsigned(0, fract_out'high+1);
else
expon_out := expon_in;
fract_out := fract_in + 1;
end if;
end procedure fp_round;
-- This version of break_number doesn't call "classfp"
procedure break_number ( -- internal version
arg : in UNRESOLVED_float;
fptyp : in valid_fpstate;
denormalize : in BOOLEAN := true;
fract : out UNSIGNED;
expon : out SIGNED) is
constant fraction_width : NATURAL := -arg'low; -- length of FP output fraction
constant exponent_width : NATURAL := arg'high; -- length of FP output exponent
constant expon_base : SIGNED (exponent_width-1 downto 0) :=
gen_expon_base(exponent_width); -- exponent offset
variable exp : SIGNED (expon'range);
begin
fract (fraction_width-1 downto 0) :=
UNSIGNED (to_slv(arg(-1 downto -fraction_width)));
breakcase : case fptyp is
when pos_zero | neg_zero =>
fract (fraction_width) := '0';
exp := -expon_base;
when pos_denormal | neg_denormal =>
if denormalize then
exp := -expon_base;
fract (fraction_width) := '0';
else
exp := -expon_base - 1;
fract (fraction_width) := '1';
end if;
when pos_normal | neg_normal | pos_inf | neg_inf =>
fract (fraction_width) := '1';
exp := SIGNED(arg(exponent_width-1 downto 0));
exp (exponent_width-1) := not exp(exponent_width-1);
when others =>
assert no_warning
report float_generic_pkg'instance_name
& "BREAK_NUMBER: " &
"Meta state detected in fp_break_number process"
severity warning;
-- complete the case, if a NAN goes in, a NAN comes out.
exp := (others => '1');
fract (fraction_width) := '1';
end case breakcase;
expon := exp;
end procedure break_number;
-- purpose: floating point to UNSIGNED
-- Used by to_integer, to_unsigned, and to_signed functions
procedure float_to_unsigned (
arg : in UNRESOLVED_float; -- floating point input
variable sign : out STD_ULOGIC; -- sign of output
variable frac : out UNSIGNED; -- unsigned biased output
constant denormalize : in BOOLEAN; -- turn on denormalization
constant bias : in NATURAL; -- bias for fixed point
constant round_style : in round_type) is -- rounding method
constant fraction_width : INTEGER := -mine(arg'low, arg'low); -- length of FP output fraction
constant exponent_width : INTEGER := arg'high; -- length of FP output exponent
variable fract : UNSIGNED (frac'range); -- internal version of frac
variable isign : STD_ULOGIC; -- internal version of sign
variable exp : INTEGER; -- Exponent
variable expon : SIGNED (exponent_width-1 downto 0); -- Vectorized exp
-- Base to divide fraction by
variable frac_shift : UNSIGNED (frac'high+3 downto 0); -- Fraction shifted
variable shift : INTEGER;
variable remainder : UNSIGNED (2 downto 0);
variable round : STD_ULOGIC; -- round BIT
begin
isign := to_x01(arg(arg'high));
-- exponent /= '0', normal floating point
expon := to_01(SIGNED(arg (exponent_width-1 downto 0)), 'X');
expon(exponent_width-1) := not expon(exponent_width-1);
exp := to_integer (expon);
-- Figure out the fraction
fract := (others => '0'); -- fill with zero
fract (fract'high) := '1'; -- Add the "1.0".
shift := (fract'high-1) - exp;
if fraction_width > fract'high then -- Can only use size-2 bits
fract (fract'high-1 downto 0) := UNSIGNED (to_slv (arg(-1 downto
-fract'high)));
else -- can use all bits
fract (fract'high-1 downto fract'high-fraction_width) :=
UNSIGNED (to_slv (arg(-1 downto -fraction_width)));
end if;
frac_shift := fract & "000";
if shift < 0 then -- Overflow
fract := (others => '1');
else
frac_shift := shift_right (frac_shift, shift);
fract := frac_shift (frac_shift'high downto 3);
remainder := frac_shift (2 downto 0);
-- round (round_zero will bypass this and truncate)
case round_style is
when round_nearest =>
round := remainder(2) and
(fract (0) or (or (remainder (1 downto 0))));
when round_inf =>
round := remainder(2) and not isign;
when round_neginf =>
round := remainder(2) and isign;
when others =>
round := '0';
end case;
if round = '1' then
fract := fract + 1;
end if;
end if;
frac := fract;
sign := isign;
end procedure float_to_unsigned;
-- purpose: returns a part of a vector, this function is here because
-- or (fractr (to_integer(shiftx) downto 0));
-- can't be synthesized in some synthesis tools.
function smallfract (
arg : UNSIGNED;
shift : NATURAL)
return STD_ULOGIC
is
variable orx : STD_ULOGIC;
begin
orx := arg(shift);
for i in arg'range loop
if i < shift then
orx := arg(i) or orx;
end if;
end loop;
return orx;
end function smallfract;
---------------------------------------------------------------------------
-- Visible functions
---------------------------------------------------------------------------
-- purpose: converts the negative index to a positive one
-- negative indices are illegal in 1164 and 1076.3
function to_sulv (
arg : UNRESOLVED_float) -- fp vector
return STD_ULOGIC_VECTOR
is
variable intermediate_result : UNRESOLVED_float(arg'length-1 downto 0);
begin -- function to_std_ulogic_vector
if arg'length < 1 then
return NSLV;
end if;
intermediate_result := arg;
return STD_ULOGIC_VECTOR (intermediate_result);
end function to_sulv;
-- Converts an fp into an SULV
function to_slv (arg : UNRESOLVED_float) return STD_LOGIC_VECTOR is
begin
return to_sulv (arg);
end function to_slv;
-- purpose: normalizes a floating point number
-- This version assumes an "unsigned" input with
function normalize (
fract : UNRESOLVED_UNSIGNED; -- fraction, unnormalized
expon : UNRESOLVED_SIGNED; -- exponent, normalized by -1
sign : STD_ULOGIC; -- sign BIT
sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding)
constant exponent_width : NATURAL := float_exponent_width; -- size of output exponent
constant fraction_width : NATURAL := float_fraction_width; -- size of output fraction
constant round_style : round_type := float_round_style; -- rounding option
constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP
constant nguard : NATURAL := float_guard_bits) -- guard bits
return UNRESOLVED_float
is
variable sfract : UNSIGNED (fract'high downto 0); -- shifted fraction
variable rfract : UNSIGNED (fraction_width-1 downto 0); -- fraction
variable exp : SIGNED (exponent_width+1 downto 0); -- exponent
variable rexp : SIGNED (exponent_width+1 downto 0); -- result exponent
variable rexpon : UNSIGNED (exponent_width-1 downto 0); -- exponent
variable result : UNRESOLVED_float (exponent_width downto -fraction_width); -- result
variable shiftr : INTEGER; -- shift amount
variable stickyx : STD_ULOGIC; -- version of sticky
constant expon_base : SIGNED (exponent_width-1 downto 0) :=
gen_expon_base(exponent_width); -- exponent offset
variable round, zerores, infres : BOOLEAN;
begin -- function normalize
zerores := false;
infres := false;
round := false;
shiftr := find_leftmost (to_01(fract), '1') -- Find the first "1"
- fraction_width - nguard; -- subtract the length we want
exp := resize (expon, exp'length) + shiftr;
if (or (fract) = '0') then -- Zero
zerores := true;
elsif ((exp <= -resize(expon_base, exp'length)-1) and denormalize)
or ((exp < -resize(expon_base, exp'length)-1) and not denormalize) then
if (exp >= -resize(expon_base, exp'length)-fraction_width-1)
and denormalize then
exp := -resize(expon_base, exp'length)-1;
shiftr := -to_integer (expon + expon_base); -- new shift
else -- return zero
zerores := true;
end if;
elsif (exp > expon_base-1) then -- infinity
infres := true;
end if;
if zerores then
result := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif infres then
result := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
sfract := fract srl shiftr; -- shift
if shiftr > 0 then
-- stickyx := sticky or (or (fract (shiftr-1 downto 0)));
stickyx := sticky or smallfract (fract, shiftr-1);
else
stickyx := sticky;
end if;
if nguard > 0 then
round := check_round (
fract_in => sfract (nguard),
sign => sign,
remainder => sfract(nguard-1 downto 0),
sticky => stickyx,
round_style => round_style);
end if;
if round then
fp_round(fract_in => sfract (fraction_width-1+nguard downto nguard),
expon_in => exp(rexp'range),
fract_out => rfract,
expon_out => rexp);
else
rfract := sfract (fraction_width-1+nguard downto nguard);
rexp := exp(rexp'range);
end if;
-- result
rexpon := UNSIGNED (rexp(exponent_width-1 downto 0));
rexpon (exponent_width-1) := not rexpon(exponent_width-1);
result (rexpon'range) := UNRESOLVED_float(rexpon);
result (-1 downto -fraction_width) := UNRESOLVED_float(rfract);
end if;
result (exponent_width) := sign; -- sign BIT
return result;
end function normalize;
-- purpose: normalizes a floating point number
-- This version assumes a "ufixed" input
function normalize (
fract : UNRESOLVED_ufixed; -- unsigned fixed point
expon : UNRESOLVED_SIGNED; -- exponent, normalized by -1
sign : STD_ULOGIC; -- sign bit
sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding)
constant exponent_width : NATURAL := float_exponent_width; -- size of output exponent
constant fraction_width : NATURAL := float_fraction_width; -- size of output fraction
constant round_style : round_type := float_round_style; -- rounding option
constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP
constant nguard : NATURAL := float_guard_bits) -- guard bits
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
variable arguns : UNSIGNED (fract'high + fraction_width + nguard
downto 0) := (others => '0');
begin -- function normalize
arguns (arguns'high downto maximum (arguns'high-fract'length+1, 0)) :=
UNSIGNED (to_slv (fract));
result := normalize (fract => arguns,
expon => expon,
sign => sign,
sticky => sticky,
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => nguard);
return result;
end function normalize;
-- purpose: normalizes a floating point number
-- This version assumes a "ufixed" input with a "size_res" input
function normalize (
fract : UNRESOLVED_ufixed; -- unsigned fixed point
expon : UNRESOLVED_SIGNED; -- exponent, normalized by -1
sign : STD_ULOGIC; -- sign bit
sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding)
size_res : UNRESOLVED_float; -- used for sizing only
constant round_style : round_type := float_round_style; -- rounding option
constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP
constant nguard : NATURAL := float_guard_bits) -- guard bits
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -size_res'low;
constant exponent_width : NATURAL := size_res'high;
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
variable arguns : UNSIGNED (fract'high + fraction_width + nguard
downto 0) := (others => '0');
begin -- function normalize
arguns (arguns'high downto maximum (arguns'high-fract'length+1, 0)) :=
UNSIGNED (to_slv (fract));
result := normalize (fract => arguns,
expon => expon,
sign => sign,
sticky => sticky,
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => nguard);
return result;
end function normalize;
-- Regular "normalize" function with a "size_res" input.
function normalize (
fract : UNRESOLVED_UNSIGNED; -- unsigned
expon : UNRESOLVED_SIGNED; -- exponent - 1, normalized
sign : STD_ULOGIC; -- sign bit
sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding)
size_res : UNRESOLVED_float; -- used for sizing only
constant round_style : round_type := float_round_style; -- rounding option
constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP
constant nguard : NATURAL := float_guard_bits) -- guard bits
return UNRESOLVED_float is
begin
return normalize (fract => fract,
expon => expon,
sign => sign,
sticky => sticky,
fraction_width => -size_res'low,
exponent_width => size_res'high,
round_style => round_style,
denormalize => denormalize,
nguard => nguard);
end function normalize;
-- Returns the class which X falls into
function Classfp (
x : UNRESOLVED_float; -- floating point input
check_error : BOOLEAN := float_check_error) -- check for errors
return valid_fpstate
is
constant fraction_width : INTEGER := -mine(x'low, x'low); -- length of FP output fraction
constant exponent_width : INTEGER := x'high; -- length of FP output exponent
variable arg : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- classfp
if (arg'length < 1 or fraction_width < 3 or exponent_width < 3
or x'left < x'right) then
report float_generic_pkg'instance_name
& "CLASSFP: " &
"Floating point number detected with a bad range"
severity error;
return isx;
end if;
-- Check for "X".
arg := to_01 (x, 'X');
if (arg(0) = 'X') then
return isx; -- If there is an X in the number
-- Special cases, check for illegal number
elsif check_error and
(and (STD_ULOGIC_VECTOR (arg (exponent_width-1 downto 0)))
= '1') then -- Exponent is all "1".
if or (to_slv (arg (-1 downto -fraction_width)))
/= '0' then -- Fraction must be all "0" or this is not a number.
if (arg(-1) = '1') then -- From "W. Khan - IEEE standard
return nan; -- 754 binary FP Signaling nan (Not a number)
else
return quiet_nan;
end if;
-- Check for infinity
elsif arg(exponent_width) = '0' then
return pos_inf; -- Positive infinity
else
return neg_inf; -- Negative infinity
end if;
-- check for "0"
elsif or (STD_LOGIC_VECTOR (arg (exponent_width-1 downto 0)))
= '0' then -- Exponent is all "0"
if or (to_slv (arg (-1 downto -fraction_width)))
= '0' then -- Fraction is all "0"
if arg(exponent_width) = '0' then
return pos_zero; -- Zero
else
return neg_zero;
end if;
else
if arg(exponent_width) = '0' then
return pos_denormal; -- Denormal number (ieee extended fp)
else
return neg_denormal;
end if;
end if;
else
if arg(exponent_width) = '0' then
return pos_normal; -- Normal FP number
else
return neg_normal;
end if;
end if;
end function Classfp;
procedure break_number (
arg : in UNRESOLVED_float;
denormalize : in BOOLEAN := float_denormalize;
check_error : in BOOLEAN := float_check_error;
fract : out UNRESOLVED_UNSIGNED;
expon : out UNRESOLVED_SIGNED;
sign : out STD_ULOGIC) is
variable fptyp : valid_fpstate;
begin
fptyp := Classfp (arg, check_error);
sign := to_x01(arg(arg'high));
break_number (
arg => arg,
fptyp => fptyp,
denormalize => denormalize,
fract => fract,
expon => expon);
end procedure break_number;
procedure break_number (
arg : in UNRESOLVED_float;
denormalize : in BOOLEAN := float_denormalize;
check_error : in BOOLEAN := float_check_error;
fract : out UNRESOLVED_ufixed; -- 1 downto -fraction_width
expon : out UNRESOLVED_SIGNED; -- exponent_width-1 downto 0
sign : out STD_ULOGIC) is
constant fraction_width : NATURAL := -mine(arg'low, arg'low); -- length of FP output fraction
variable fptyp : valid_fpstate;
variable ufract : UNSIGNED (fraction_width downto 0); -- unsigned fraction
begin
fptyp := Classfp (arg, check_error);
sign := to_x01(arg(arg'high));
break_number (
arg => arg,
fptyp => fptyp,
denormalize => denormalize,
fract => ufract,
expon => expon);
fract (0 downto -fraction_width) := ufixed (ufract);
end procedure break_number;
-- Arithmetic functions
function "abs" (
arg : UNRESOLVED_float) -- floating point input
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (arg'range); -- result
begin
if (arg'length > 0) then
result := to_01 (arg, 'X');
result (arg'high) := '0'; -- set the sign bit to positive
return result;
else
return NAFP;
end if;
end function "abs";
-- IEEE 754 "negative" function
function "-" (
arg : UNRESOLVED_float) -- floating point input
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (arg'range); -- result
begin
if (arg'length > 0) then
result := to_01 (arg, 'X');
result (arg'high) := not result (arg'high); -- invert sign bit
return result;
else
return NAFP;
end if;
end function "-";
-- Addition, adds two floating point numbers
function add (
l, r : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style; -- rounding option
constant guard : NATURAL := float_guard_bits; -- number of guard bits
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent
constant addguard : NATURAL := guard; -- add one guard bit
variable lfptype, rfptype : valid_fpstate;
variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width);
variable fractl, fractr : UNSIGNED (fraction_width+1+addguard downto 0); -- fractions
variable fractc, fracts : UNSIGNED (fractl'range); -- constant and shifted variables
variable urfract, ulfract : UNSIGNED (fraction_width downto 0);
variable ufract : UNSIGNED (fraction_width+1+addguard downto 0);
variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents
variable rexpon : SIGNED (exponent_width downto 0); -- result exponent
variable shiftx : SIGNED (exponent_width downto 0); -- shift fractions
variable sign : STD_ULOGIC; -- sign of the output
variable leftright : BOOLEAN; -- left or right used
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
variable sticky : STD_ULOGIC; -- Holds precision for rounding
begin -- addition
if (fraction_width = 0 or l'length < 7 or r'length < 7) then
lfptype := isx;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
end if;
if (lfptype = isx or rfptype = isx) then
fpresult := (others => 'X');
elsif (lfptype = nan or lfptype = quiet_nan or
rfptype = nan or rfptype = quiet_nan)
-- Return quiet NAN, IEEE754-1985-7.1,1
or (lfptype = pos_inf and rfptype = neg_inf)
or (lfptype = neg_inf and rfptype = pos_inf) then
-- Return quiet NAN, IEEE754-1985-7.1,2
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (lfptype = pos_inf or rfptype = pos_inf) then -- x + inf = inf
fpresult := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (lfptype = neg_inf or rfptype = neg_inf) then -- x - inf = -inf
fpresult := neg_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (lfptype = neg_zero and rfptype = neg_zero) then -- -0 + -0 = -0
fpresult := neg_zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
lresize := resize (arg => to_X01(l),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
lfptype := Classfp (lresize, false); -- errors already checked
rresize := resize (arg => to_X01(r),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
rfptype := Classfp (rresize, false); -- errors already checked
break_number (
arg => lresize,
fptyp => lfptype,
denormalize => denormalize,
fract => ulfract,
expon => exponl);
fractl := (others => '0');
fractl (fraction_width+addguard downto addguard) := ulfract;
break_number (
arg => rresize,
fptyp => rfptype,
denormalize => denormalize,
fract => urfract,
expon => exponr);
fractr := (others => '0');
fractr (fraction_width+addguard downto addguard) := urfract;
shiftx := (exponl(exponent_width-1) & exponl) - exponr;
if shiftx < -fractl'high then
rexpon := exponr(exponent_width-1) & exponr;
fractc := fractr;
fracts := (others => '0'); -- add zero
leftright := false;
sticky := or (fractl);
elsif shiftx < 0 then
shiftx := - shiftx;
fracts := shift_right (fractl, to_integer(shiftx));
fractc := fractr;
rexpon := exponr(exponent_width-1) & exponr;
leftright := false;
-- sticky := or (fractl (to_integer(shiftx) downto 0));
sticky := smallfract (fractl, to_integer(shiftx));
elsif shiftx = 0 then
rexpon := exponl(exponent_width-1) & exponl;
sticky := '0';
if fractr > fractl then
fractc := fractr;
fracts := fractl;
leftright := false;
else
fractc := fractl;
fracts := fractr;
leftright := true;
end if;
elsif shiftx > fractr'high then
rexpon := exponl(exponent_width-1) & exponl;
fracts := (others => '0'); -- add zero
fractc := fractl;
leftright := true;
sticky := or (fractr);
elsif shiftx > 0 then
fracts := shift_right (fractr, to_integer(shiftx));
fractc := fractl;
rexpon := exponl(exponent_width-1) & exponl;
leftright := true;
-- sticky := or (fractr (to_integer(shiftx) downto 0));
sticky := smallfract (fractr, to_integer(shiftx));
end if;
-- add
fracts (0) := fracts (0) or sticky; -- Or the sticky bit into the LSB
if l(l'high) = r(r'high) then
ufract := fractc + fracts;
sign := l(l'high);
else -- signs are different
ufract := fractc - fracts; -- always positive result
if leftright then -- Figure out which sign to use
sign := l(l'high);
else
sign := r(r'high);
end if;
end if;
if or (ufract) = '0' then
sign := '0'; -- IEEE 854, 6.3, paragraph 2.
end if;
-- normalize
fpresult := normalize (fract => ufract,
expon => rexpon,
sign => sign,
sticky => sticky,
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => addguard);
end if;
return fpresult;
end function add;
-- Subtraction, Calls "add".
function subtract (
l, r : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style; -- rounding option
constant guard : NATURAL := float_guard_bits; -- number of guard bits
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
variable negr : UNRESOLVED_float (r'range); -- negative version of r
begin
negr := -r; -- r := -r
return add (l => l,
r => negr,
round_style => round_style,
guard => guard,
check_error => check_error,
denormalize => denormalize);
end function subtract;
-- Floating point multiply
function multiply (
l, r : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style; -- rounding option
constant guard : NATURAL := float_guard_bits; -- number of guard bits
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent
constant multguard : NATURAL := guard; -- guard bits
variable lfptype, rfptype : valid_fpstate;
variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width);
variable fractl, fractr : UNSIGNED (fraction_width downto 0); -- fractions
variable rfract : UNSIGNED ((2*(fraction_width))+1 downto 0); -- result fraction
variable sfract : UNSIGNED (fraction_width+1+multguard downto 0); -- result fraction
variable shifty : INTEGER; -- denormal shift
variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents
variable rexpon : SIGNED (exponent_width+1 downto 0); -- result exponent
variable fp_sign : STD_ULOGIC; -- sign of result
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
variable sticky : STD_ULOGIC; -- Holds precision for rounding
begin -- multiply
if (fraction_width = 0 or l'length < 7 or r'length < 7) then
lfptype := isx;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
end if;
if (lfptype = isx or rfptype = isx) then
fpresult := (others => 'X');
elsif ((lfptype = nan or lfptype = quiet_nan or
rfptype = nan or rfptype = quiet_nan)) then
-- Return quiet NAN, IEEE754-1985-7.1,1
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (((lfptype = pos_inf or lfptype = neg_inf) and
(rfptype = pos_zero or rfptype = neg_zero)) or
((rfptype = pos_inf or rfptype = neg_inf) and
(lfptype = pos_zero or lfptype = neg_zero))) then -- 0 * inf
-- Return quiet NAN, IEEE754-1985-7.1,3
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (lfptype = pos_inf or rfptype = pos_inf
or lfptype = neg_inf or rfptype = neg_inf) then -- x * inf = inf
fpresult := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
-- figure out the sign
fp_sign := l(l'high) xor r(r'high); -- figure out the sign
fpresult (exponent_width) := fp_sign;
else
fp_sign := l(l'high) xor r(r'high); -- figure out the sign
lresize := resize (arg => to_X01(l),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
lfptype := Classfp (lresize, false); -- errors already checked
rresize := resize (arg => to_X01(r),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
rfptype := Classfp (rresize, false); -- errors already checked
break_number (
arg => lresize,
fptyp => lfptype,
denormalize => denormalize,
fract => fractl,
expon => exponl);
break_number (
arg => rresize,
fptyp => rfptype,
denormalize => denormalize,
fract => fractr,
expon => exponr);
if (rfptype = pos_denormal or rfptype = neg_denormal) then
shifty := fraction_width - find_leftmost(fractr, '1');
fractr := shift_left (fractr, shifty);
elsif (lfptype = pos_denormal or lfptype = neg_denormal) then
shifty := fraction_width - find_leftmost(fractl, '1');
fractl := shift_left (fractl, shifty);
else
shifty := 0;
-- Note that a denormal number * a denormal number is always zero.
end if;
-- multiply
-- add the exponents
rexpon := resize (exponl, rexpon'length) + exponr - shifty + 1;
rfract := fractl * fractr; -- Multiply the fraction
sfract := rfract (rfract'high downto
rfract'high - (fraction_width+1+multguard));
sticky := or (rfract (rfract'high-(fraction_width+1+multguard)
downto 0));
-- normalize
fpresult := normalize (fract => sfract,
expon => rexpon,
sign => fp_sign,
sticky => sticky,
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => multguard);
end if;
return fpresult;
end function multiply;
function short_divide (
lx, rx : UNSIGNED)
return UNSIGNED
is
-- This is a special divider for the floating point routines.
-- For a true unsigned divider, "stages" needs to = lx'high
constant stages : INTEGER := lx'high - rx'high; -- number of stages
variable partial : UNSIGNED (lx'range);
variable q : UNSIGNED (stages downto 0);
variable partial_argl : SIGNED (rx'high + 2 downto 0);
variable partial_arg : SIGNED (rx'high + 2 downto 0);
begin
partial := lx;
for i in stages downto 0 loop
partial_argl := resize ("0" & SIGNED (partial(lx'high downto i)),
partial_argl'length);
partial_arg := partial_argl - SIGNED ("0" & rx);
if (partial_arg (partial_arg'high) = '1') then -- negative
q(i) := '0';
else
q(i) := '1';
partial (lx'high+i-stages downto lx'high+i-stages-rx'high) :=
UNSIGNED (partial_arg(rx'range));
end if;
end loop;
-- to make the output look like that of the unsigned IEEE divide.
return resize (q, lx'length);
end function short_divide;
-- 1/X function. Needed for algorithm development.
function reciprocal (
arg : UNRESOLVED_float;
constant round_style : round_type := float_round_style; -- rounding option
constant guard : NATURAL := float_guard_bits; -- number of guard bits
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(arg'low, arg'low); -- length of FP output fraction
constant exponent_width : NATURAL := arg'high; -- length of FP output exponent
constant divguard : NATURAL := guard; -- guard bits
function onedivy (
arg : UNSIGNED)
return UNSIGNED
is
variable q : UNSIGNED((2*arg'high)+1 downto 0);
variable one : UNSIGNED (q'range);
begin
one := (others => '0');
one(one'high) := '1';
q := short_divide (one, arg); -- Unsigned divide
return resize (q, arg'length+1);
end function onedivy;
variable fptype : valid_fpstate;
variable expon : SIGNED (exponent_width-1 downto 0); -- exponents
variable denorm_offset : NATURAL range 0 to 2;
variable fract : UNSIGNED (fraction_width downto 0);
variable fractg : UNSIGNED (fraction_width+divguard downto 0);
variable sfract : UNSIGNED (fraction_width+1+divguard downto 0); -- result fraction
variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- reciprocal
fptype := Classfp(arg, check_error);
classcase : case fptype is
when isx =>
fpresult := (others => 'X');
when nan | quiet_nan =>
-- Return quiet NAN, IEEE754-1985-7.1,1
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
when pos_inf | neg_inf => -- 1/inf, return 0
fpresult := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
when neg_zero | pos_zero => -- 1/0
report float_generic_pkg'instance_name
& "RECIPROCAL: Floating Point divide by zero"
severity error;
fpresult := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
when others =>
if (fptype = pos_denormal or fptype = neg_denormal)
and ((arg (-1) or arg(-2)) /= '1') then
-- 1/denormal = infinity, with the exception of 2**-expon_base
fpresult := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
fpresult (exponent_width) := to_x01 (arg (exponent_width));
else
break_number (
arg => arg,
fptyp => fptype,
denormalize => denormalize,
fract => fract,
expon => expon);
fractg := (others => '0');
if (fptype = pos_denormal or fptype = neg_denormal) then
-- The reciprocal of a denormal number is typically zero,
-- except for two special cases which are trapped here.
if (to_x01(arg (-1)) = '1') then
fractg (fractg'high downto divguard+1) :=
fract (fract'high-1 downto 0); -- Shift to not denormal
denorm_offset := 1; -- add 1 to exponent compensate
else -- arg(-2) = '1'
fractg (fractg'high downto divguard+2) :=
fract (fract'high-2 downto 0); -- Shift to not denormal
denorm_offset := 2; -- add 2 to exponent compensate
end if;
else
fractg (fractg'high downto divguard) := fract;
denorm_offset := 0;
end if;
expon := - expon - 3 + denorm_offset;
sfract := onedivy (fractg);
-- normalize
fpresult := normalize (fract => sfract,
expon => expon,
sign => arg(exponent_width),
sticky => '1',
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => divguard);
end if;
end case classcase;
return fpresult;
end function reciprocal;
-- floating point division
function divide (
l, r : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style; -- rounding option
constant guard : NATURAL := float_guard_bits; -- number of guard bits
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent
constant divguard : NATURAL := guard; -- division guard bits
variable lfptype, rfptype : valid_fpstate;
variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width);
variable ulfract, urfract : UNSIGNED (fraction_width downto 0);
variable fractl : UNSIGNED ((2*(fraction_width+divguard)+1) downto 0); -- left
variable fractr : UNSIGNED (fraction_width+divguard downto 0); -- right
variable rfract : UNSIGNED (fractl'range); -- result fraction
variable sfract : UNSIGNED (fraction_width+1+divguard downto 0); -- result fraction
variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents
variable rexpon : SIGNED (exponent_width+1 downto 0); -- result exponent
variable fp_sign, sticky : STD_ULOGIC; -- sign of result
variable shifty, shiftx : INTEGER; -- denormal number shift
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- divide
if (fraction_width = 0 or l'length < 7 or r'length < 7) then
lfptype := isx;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
end if;
classcase : case rfptype is
when isx =>
fpresult := (others => 'X');
when nan | quiet_nan =>
-- Return quiet NAN, IEEE754-1985-7.1,1
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
when pos_inf | neg_inf =>
if lfptype = pos_inf or lfptype = neg_inf -- inf / inf
or lfptype = quiet_nan or lfptype = nan then
-- Return quiet NAN, IEEE754-1985-7.1,4
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
else -- x / inf = 0
fpresult := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
fp_sign := l(l'high) xor r(r'high); -- sign
fpresult (fpresult'high) := fp_sign; -- sign
end if;
when pos_zero | neg_zero =>
if lfptype = pos_zero or lfptype = neg_zero -- 0 / 0
or lfptype = quiet_nan or lfptype = nan then
-- Return quiet NAN, IEEE754-1985-7.1,4
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
report float_generic_pkg'instance_name
& "DIVIDE: Floating Point divide by zero"
severity error;
-- Infinity, define in 754-1985-7.2
fpresult := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
fp_sign := l(l'high) xor r(r'high); -- sign
fpresult (fpresult'high) := fp_sign; -- sign
end if;
when others =>
classcase2 : case lfptype is
when isx =>
fpresult := (others => 'X');
when nan | quiet_nan =>
-- Return quiet NAN, IEEE754-1985-7.1,1
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
when pos_inf | neg_inf => -- inf / x = inf
fpresult := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
fp_sign := l(l'high) xor r(r'high); -- sign
fpresult(exponent_width) := fp_sign;
when pos_zero | neg_zero => -- 0 / X = 0
fpresult := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
fp_sign := l(l'high) xor r(r'high); -- sign
fpresult(exponent_width) := fp_sign;
when others =>
fp_sign := l(l'high) xor r(r'high); -- sign
lresize := resize (arg => to_X01(l),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
lfptype := Classfp (lresize, false); -- errors already checked
rresize := resize (arg => to_X01(r),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
rfptype := Classfp (rresize, false); -- errors already checked
break_number (
arg => lresize,
fptyp => lfptype,
denormalize => denormalize,
fract => ulfract,
expon => exponl);
-- right side
break_number (
arg => rresize,
fptyp => rfptype,
denormalize => denormalize,
fract => urfract,
expon => exponr);
-- Compute the exponent
rexpon := resize (exponl, rexpon'length) - exponr - 2;
if (rfptype = pos_denormal or rfptype = neg_denormal) then
-- Do the shifting here not after. That way we have a smaller
-- shifter, and need a smaller divider, because the top
-- bit in the divisor will always be a "1".
shifty := fraction_width - find_leftmost(urfract, '1');
urfract := shift_left (urfract, shifty);
rexpon := rexpon + shifty;
end if;
fractr := (others => '0');
fractr (fraction_width+divguard downto divguard) := urfract;
if (lfptype = pos_denormal or lfptype = neg_denormal) then
shiftx := fraction_width - find_leftmost(ulfract, '1');
ulfract := shift_left (ulfract, shiftx);
rexpon := rexpon - shiftx;
end if;
fractl := (others => '0');
fractl (fractl'high downto fractl'high-fraction_width) := ulfract;
-- divide
rfract := short_divide (fractl, fractr); -- unsigned divide
sfract := rfract (sfract'range); -- lower bits
sticky := '1';
-- normalize
fpresult := normalize (fract => sfract,
expon => rexpon,
sign => fp_sign,
sticky => sticky,
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => divguard);
end case classcase2;
end case classcase;
return fpresult;
end function divide;
-- division by a power of 2
function dividebyp2 (
l, r : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style; -- rounding option
constant guard : NATURAL := float_guard_bits; -- number of guard bits
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent
variable lfptype, rfptype : valid_fpstate;
variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width);
variable ulfract, urfract : UNSIGNED (fraction_width downto 0);
variable exponl, exponr : SIGNED(exponent_width-1 downto 0); -- exponents
variable rexpon : SIGNED(exponent_width downto 0); -- result exponent
variable fp_sign : STD_ULOGIC; -- sign of result
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- divisionbyp2
if (fraction_width = 0 or l'length < 7 or r'length < 7) then
lfptype := isx;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
end if;
classcase : case rfptype is
when isx =>
fpresult := (others => 'X');
when nan | quiet_nan =>
-- Return quiet NAN, IEEE754-1985-7.1,1
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
when pos_inf | neg_inf =>
if lfptype = pos_inf or lfptype = neg_inf then -- inf / inf
-- Return quiet NAN, IEEE754-1985-7.1,4
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
else -- x / inf = 0
fpresult := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
fp_sign := l(l'high) xor r(r'high); -- sign
fpresult (fpresult'high) := fp_sign; -- sign
end if;
when pos_zero | neg_zero =>
if lfptype = pos_zero or lfptype = neg_zero then -- 0 / 0
-- Return quiet NAN, IEEE754-1985-7.1,4
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
report float_generic_pkg'instance_name
& "DIVIDEBYP2: Floating Point divide by zero"
severity error;
-- Infinity, define in 754-1985-7.2
fpresult := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
fp_sign := l(l'high) xor r(r'high); -- sign
fpresult (fpresult'high) := fp_sign; -- sign
end if;
when others =>
classcase2 : case lfptype is
when isx =>
fpresult := (others => 'X');
when nan | quiet_nan =>
-- Return quiet NAN, IEEE754-1985-7.1,1
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
when pos_inf | neg_inf => -- inf / x = inf
fpresult := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
fp_sign := l(l'high) xor r(r'high); -- sign
fpresult (exponent_width) := fp_sign; -- sign
when pos_zero | neg_zero => -- 0 / X = 0
fpresult := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
fp_sign := l(l'high) xor r(r'high); -- sign
fpresult (exponent_width) := fp_sign; -- sign
when others =>
fp_sign := l(l'high) xor r(r'high); -- sign
lresize := resize (arg => to_X01(l),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
lfptype := Classfp (lresize, false); -- errors already checked
rresize := resize (arg => to_X01(r),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
rfptype := Classfp (rresize, false); -- errors already checked
break_number (
arg => lresize,
fptyp => lfptype,
denormalize => denormalize,
fract => ulfract,
expon => exponl);
-- right side
break_number (
arg => rresize,
fptyp => rfptype,
denormalize => denormalize,
fract => urfract,
expon => exponr);
assert (or (urfract (fraction_width-1 downto 0)) = '0')
report float_generic_pkg'instance_name
& "DIVIDEBYP2: "
& "Dividebyp2 called with a non power of two divisor"
severity error;
rexpon := (exponl(exponl'high)&exponl)
- (exponr(exponr'high)&exponr) - 1;
-- normalize
fpresult := normalize (fract => ulfract,
expon => rexpon,
sign => fp_sign,
sticky => '1',
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => 0);
end case classcase2;
end case classcase;
return fpresult;
end function dividebyp2;
-- Multiply accumulate result = l*r + c
function mac (
l, r, c : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style; -- rounding option
constant guard : NATURAL := float_guard_bits; -- number of guard bits
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant fraction_width : NATURAL :=
-mine (mine(l'low, r'low), c'low); -- length of FP output fraction
constant exponent_width : NATURAL :=
maximum (maximum(l'high, r'high), c'high); -- length of FP output exponent
variable lfptype, rfptype, cfptype : valid_fpstate;
variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width);
variable fractl, fractr : UNSIGNED (fraction_width downto 0); -- fractions
variable fractx : UNSIGNED (fraction_width+guard downto 0);
variable fractc, fracts : UNSIGNED (fraction_width+1+guard downto 0);
variable rfract : UNSIGNED ((2*(fraction_width))+1 downto 0); -- result fraction
variable ufract : UNSIGNED (fraction_width+1+guard downto 0); -- result fraction
variable exponl, exponr, exponc : SIGNED (exponent_width-1 downto 0); -- exponents
variable rexpon, rexpon2 : SIGNED (exponent_width+1 downto 0); -- result exponent
variable shifty : INTEGER; -- denormal shift
variable shiftx : SIGNED (rexpon'range); -- shift fractions
variable fp_sign : STD_ULOGIC; -- sign of result
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
variable cresize : UNRESOLVED_float (exponent_width downto -fraction_width - guard);
variable leftright : BOOLEAN; -- left or right used
variable sticky : STD_ULOGIC; -- Holds precision for rounding
begin -- multiply
if (fraction_width = 0 or l'length < 7 or r'length < 7 or c'length < 7) then
lfptype := isx;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
cfptype := Classfp (c, check_error);
end if;
if (lfptype = isx or rfptype = isx or cfptype = isx) then
fpresult := (others => 'X');
elsif (lfptype = nan or lfptype = quiet_nan or
rfptype = nan or rfptype = quiet_nan or
cfptype = nan or cfptype = quiet_nan) then
-- Return quiet NAN, IEEE754-1985-7.1,1
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (((lfptype = pos_inf or lfptype = neg_inf) and
(rfptype = pos_zero or rfptype = neg_zero)) or
((rfptype = pos_inf or rfptype = neg_inf) and
(lfptype = pos_zero or lfptype = neg_zero))) then -- 0 * inf
-- Return quiet NAN, IEEE754-1985-7.1,3
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (lfptype = pos_inf or rfptype = pos_inf
or lfptype = neg_inf or rfptype = neg_inf -- x * inf = inf
or cfptype = neg_inf or cfptype = pos_inf) then -- x + inf = inf
fpresult := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
-- figure out the sign
fpresult (exponent_width) := l(l'high) xor r(r'high);
else
fp_sign := l(l'high) xor r(r'high); -- figure out the sign
lresize := resize (arg => to_X01(l),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
lfptype := Classfp (lresize, false); -- errors already checked
rresize := resize (arg => to_X01(r),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
rfptype := Classfp (rresize, false); -- errors already checked
cresize := resize (arg => to_X01(c),
exponent_width => exponent_width,
fraction_width => -cresize'low,
denormalize_in => denormalize,
denormalize => denormalize);
cfptype := Classfp (cresize, false); -- errors already checked
break_number (
arg => lresize,
fptyp => lfptype,
denormalize => denormalize,
fract => fractl,
expon => exponl);
break_number (
arg => rresize,
fptyp => rfptype,
denormalize => denormalize,
fract => fractr,
expon => exponr);
break_number (
arg => cresize,
fptyp => cfptype,
denormalize => denormalize,
fract => fractx,
expon => exponc);
if (rfptype = pos_denormal or rfptype = neg_denormal) then
shifty := fraction_width - find_leftmost(fractr, '1');
fractr := shift_left (fractr, shifty);
elsif (lfptype = pos_denormal or lfptype = neg_denormal) then
shifty := fraction_width - find_leftmost(fractl, '1');
fractl := shift_left (fractl, shifty);
else
shifty := 0;
-- Note that a denormal number * a denormal number is always zero.
end if;
-- multiply
rfract := fractl * fractr; -- Multiply the fraction
-- add the exponents
rexpon := resize (exponl, rexpon'length) + exponr - shifty + 1;
shiftx := rexpon - exponc;
if shiftx < -fractl'high then
rexpon2 := resize (exponc, rexpon2'length);
fractc := "0" & fractx;
fracts := (others => '0');
sticky := or (rfract);
elsif shiftx < 0 then
shiftx := - shiftx;
fracts := shift_right (rfract (rfract'high downto rfract'high
- fracts'length+1),
to_integer(shiftx));
fractc := "0" & fractx;
rexpon2 := resize (exponc, rexpon2'length);
leftright := false;
sticky := or (rfract (to_integer(shiftx)+rfract'high
- fracts'length downto 0));
elsif shiftx = 0 then
rexpon2 := resize (exponc, rexpon2'length);
sticky := or (rfract (rfract'high - fractc'length downto 0));
if rfract (rfract'high downto rfract'high - fractc'length+1) > fractx
then
fractc := "0" & fractx;
fracts := rfract (rfract'high downto rfract'high
- fracts'length+1);
leftright := false;
else
fractc := rfract (rfract'high downto rfract'high
- fractc'length+1);
fracts := "0" & fractx;
leftright := true;
end if;
elsif shiftx > fractx'high then
rexpon2 := rexpon;
fracts := (others => '0');
fractc := rfract (rfract'high downto rfract'high - fractc'length+1);
leftright := true;
sticky := or (fractx & rfract (rfract'high - fractc'length
downto 0));
else -- fractx'high > shiftx > 0
rexpon2 := rexpon;
fracts := "0" & shift_right (fractx, to_integer (shiftx));
fractc := rfract (rfract'high downto rfract'high - fractc'length+1);
leftright := true;
sticky := or (fractx (to_integer (shiftx) downto 0)
& rfract (rfract'high - fractc'length downto 0));
end if;
fracts (0) := fracts (0) or sticky; -- Or the sticky bit into the LSB
if fp_sign = to_X01(c(c'high)) then
ufract := fractc + fracts;
fp_sign := fp_sign;
else -- signs are different
ufract := fractc - fracts; -- always positive result
if leftright then -- Figure out which sign to use
fp_sign := fp_sign;
else
fp_sign := c(c'high);
end if;
end if;
-- normalize
fpresult := normalize (fract => ufract,
expon => rexpon2,
sign => fp_sign,
sticky => sticky,
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => guard);
end if;
return fpresult;
end function mac;
-- "rem" function
function remainder (
l, r : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style; -- rounding option
constant guard : NATURAL := float_guard_bits; -- number of guard bits
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent
constant divguard : NATURAL := guard; -- division guard bits
variable lfptype, rfptype : valid_fpstate;
variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width);
variable ulfract, urfract : UNSIGNED (fraction_width downto 0);
variable fractr, fractl : UNSIGNED (fraction_width+divguard downto 0); -- right
variable rfract : UNSIGNED (fractr'range); -- result fraction
variable sfract : UNSIGNED (fraction_width+divguard downto 0); -- result fraction
variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents
variable rexpon : SIGNED (exponent_width downto 0); -- result exponent
variable fp_sign : STD_ULOGIC; -- sign of result
variable shifty : INTEGER; -- denormal number shift
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- remainder
if (fraction_width = 0 or l'length < 7 or r'length < 7) then
lfptype := isx;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
end if;
if (lfptype = isx or rfptype = isx) then
fpresult := (others => 'X');
elsif (lfptype = nan or lfptype = quiet_nan)
or (rfptype = nan or rfptype = quiet_nan)
-- Return quiet NAN, IEEE754-1985-7.1,1
or (lfptype = pos_inf or lfptype = neg_inf) -- inf rem x
-- Return quiet NAN, IEEE754-1985-7.1,5
or (rfptype = pos_zero or rfptype = neg_zero) then -- x rem 0
-- Return quiet NAN, IEEE754-1985-7.1,5
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (rfptype = pos_inf or rfptype = neg_inf) then -- x rem inf = 0
fpresult := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (abs(l) < abs(r)) then
fpresult := l;
else
fp_sign := to_X01(l(l'high)); -- sign
lresize := resize (arg => to_X01(l),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
lfptype := Classfp (lresize, false); -- errors already checked
rresize := resize (arg => to_X01(r),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
rfptype := Classfp (rresize, false); -- errors already checked
fractl := (others => '0');
break_number (
arg => lresize,
fptyp => lfptype,
denormalize => denormalize,
fract => ulfract,
expon => exponl);
fractl (fraction_width+divguard downto divguard) := ulfract;
-- right side
fractr := (others => '0');
break_number (
arg => rresize,
fptyp => rfptype,
denormalize => denormalize,
fract => urfract,
expon => exponr);
fractr (fraction_width+divguard downto divguard) := urfract;
rexpon := (exponr(exponr'high)&exponr);
shifty := to_integer(exponl - rexpon);
if (shifty > 0) then
fractr := shift_right (fractr, shifty);
rexpon := rexpon + shifty;
end if;
if (fractr /= 0) then
-- rem
rfract := fractl rem fractr; -- unsigned rem
sfract := rfract (sfract'range); -- lower bits
-- normalize
fpresult := normalize (fract => sfract,
expon => rexpon,
sign => fp_sign,
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => divguard);
else
-- If we shift "fractr" so far that it becomes zero, return zero.
fpresult := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
end if;
end if;
return fpresult;
end function remainder;
-- "mod" function
function modulo (
l, r : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style; -- rounding option
constant guard : NATURAL := float_guard_bits; -- number of guard bits
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant fraction_width : NATURAL := - mine(l'low, r'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent
variable lfptype, rfptype : valid_fpstate;
variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width);
variable remres : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- remainder
if (fraction_width = 0 or l'length < 7 or r'length < 7) then
lfptype := isx;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
end if;
if (lfptype = isx or rfptype = isx) then
fpresult := (others => 'X');
elsif (lfptype = nan or lfptype = quiet_nan)
or (rfptype = nan or rfptype = quiet_nan)
-- Return quiet NAN, IEEE754-1985-7.1,1
or (lfptype = pos_inf or lfptype = neg_inf) -- inf rem x
-- Return quiet NAN, IEEE754-1985-7.1,5
or (rfptype = pos_zero or rfptype = neg_zero) then -- x rem 0
-- Return quiet NAN, IEEE754-1985-7.1,5
fpresult := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (rfptype = pos_inf or rfptype = neg_inf) then -- x rem inf = 0
fpresult := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
remres := remainder (l => abs(l),
r => abs(r),
round_style => round_style,
guard => guard,
check_error => false,
denormalize => denormalize);
-- MOD is the same as REM, but you do something different with
-- negative values
if (Is_Negative (l)) then
remres := - remres;
end if;
if (Is_Negative (l) = Is_Negative (r) or remres = 0) then
fpresult := remres;
else
fpresult := add (l => remres,
r => r,
round_style => round_style,
guard => guard,
check_error => false,
denormalize => denormalize);
end if;
end if;
return fpresult;
end function modulo;
-- Square root of a floating point number. Done using Newton's Iteration.
function sqrt (
arg : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style;
constant guard : NATURAL := float_guard_bits;
constant check_error : BOOLEAN := float_check_error;
constant denormalize : BOOLEAN := float_denormalize)
return UNRESOLVED_float
is
constant fraction_width : NATURAL := guard-arg'low; -- length of FP output fraction
constant exponent_width : NATURAL := arg'high; -- length of FP output exponent
variable sign : STD_ULOGIC;
variable fpresult : float (arg'range);
variable fptype : valid_fpstate;
variable iexpon : SIGNED(exponent_width-1 downto 0); -- exponents
variable expon : SIGNED(exponent_width downto 0); -- exponents
variable ufact : ufixed (0 downto arg'low);
variable fact : ufixed (2 downto -fraction_width); -- fraction
variable resb : ufixed (fact'high+1 downto fact'low);
begin -- square root
fptype := Classfp (arg, check_error);
classcase : case fptype is
when isx =>
fpresult := (others => 'X');
when nan | quiet_nan |
-- Return quiet NAN, IEEE754-1985-7.1,1
neg_normal | neg_denormal | neg_inf => -- sqrt (neg)
-- Return quiet NAN, IEEE754-1985-7.1.6
fpresult := qnanfp (fraction_width => fraction_width-guard,
exponent_width => exponent_width);
when pos_inf => -- Sqrt (inf), return infinity
fpresult := pos_inffp (fraction_width => fraction_width-guard,
exponent_width => exponent_width);
when pos_zero => -- return 0
fpresult := zerofp (fraction_width => fraction_width-guard,
exponent_width => exponent_width);
when neg_zero => -- IEEE754-1985-6.3 return -0
fpresult := neg_zerofp (fraction_width => fraction_width-guard,
exponent_width => exponent_width);
when others =>
break_number (arg => arg,
denormalize => denormalize,
check_error => false,
fract => ufact,
expon => iexpon,
sign => sign);
expon := resize (iexpon+1, expon'length); -- get exponent
fact := resize (ufact, fact'high, fact'low);
if (expon(0) = '1') then
fact := fact sla 1; -- * 2.0
end if;
expon := shift_right (expon, 1); -- exponent/2
-- Newton's iteration - root := (1 + arg) / 2
resb := (fact + 1) sra 1;
for j in 0 to fraction_width/4 loop
-- root := (root + (arg/root))/2
resb := resize (arg => (resb + (fact/resb)) sra 1,
left_index => resb'high,
right_index => resb'low,
round_style => fixed_truncate,
overflow_style => fixed_wrap);
end loop;
fpresult := normalize (fract => resb,
expon => expon-1,
sign => '0',
exponent_width => arg'high,
fraction_width => -arg'low,
round_style => round_style,
denormalize => denormalize,
nguard => guard);
end case classcase;
return fpresult;
end function sqrt;
function Is_Negative (arg : UNRESOLVED_float) return BOOLEAN is
-- Technically -0 should return "false", but I'm leaving that case out.
begin
return (to_x01(arg(arg'high)) = '1');
end function Is_Negative;
-- compare functions
-- =, /=, >=, <=, <, >
function eq ( -- equal =
l, r : UNRESOLVED_float; -- floating point input
constant check_error : BOOLEAN := float_check_error;
constant denormalize : BOOLEAN := float_denormalize)
return BOOLEAN
is
variable lfptype, rfptype : valid_fpstate;
variable is_equal, is_unordered : BOOLEAN;
constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- equal
if (fraction_width = 0 or l'length < 7 or r'length < 7) then
return false;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
end if;
if (lfptype = neg_zero or lfptype = pos_zero) and
(rfptype = neg_zero or rfptype = pos_zero) then
is_equal := true;
else
lresize := resize (arg => to_X01(l),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
rresize := resize (arg => to_X01(r),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
is_equal := (to_slv(lresize) = to_slv(rresize));
end if;
if (check_error) then
is_unordered := Unordered (x => l,
y => r);
else
is_unordered := false;
end if;
return is_equal and not is_unordered;
end function eq;
function lt ( -- less than <
l, r : UNRESOLVED_float; -- floating point input
constant check_error : BOOLEAN := float_check_error;
constant denormalize : BOOLEAN := float_denormalize)
return BOOLEAN
is
constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent
variable lfptype, rfptype : valid_fpstate;
variable expl, expr : UNSIGNED (exponent_width-1 downto 0);
variable fractl, fractr : UNSIGNED (fraction_width-1 downto 0);
variable is_less_than, is_unordered : BOOLEAN;
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin
if (fraction_width = 0 or l'length < 7 or r'length < 7) then
is_less_than := false;
else
lresize := resize (arg => to_X01(l),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
rresize := resize (arg => to_X01(r),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
if to_x01(l(l'high)) = to_x01(r(r'high)) then -- sign bits
expl := UNSIGNED(lresize(exponent_width-1 downto 0));
expr := UNSIGNED(rresize(exponent_width-1 downto 0));
if expl = expr then
fractl := UNSIGNED (to_slv(lresize(-1 downto -fraction_width)));
fractr := UNSIGNED (to_slv(rresize(-1 downto -fraction_width)));
if to_x01(l(l'high)) = '0' then -- positive number
is_less_than := (fractl < fractr);
else
is_less_than := (fractl > fractr); -- negative
end if;
else
if to_x01(l(l'high)) = '0' then -- positive number
is_less_than := (expl < expr);
else
is_less_than := (expl > expr); -- negative
end if;
end if;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
if (lfptype = neg_zero and rfptype = pos_zero) then
is_less_than := false; -- -0 < 0 returns false.
else
is_less_than := (to_x01(l(l'high)) > to_x01(r(r'high)));
end if;
end if;
end if;
if check_error then
is_unordered := Unordered (x => l,
y => r);
else
is_unordered := false;
end if;
return is_less_than and not is_unordered;
end function lt;
function gt ( -- greater than >
l, r : UNRESOLVED_float; -- floating point input
constant check_error : BOOLEAN := float_check_error;
constant denormalize : BOOLEAN := float_denormalize)
return BOOLEAN
is
constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent
variable lfptype, rfptype : valid_fpstate;
variable expl, expr : UNSIGNED (exponent_width-1 downto 0);
variable fractl, fractr : UNSIGNED (fraction_width-1 downto 0);
variable is_greater_than : BOOLEAN;
variable is_unordered : BOOLEAN;
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- greater_than
if (fraction_width = 0 or l'length < 7 or r'length < 7) then
is_greater_than := false;
else
lresize := resize (arg => to_X01(l),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
rresize := resize (arg => to_X01(r),
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => denormalize,
denormalize => denormalize);
if to_x01(l(l'high)) = to_x01(r(r'high)) then -- sign bits
expl := UNSIGNED(lresize(exponent_width-1 downto 0));
expr := UNSIGNED(rresize(exponent_width-1 downto 0));
if expl = expr then
fractl := UNSIGNED (to_slv(lresize(-1 downto -fraction_width)));
fractr := UNSIGNED (to_slv(rresize(-1 downto -fraction_width)));
if to_x01(l(l'high)) = '0' then -- positive number
is_greater_than := fractl > fractr;
else
is_greater_than := fractl < fractr; -- negative
end if;
else
if to_x01(l(l'high)) = '0' then -- positive number
is_greater_than := expl > expr;
else
is_greater_than := expl < expr; -- negative
end if;
end if;
else
lfptype := Classfp (l, check_error);
rfptype := Classfp (r, check_error);
if (lfptype = pos_zero and rfptype = neg_zero) then
is_greater_than := false; -- 0 > -0 returns false.
else
is_greater_than := to_x01(l(l'high)) < to_x01(r(r'high));
end if;
end if;
end if;
if check_error then
is_unordered := Unordered (x => l,
y => r);
else
is_unordered := false;
end if;
return is_greater_than and not is_unordered;
end function gt;
-- purpose: /= function
function ne ( -- not equal /=
l, r : UNRESOLVED_float;
constant check_error : BOOLEAN := float_check_error;
constant denormalize : BOOLEAN := float_denormalize)
return BOOLEAN
is
variable is_equal, is_unordered : BOOLEAN;
begin
is_equal := eq (l => l,
r => r,
check_error => false,
denormalize => denormalize);
if check_error then
is_unordered := Unordered (x => l,
y => r);
else
is_unordered := false;
end if;
return not (is_equal and not is_unordered);
end function ne;
function le ( -- less than or equal to <=
l, r : UNRESOLVED_float; -- floating point input
constant check_error : BOOLEAN := float_check_error;
constant denormalize : BOOLEAN := float_denormalize)
return BOOLEAN
is
variable is_greater_than, is_unordered : BOOLEAN;
begin
is_greater_than := gt (l => l,
r => r,
check_error => false,
denormalize => denormalize);
if check_error then
is_unordered := Unordered (x => l,
y => r);
else
is_unordered := false;
end if;
return not is_greater_than and not is_unordered;
end function le;
function ge ( -- greater than or equal to >=
l, r : UNRESOLVED_float; -- floating point input
constant check_error : BOOLEAN := float_check_error;
constant denormalize : BOOLEAN := float_denormalize)
return BOOLEAN
is
variable is_less_than, is_unordered : BOOLEAN;
begin
is_less_than := lt (l => l,
r => r,
check_error => false,
denormalize => denormalize);
if check_error then
is_unordered := Unordered (x => l,
y => r);
else
is_unordered := false;
end if;
return not is_less_than and not is_unordered;
end function ge;
function "?=" (L, R : UNRESOLVED_float) return STD_ULOGIC is
constant fraction_width : NATURAL := -mine(L'low, R'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(L'high, R'high); -- length of FP output exponent
variable lfptype, rfptype : valid_fpstate;
variable is_equal, is_unordered : STD_ULOGIC;
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- ?=
if (fraction_width = 0 or L'length < 7 or R'length < 7) then
return 'X';
else
lfptype := Classfp (L, float_check_error);
rfptype := Classfp (R, float_check_error);
end if;
if (lfptype = neg_zero or lfptype = pos_zero) and
(rfptype = neg_zero or rfptype = pos_zero) then
is_equal := '1';
else
lresize := resize (arg => L,
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => float_denormalize,
denormalize => float_denormalize);
rresize := resize (arg => R,
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => float_denormalize,
denormalize => float_denormalize);
is_equal := to_sulv(lresize) ?= to_sulv(rresize);
end if;
if (float_check_error) then
if (lfptype = nan or lfptype = quiet_nan or
rfptype = nan or rfptype = quiet_nan) then
is_unordered := '1';
else
is_unordered := '0';
end if;
else
is_unordered := '0';
end if;
return is_equal and not is_unordered;
end function "?=";
function "?/=" (L, R : UNRESOLVED_float) return STD_ULOGIC is
constant fraction_width : NATURAL := -mine(L'low, R'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(L'high, R'high); -- length of FP output exponent
variable lfptype, rfptype : valid_fpstate;
variable is_equal, is_unordered : STD_ULOGIC;
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- ?/=
if (fraction_width = 0 or L'length < 7 or R'length < 7) then
return 'X';
else
lfptype := Classfp (L, float_check_error);
rfptype := Classfp (R, float_check_error);
end if;
if (lfptype = neg_zero or lfptype = pos_zero) and
(rfptype = neg_zero or rfptype = pos_zero) then
is_equal := '1';
else
lresize := resize (arg => L,
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => float_denormalize,
denormalize => float_denormalize);
rresize := resize (arg => R,
exponent_width => exponent_width,
fraction_width => fraction_width,
denormalize_in => float_denormalize,
denormalize => float_denormalize);
is_equal := to_sulv(lresize) ?= to_sulv(rresize);
end if;
if (float_check_error) then
if (lfptype = nan or lfptype = quiet_nan or
rfptype = nan or rfptype = quiet_nan) then
is_unordered := '1';
else
is_unordered := '0';
end if;
else
is_unordered := '0';
end if;
return not (is_equal and not is_unordered);
end function "?/=";
function "?>" (L, R : UNRESOLVED_float) return STD_ULOGIC is
constant fraction_width : NATURAL := -mine(L'low, R'low);
variable founddash : BOOLEAN := false;
begin
if (fraction_width = 0 or L'length < 7 or R'length < 7) then
return 'X';
else
for i in L'range loop
if L(i) = '-' then
founddash := true;
end if;
end loop;
for i in R'range loop
if R(i) = '-' then
founddash := true;
end if;
end loop;
if founddash then
report float_generic_pkg'instance_name
& " ""?>"": '-' found in compare string"
severity error;
return 'X';
elsif Is_X(L) or Is_X(R) then
return 'X';
elsif L > R then
return '1';
else
return '0';
end if;
end if;
end function "?>";
function "?>=" (L, R : UNRESOLVED_float) return STD_ULOGIC is
constant fraction_width : NATURAL := -mine(L'low, R'low);
variable founddash : BOOLEAN := false;
begin
if (fraction_width = 0 or L'length < 7 or R'length < 7) then
return 'X';
else
for i in L'range loop
if L(i) = '-' then
founddash := true;
end if;
end loop;
for i in R'range loop
if R(i) = '-' then
founddash := true;
end if;
end loop;
if founddash then
report float_generic_pkg'instance_name
& " ""?>="": '-' found in compare string"
severity error;
return 'X';
elsif Is_X(L) or Is_X(R) then
return 'X';
elsif L >= R then
return '1';
else
return '0';
end if;
end if;
end function "?>=";
function "?<" (L, R : UNRESOLVED_float) return STD_ULOGIC is
constant fraction_width : NATURAL := -mine(L'low, R'low);
variable founddash : BOOLEAN := false;
begin
if (fraction_width = 0 or L'length < 7 or R'length < 7) then
return 'X';
else
for i in L'range loop
if L(i) = '-' then
founddash := true;
end if;
end loop;
for i in R'range loop
if R(i) = '-' then
founddash := true;
end if;
end loop;
if founddash then
report float_generic_pkg'instance_name
& " ""?<"": '-' found in compare string"
severity error;
return 'X';
elsif Is_X(L) or Is_X(R) then
return 'X';
elsif L < R then
return '1';
else
return '0';
end if;
end if;
end function "?<";
function "?<=" (L, R : UNRESOLVED_float) return STD_ULOGIC is
constant fraction_width : NATURAL := -mine(L'low, R'low);
variable founddash : BOOLEAN := false;
begin
if (fraction_width = 0 or L'length < 7 or R'length < 7) then
return 'X';
else
for i in L'range loop
if L(i) = '-' then
founddash := true;
end if;
end loop;
for i in R'range loop
if R(i) = '-' then
founddash := true;
end if;
end loop;
if founddash then
report float_generic_pkg'instance_name
& " ""?<="": '-' found in compare string"
severity error;
return 'X';
elsif Is_X(L) or Is_X(R) then
return 'X';
elsif L <= R then
return '1';
else
return '0';
end if;
end if;
end function "?<=";
function std_match (L, R : UNRESOLVED_float) return BOOLEAN is
begin
if (L'high = R'high and L'low = R'low) then
return std_match(to_sulv(L), to_sulv(R));
else
report float_generic_pkg'instance_name
& "STD_MATCH: L'RANGE /= R'RANGE, returning FALSE"
severity warning;
return false;
end if;
end function std_match;
function find_rightmost (arg : UNRESOLVED_float; y : STD_ULOGIC) return INTEGER is
begin
for_loop : for i in arg'reverse_range loop
if arg(i) ?= y then
return i;
end if;
end loop;
return arg'high+1; -- return out of bounds 'high
end function find_rightmost;
function find_leftmost (arg : UNRESOLVED_float; y : STD_ULOGIC) return INTEGER is
begin
for_loop : for i in arg'range loop
if arg(i) ?= y then
return i;
end if;
end loop;
return arg'low-1; -- return out of bounds 'low
end function find_leftmost;
-- These override the defaults for the compare operators.
function "=" (l, r : UNRESOLVED_float) return BOOLEAN is
begin
return eq(l, r);
end function "=";
function "/=" (l, r : UNRESOLVED_float) return BOOLEAN is
begin
return ne(l, r);
end function "/=";
function ">=" (l, r : UNRESOLVED_float) return BOOLEAN is
begin
return ge(l, r);
end function ">=";
function "<=" (l, r : UNRESOLVED_float) return BOOLEAN is
begin
return le(l, r);
end function "<=";
function ">" (l, r : UNRESOLVED_float) return BOOLEAN is
begin
return gt(l, r);
end function ">";
function "<" (l, r : UNRESOLVED_float) return BOOLEAN is
begin
return lt(l, r);
end function "<";
-- purpose: maximum of two numbers (overrides default)
function maximum (
L, R : UNRESOLVED_float)
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(L'low, R'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(L'high, R'high); -- length of FP output exponent
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin
if ((L'length < 1) or (R'length < 1)) then return NAFP;
end if;
lresize := resize (L, exponent_width, fraction_width);
rresize := resize (R, exponent_width, fraction_width);
if lresize > rresize then return lresize;
else return rresize;
end if;
end function maximum;
function minimum (
L, R : UNRESOLVED_float)
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(L'low, R'low); -- length of FP output fraction
constant exponent_width : NATURAL := maximum(L'high, R'high); -- length of FP output exponent
variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width);
begin
if ((L'length < 1) or (R'length < 1)) then return NAFP;
end if;
lresize := resize (L, exponent_width, fraction_width);
rresize := resize (R, exponent_width, fraction_width);
if lresize > rresize then return rresize;
else return lresize;
end if;
end function minimum;
-----------------------------------------------------------------------------
-- conversion functions
-----------------------------------------------------------------------------
-- Converts a floating point number of one format into another format
function resize (
arg : UNRESOLVED_float; -- Floating point input
constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent
constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error;
constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant in_fraction_width : NATURAL := -arg'low; -- length of FP output fraction
constant in_exponent_width : NATURAL := arg'high; -- length of FP output exponent
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
-- result value
variable fptype : valid_fpstate;
variable expon_in : SIGNED (in_exponent_width-1 downto 0);
variable fract_in : UNSIGNED (in_fraction_width downto 0);
variable expon_out : SIGNED (exponent_width-1 downto 0); -- output fract
variable fract_out : UNSIGNED (fraction_width downto 0); -- output fract
begin
fptype := Classfp(arg, check_error);
if ((fptype = pos_denormal or fptype = neg_denormal) and denormalize_in
and (in_exponent_width < exponent_width
or in_fraction_width < fraction_width))
or in_exponent_width > exponent_width
or in_fraction_width > fraction_width then
-- size reduction
classcase : case fptype is
when isx =>
result := (others => 'X');
when nan | quiet_nan =>
result := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
when pos_inf =>
result := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
when neg_inf =>
result := neg_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
when pos_zero | neg_zero =>
result := zerofp (fraction_width => fraction_width, -- hate -0
exponent_width => exponent_width);
when others =>
break_number (
arg => arg,
fptyp => fptype,
denormalize => denormalize_in,
fract => fract_in,
expon => expon_in);
if fraction_width > in_fraction_width and denormalize_in then
-- You only get here if you have a denormal input
fract_out := (others => '0'); -- pad with zeros
fract_out (fraction_width downto
fraction_width - in_fraction_width) := fract_in;
result := normalize (
fract => fract_out,
expon => expon_in,
sign => arg(arg'high),
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => 0);
else
result := normalize (
fract => fract_in,
expon => expon_in,
sign => arg(arg'high),
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => in_fraction_width - fraction_width);
end if;
end case classcase;
else -- size increase or the same size
if exponent_width > in_exponent_width then
expon_in := SIGNED(arg (in_exponent_width-1 downto 0));
if fptype = pos_zero or fptype = neg_zero then
result (exponent_width-1 downto 0) := (others => '0');
elsif expon_in = -1 then -- inf or nan (shorts out check_error)
result (exponent_width-1 downto 0) := (others => '1');
else
-- invert top BIT
expon_in(expon_in'high) := not expon_in(expon_in'high);
expon_out := resize (expon_in, expon_out'length); -- signed expand
-- Flip it back.
expon_out(expon_out'high) := not expon_out(expon_out'high);
result (exponent_width-1 downto 0) := UNRESOLVED_float(expon_out);
end if;
result (exponent_width) := arg (in_exponent_width); -- sign
else -- exponent_width = in_exponent_width
result (exponent_width downto 0) := arg (in_exponent_width downto 0);
end if;
if fraction_width > in_fraction_width then
result (-1 downto -fraction_width) := (others => '0'); -- zeros
result (-1 downto -in_fraction_width) :=
arg (-1 downto -in_fraction_width);
else -- fraction_width = in_fraciton_width
result (-1 downto -fraction_width) :=
arg (-1 downto -in_fraction_width);
end if;
end if;
return result;
end function resize;
function resize (
arg : UNRESOLVED_float; -- floating point input
size_res : UNRESOLVED_float;
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error;
constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := resize (arg => arg,
exponent_width => size_res'high,
fraction_width => -size_res'low,
round_style => round_style,
check_error => check_error,
denormalize_in => denormalize_in,
denormalize => denormalize);
return result;
end if;
end function resize;
function to_float32 (
arg : UNRESOLVED_float;
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error;
constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float32 is
begin
return resize (arg => arg,
exponent_width => float32'high,
fraction_width => -float32'low,
round_style => round_style,
check_error => check_error,
denormalize_in => denormalize_in,
denormalize => denormalize);
end function to_float32;
function to_float64 (
arg : UNRESOLVED_float;
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error;
constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float64 is
begin
return resize (arg => arg,
exponent_width => float64'high,
fraction_width => -float64'low,
round_style => round_style,
check_error => check_error,
denormalize_in => denormalize_in,
denormalize => denormalize);
end function to_float64;
function to_float128 (
arg : UNRESOLVED_float;
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error;
constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float128 is
begin
return resize (arg => arg,
exponent_width => float128'high,
fraction_width => -float128'low,
round_style => round_style,
check_error => check_error,
denormalize_in => denormalize_in,
denormalize => denormalize);
end function to_float128;
-- to_float (Real)
-- typically not Synthesizable unless the input is a constant.
function to_float (
arg : REAL;
constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent
constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction
constant round_style : round_type := float_round_style; -- rounding option
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
variable arg_real : REAL; -- Real version of argument
variable validfp : boundary_type; -- Check for valid results
variable exp : INTEGER; -- Integer version of exponent
variable expon : UNSIGNED (exponent_width - 1 downto 0);
-- Unsigned version of exp.
constant expon_base : SIGNED (exponent_width-1 downto 0) :=
gen_expon_base(exponent_width); -- exponent offset
variable fract : UNSIGNED (fraction_width-1 downto 0);
variable frac : REAL; -- Real version of fraction
constant roundfrac : REAL := 2.0 ** (-2 - fract'high); -- used for rounding
variable round : BOOLEAN; -- to round or not to round
begin
result := (others => '0');
arg_real := arg;
if arg_real < 0.0 then
result (exponent_width) := '1';
arg_real := - arg_real; -- Make it positive.
else
result (exponent_width) := '0';
end if;
test_boundary (arg => arg_real,
fraction_width => fraction_width,
exponent_width => exponent_width,
denormalize => denormalize,
btype => validfp,
log2i => exp);
if validfp = zero then
return result; -- Result initialized to "0".
elsif validfp = infinity then
result (exponent_width - 1 downto 0) := (others => '1'); -- Exponent all "1"
-- return infinity.
return result;
else
if validfp = denormal then -- Exponent will default to "0".
expon := (others => '0');
frac := arg_real * (2.0 ** (to_integer(expon_base)-1));
else -- Number less than 1. "normal" number
expon := UNSIGNED (to_signed (exp-1, exponent_width));
expon(exponent_width-1) := not expon(exponent_width-1);
frac := (arg_real / 2.0 ** exp) - 1.0; -- Number less than 1.
end if;
for i in 0 to fract'high loop
if frac >= 2.0 ** (-1 - i) then
fract (fract'high - i) := '1';
frac := frac - 2.0 ** (-1 - i);
else
fract (fract'high - i) := '0';
end if;
end loop;
round := false;
case round_style is
when round_nearest =>
if frac > roundfrac or ((frac = roundfrac) and fract(0) = '1') then
round := true;
end if;
when round_inf =>
if frac /= 0.0 and result(exponent_width) = '0' then
round := true;
end if;
when round_neginf =>
if frac /= 0.0 and result(exponent_width) = '1' then
round := true;
end if;
when others =>
null; -- don't round
end case;
if (round) then
if and(fract) = '1' then -- fraction is all "1"
expon := expon + 1;
fract := (others => '0');
else
fract := fract + 1;
end if;
end if;
result (exponent_width-1 downto 0) := UNRESOLVED_float(expon);
result (-1 downto -fraction_width) := UNRESOLVED_float(fract);
return result;
end if;
end function to_float;
-- to_float (Integer)
function to_float (
arg : INTEGER;
constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent
constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction
constant round_style : round_type := float_round_style) -- rounding option
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
variable arg_int : NATURAL; -- Natural version of argument
variable expon : SIGNED (exponent_width-1 downto 0);
variable exptmp : SIGNED (exponent_width-1 downto 0);
-- Unsigned version of exp.
constant expon_base : SIGNED (exponent_width-1 downto 0) :=
gen_expon_base(exponent_width); -- exponent offset
variable fract : UNSIGNED (fraction_width-1 downto 0) := (others => '0');
variable fracttmp : UNSIGNED (fraction_width-1 downto 0);
variable round : BOOLEAN;
variable shift : NATURAL;
variable shiftr : NATURAL;
variable roundfrac : NATURAL; -- used in rounding
begin
if arg < 0 then
result (exponent_width) := '1';
arg_int := -arg; -- Make it positive.
else
result (exponent_width) := '0';
arg_int := arg;
end if;
if arg_int = 0 then
result := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
-- If the number is larger than we can represent in this number system
-- we need to return infinity.
shift := log2(arg_int);
if shift > to_integer(expon_base) then
-- worry about infinity
if result (exponent_width) = '0' then
result := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
-- return negative infinity.
result := neg_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
end if;
else -- Normal number (can't be denormal)
-- Compute Exponent
expon := to_signed (shift-1, expon'length); -- positive fraction.
-- Compute Fraction
arg_int := arg_int - 2**shift; -- Subtract off the 1.0
shiftr := shift;
for I in fract'high downto maximum (fract'high - shift + 1, 0) loop
shiftr := shiftr - 1;
if (arg_int >= 2**shiftr) then
arg_int := arg_int - 2**shiftr;
fract(I) := '1';
else
fract(I) := '0';
end if;
end loop;
-- Rounding routine
round := false;
if arg_int > 0 then
roundfrac := 2**(shiftr-1);
case round_style is
when round_nearest =>
if arg_int > roundfrac or
((arg_int = roundfrac) and fract(0) = '1') then
round := true;
end if;
when round_inf =>
if arg_int /= 0 and result (exponent_width) = '0' then
round := true;
end if;
when round_neginf =>
if arg_int /= 0 and result (exponent_width) = '1' then
round := true;
end if;
when others =>
null;
end case;
end if;
if round then
fp_round(fract_in => fract,
expon_in => expon,
fract_out => fracttmp,
expon_out => exptmp);
fract := fracttmp;
expon := exptmp;
end if;
-- Put the number together and return
expon(exponent_width-1) := not expon(exponent_width-1);
result (exponent_width-1 downto 0) := UNRESOLVED_float(expon);
result (-1 downto -fraction_width) := UNRESOLVED_float(fract);
end if;
end if;
return result;
end function to_float;
-- to_float (unsigned)
function to_float (
arg : UNRESOLVED_UNSIGNED;
constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent
constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction
constant round_style : round_type := float_round_style) -- rounding option
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
constant ARG_LEFT : INTEGER := arg'length-1;
alias XARG : UNRESOLVED_UNSIGNED(ARG_LEFT downto 0) is arg;
variable sarg : SIGNED (ARG_LEFT+1 downto 0); -- signed version of arg
begin
if arg'length < 1 then
return NAFP;
end if;
sarg (XARG'range) := SIGNED (XARG);
sarg (sarg'high) := '0';
result := to_float (arg => sarg,
exponent_width => exponent_width,
fraction_width => fraction_width,
round_style => round_style);
return result;
end function to_float;
-- to_float (signed)
function to_float (
arg : UNRESOLVED_SIGNED;
constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent
constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction
constant round_style : round_type := float_round_style) -- rounding option
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
constant ARG_LEFT : INTEGER := arg'length-1;
alias XARG : UNRESOLVED_SIGNED(ARG_LEFT downto 0) is arg;
variable arg_int : UNSIGNED(XARG'range); -- Real version of argument
variable argb2 : UNSIGNED(XARG'high/2 downto 0); -- log2 of input
variable rexp : SIGNED (exponent_width - 1 downto 0);
variable exp : SIGNED (exponent_width - 1 downto 0);
-- signed version of exp.
variable expon : UNSIGNED (exponent_width - 1 downto 0);
-- Unsigned version of exp.
constant expon_base : SIGNED (exponent_width-1 downto 0) :=
gen_expon_base(exponent_width); -- exponent offset
variable round : BOOLEAN;
variable fract : UNSIGNED (fraction_width-1 downto 0);
variable rfract : UNSIGNED (fraction_width-1 downto 0);
variable sign : STD_ULOGIC; -- sign bit
begin
if arg'length < 1 then
return NAFP;
end if;
if Is_X (XARG) then
result := (others => 'X');
elsif (XARG = 0) then
result := zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
else -- Normal number (can't be denormal)
sign := to_X01(XARG (XARG'high));
arg_int := UNSIGNED(abs (to_01(XARG)));
-- Compute Exponent
argb2 := to_unsigned(find_leftmost(arg_int, '1'), argb2'length); -- Log2
if argb2 > UNSIGNED(expon_base) then
result := pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
result (exponent_width) := sign;
else
exp := SIGNED(resize(argb2, exp'length));
arg_int := shift_left (arg_int, arg_int'high-to_integer(exp));
if (arg_int'high > fraction_width) then
fract := arg_int (arg_int'high-1 downto (arg_int'high-fraction_width));
round := check_round (
fract_in => fract (0),
sign => sign,
remainder => arg_int((arg_int'high-fraction_width-1)
downto 0),
round_style => round_style);
if round then
fp_round(fract_in => fract,
expon_in => exp,
fract_out => rfract,
expon_out => rexp);
else
rfract := fract;
rexp := exp;
end if;
else
rexp := exp;
rfract := (others => '0');
rfract (fraction_width-1 downto fraction_width-1-(arg_int'high-1)) :=
arg_int (arg_int'high-1 downto 0);
end if;
result (exponent_width) := sign;
expon := UNSIGNED (rexp-1);
expon(exponent_width-1) := not expon(exponent_width-1);
result (exponent_width-1 downto 0) := UNRESOLVED_float(expon);
result (-1 downto -fraction_width) := UNRESOLVED_float(rfract);
end if;
end if;
return result;
end function to_float;
-- std_logic_vector to float
function to_float (
arg : STD_ULOGIC_VECTOR;
constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent
constant fraction_width : NATURAL := float_fraction_width) -- length of FP output fraction
return UNRESOLVED_float
is
variable fpvar : UNRESOLVED_float (exponent_width downto -fraction_width);
begin
if arg'length < 1 then
return NAFP;
end if;
fpvar := UNRESOLVED_float(arg);
return fpvar;
end function to_float;
-- purpose: converts a ufixed to a floating point
function to_float (
arg : UNRESOLVED_ufixed; -- unsigned fixed point input
constant exponent_width : NATURAL := float_exponent_width; -- width of exponent
constant fraction_width : NATURAL := float_fraction_width; -- width of fraction
constant round_style : round_type := float_round_style; -- rounding
constant denormalize : BOOLEAN := float_denormalize) -- use ieee extensions
return UNRESOLVED_float
is
variable sarg : sfixed (arg'high+1 downto arg'low); -- Signed version of arg
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
begin -- function to_float
if (arg'length < 1) then
return NAFP;
end if;
sarg (arg'range) := sfixed (arg);
sarg (sarg'high) := '0';
result := to_float (arg => sarg,
exponent_width => exponent_width,
fraction_width => fraction_width,
round_style => round_style,
denormalize => denormalize);
return result;
end function to_float;
function to_float (
arg : UNRESOLVED_sfixed; -- signed fixed point
constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent
constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction
constant round_style : round_type := float_round_style; -- rounding
constant denormalize : BOOLEAN := float_denormalize) -- rounding option
return UNRESOLVED_float
is
constant integer_width : INTEGER := arg'high;
constant in_fraction_width : INTEGER := arg'low;
variable xresult : sfixed (integer_width downto in_fraction_width);
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
variable arg_int : UNSIGNED(integer_width - in_fraction_width
downto 0); -- unsigned version of argument
variable argx : SIGNED (integer_width - in_fraction_width downto 0);
variable exp, exptmp : SIGNED (exponent_width + 1 downto 0);
variable expon : UNSIGNED (exponent_width - 1 downto 0);
-- Unsigned version of exp.
constant expon_base : SIGNED (exponent_width-1 downto 0) :=
gen_expon_base(exponent_width); -- exponent offset
variable fract, fracttmp : UNSIGNED (fraction_width-1 downto 0) :=
(others => '0');
variable round : BOOLEAN := false;
begin
if (arg'length < 1) then
return NAFP;
end if;
xresult := to_01(arg, 'X');
argx := SIGNED(to_slv(xresult));
if (Is_X (arg)) then
result := (others => 'X');
elsif (argx = 0) then
result := (others => '0');
else
result := (others => '0'); -- zero out the result
if argx(argx'left) = '1' then -- toss the sign bit
result (exponent_width) := '1'; -- Negative number
arg_int := UNSIGNED(to_x01(not STD_LOGIC_VECTOR (argx))) + 1; -- Make it positive with two's complement
else
result (exponent_width) := '0';
arg_int := UNSIGNED(to_x01(STD_LOGIC_VECTOR (argx))); -- new line: direct conversion to unsigned
end if;
-- Compute Exponent
exp := to_signed(find_leftmost(arg_int, '1'), exp'length); -- Log2
if exp + in_fraction_width > expon_base then -- return infinity
result (-1 downto -fraction_width) := (others => '0');
result (exponent_width -1 downto 0) := (others => '1');
return result;
elsif (denormalize and
(exp + in_fraction_width <= -resize(expon_base, exp'length))) then
exp := -resize(expon_base, exp'length);
-- shift by a constant
arg_int := shift_left (arg_int,
(arg_int'high + to_integer(expon_base)
+ in_fraction_width - 1));
if (arg_int'high > fraction_width) then
fract := arg_int (arg_int'high-1 downto (arg_int'high-fraction_width));
round := check_round (
fract_in => arg_int(arg_int'high-fraction_width),
sign => result(result'high),
remainder => arg_int((arg_int'high-fraction_width-1)
downto 0),
round_style => round_style);
if (round) then
fp_round (fract_in => arg_int (arg_int'high-1 downto
(arg_int'high-fraction_width)),
expon_in => exp,
fract_out => fract,
expon_out => exptmp);
exp := exptmp;
end if;
else
fract (fraction_width-1 downto fraction_width-1-(arg_int'high-1)) :=
arg_int (arg_int'high-1 downto 0);
end if;
else
arg_int := shift_left (arg_int, arg_int'high-to_integer(exp));
exp := exp + in_fraction_width;
if (arg_int'high > fraction_width) then
fract := arg_int (arg_int'high-1 downto (arg_int'high-fraction_width));
round := check_round (
fract_in => fract(0),
sign => result(result'high),
remainder => arg_int((arg_int'high-fraction_width-1)
downto 0),
round_style => round_style);
if (round) then
fp_round (fract_in => fract,
expon_in => exp,
fract_out => fracttmp,
expon_out => exptmp);
fract := fracttmp;
exp := exptmp;
end if;
else
fract (fraction_width-1 downto fraction_width-1-(arg_int'high-1)) :=
arg_int (arg_int'high-1 downto 0);
end if;
end if;
expon := UNSIGNED (resize(exp-1, exponent_width));
expon(exponent_width-1) := not expon(exponent_width-1);
result (exponent_width-1 downto 0) := UNRESOLVED_float(expon);
result (-1 downto -fraction_width) := UNRESOLVED_float(fract);
end if;
return result;
end function to_float;
-- size_res functions
-- Integer to float
function to_float (
arg : INTEGER;
size_res : UNRESOLVED_float;
constant round_style : round_type := float_round_style) -- rounding option
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := to_float (arg => arg,
exponent_width => size_res'high,
fraction_width => -size_res'low,
round_style => round_style);
return result;
end if;
end function to_float;
-- real to float
function to_float (
arg : REAL;
size_res : UNRESOLVED_float;
constant round_style : round_type := float_round_style; -- rounding option
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := to_float (arg => arg,
exponent_width => size_res'high,
fraction_width => -size_res'low,
round_style => round_style,
denormalize => denormalize);
return result;
end if;
end function to_float;
-- unsigned to float
function to_float (
arg : UNRESOLVED_UNSIGNED;
size_res : UNRESOLVED_float;
constant round_style : round_type := float_round_style) -- rounding option
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := to_float (arg => arg,
exponent_width => size_res'high,
fraction_width => -size_res'low,
round_style => round_style);
return result;
end if;
end function to_float;
-- signed to float
function to_float (
arg : UNRESOLVED_SIGNED;
size_res : UNRESOLVED_float;
constant round_style : round_type := float_round_style) -- rounding
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := to_float (arg => arg,
exponent_width => size_res'high,
fraction_width => -size_res'low,
round_style => round_style);
return result;
end if;
end function to_float;
-- std_ulogic_vector to float
function to_float (
arg : STD_ULOGIC_VECTOR;
size_res : UNRESOLVED_float)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := to_float (arg => arg,
exponent_width => size_res'high,
fraction_width => -size_res'low);
return result;
end if;
end function to_float;
-- unsigned fixed point to float
function to_float (
arg : UNRESOLVED_ufixed; -- unsigned fixed point input
size_res : UNRESOLVED_float;
constant round_style : round_type := float_round_style; -- rounding
constant denormalize : BOOLEAN := float_denormalize) -- use ieee extensions
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := to_float (arg => arg,
exponent_width => size_res'high,
fraction_width => -size_res'low,
round_style => round_style,
denormalize => denormalize);
return result;
end if;
end function to_float;
-- signed fixed point to float
function to_float (
arg : UNRESOLVED_sfixed;
size_res : UNRESOLVED_float;
constant round_style : round_type := float_round_style; -- rounding
constant denormalize : BOOLEAN := float_denormalize) -- rounding option
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := to_float (arg => arg,
exponent_width => size_res'high,
fraction_width => -size_res'low,
round_style => round_style,
denormalize => denormalize);
return result;
end if;
end function to_float;
-- to_integer (float)
function to_integer (
arg : UNRESOLVED_float; -- floating point input
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error) -- check for errors
return INTEGER
is
variable validfp : valid_fpstate; -- Valid FP state
variable frac : UNSIGNED (-arg'low downto 0); -- Fraction
variable fract : UNSIGNED (1-arg'low downto 0); -- Fraction
variable expon : SIGNED (arg'high-1 downto 0);
variable isign : STD_ULOGIC; -- internal version of sign
variable round : STD_ULOGIC; -- is rounding needed?
variable result : INTEGER;
variable base : INTEGER; -- Integer exponent
begin
validfp := Classfp (arg, check_error);
classcase : case validfp is
when isx | nan | quiet_nan | pos_zero | neg_zero | pos_denormal | neg_denormal =>
result := 0; -- return 0
when pos_inf =>
result := INTEGER'high;
when neg_inf =>
result := INTEGER'low;
when others =>
break_number (
arg => arg,
fptyp => validfp,
denormalize => false,
fract => frac,
expon => expon);
fract (fract'high) := '0'; -- Add extra bit for 0.6 case
fract (fract'high-1 downto 0) := frac;
isign := to_x01 (arg (arg'high));
base := to_integer (expon) + 1;
if base < -1 then
result := 0;
elsif base >= frac'high then
result := to_integer (fract) * 2**(base - frac'high);
else -- We need to round
if base = -1 then -- trap for 0.6 case.
result := 0;
else
result := to_integer (fract (frac'high downto frac'high-base));
end if;
-- rounding routine
case round_style is
when round_nearest =>
if frac'high - base > 1 then
round := fract (frac'high - base - 1) and
(fract (frac'high - base)
or (or (fract (frac'high - base - 2 downto 0))));
else
round := fract (frac'high - base - 1) and
fract (frac'high - base);
end if;
when round_inf =>
round := fract(frac'high - base - 1) and not isign;
when round_neginf =>
round := fract(frac'high - base - 1) and isign;
when others =>
round := '0';
end case;
if round = '1' then
result := result + 1;
end if;
end if;
if isign = '1' then
result := - result;
end if;
end case classcase;
return result;
end function to_integer;
-- to_unsigned (float)
function to_unsigned (
arg : UNRESOLVED_float; -- floating point input
constant size : NATURAL; -- length of output
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error) -- check for errors
return UNRESOLVED_UNSIGNED
is
variable validfp : valid_fpstate; -- Valid FP state
variable frac : UNRESOLVED_UNSIGNED (size-1 downto 0); -- Fraction
variable sign : STD_ULOGIC; -- not used
begin
validfp := Classfp (arg, check_error);
classcase : case validfp is
when isx | nan | quiet_nan =>
frac := (others => 'X');
when pos_zero | neg_inf | neg_zero | neg_normal | pos_denormal | neg_denormal =>
frac := (others => '0'); -- return 0
when pos_inf =>
frac := (others => '1');
when others =>
float_to_unsigned (
arg => arg,
frac => frac,
sign => sign,
denormalize => false,
bias => 0,
round_style => round_style);
end case classcase;
return (frac);
end function to_unsigned;
-- to_signed (float)
function to_signed (
arg : UNRESOLVED_float; -- floating point input
constant size : NATURAL; -- length of output
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error) -- check for errors
return UNRESOLVED_SIGNED
is
variable sign : STD_ULOGIC; -- true if negative
variable validfp : valid_fpstate; -- Valid FP state
variable frac : UNRESOLVED_UNSIGNED (size-1 downto 0); -- Fraction
variable result : UNRESOLVED_SIGNED (size-1 downto 0);
begin
validfp := Classfp (arg, check_error);
classcase : case validfp is
when isx | nan | quiet_nan =>
result := (others => 'X');
when pos_zero | neg_zero | pos_denormal | neg_denormal =>
result := (others => '0'); -- return 0
when pos_inf =>
result := (others => '1');
result (result'high) := '0';
when neg_inf =>
result := (others => '0');
result (result'high) := '1';
when others =>
float_to_unsigned (
arg => arg,
sign => sign,
frac => frac,
denormalize => false,
bias => 0,
round_style => round_style);
result (size-1) := '0';
result (size-2 downto 0) := UNRESOLVED_SIGNED(frac (size-2 downto 0));
if sign = '1' then
-- Because the most negative signed number is 1 less than the most
-- positive signed number, we need this code.
if frac(frac'high) = '1' then -- return most negative number
result := (others => '0');
result (result'high) := '1';
else
result := -result;
end if;
else
if frac(frac'high) = '1' then -- return most positive number
result := (others => '1');
result (result'high) := '0';
end if;
end if;
end case classcase;
return result;
end function to_signed;
-- purpose: Converts a float to ufixed
function to_ufixed (
arg : UNRESOLVED_float; -- fp input
constant left_index : INTEGER; -- integer part
constant right_index : INTEGER; -- fraction part
constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate
constant round_style : fixed_round_style_type := fixed_round_style; -- rounding
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize)
return UNRESOLVED_ufixed
is
constant fraction_width : INTEGER := -mine(arg'low, arg'low); -- length of FP output fraction
constant exponent_width : INTEGER := arg'high; -- length of FP output exponent
constant size : INTEGER := left_index - right_index + 4; -- unsigned size
variable expon_base : INTEGER; -- exponent offset
variable validfp : valid_fpstate; -- Valid FP state
variable exp : INTEGER; -- Exponent
variable expon : UNSIGNED (exponent_width-1 downto 0); -- Vectorized exponent
-- Base to divide fraction by
variable frac : UNSIGNED (size-1 downto 0) := (others => '0'); -- Fraction
variable frac_shift : UNSIGNED (size-1 downto 0); -- Fraction shifted
variable shift : INTEGER;
variable result_big : UNRESOLVED_ufixed (left_index downto right_index-3);
variable result : UNRESOLVED_ufixed (left_index downto right_index); -- result
begin -- function to_ufixed
validfp := Classfp (arg, check_error);
classcase : case validfp is
when isx | nan | quiet_nan =>
frac := (others => 'X');
when pos_zero | neg_inf | neg_zero | neg_normal | neg_denormal =>
frac := (others => '0'); -- return 0
when pos_inf =>
frac := (others => '1'); -- always saturate
when others =>
expon_base := 2**(exponent_width-1) -1; -- exponent offset
-- Figure out the fraction
if (validfp = pos_denormal) and denormalize then
exp := -expon_base +1;
frac (frac'high) := '0'; -- Remove the "1.0".
else
-- exponent /= '0', normal floating point
expon := UNSIGNED(arg (exponent_width-1 downto 0));
expon(exponent_width-1) := not expon(exponent_width-1);
exp := to_integer (SIGNED(expon)) +1;
frac (frac'high) := '1'; -- Add the "1.0".
end if;
shift := (frac'high - 3 + right_index) - exp;
if fraction_width > frac'high then -- Can only use size-2 bits
frac (frac'high-1 downto 0) := UNSIGNED (to_slv (arg(-1 downto
-frac'high)));
else -- can use all bits
frac (frac'high-1 downto frac'high-fraction_width) :=
UNSIGNED (to_slv (arg(-1 downto -fraction_width)));
end if;
frac_shift := frac srl shift;
if shift < 0 then -- Overflow
frac := (others => '1');
else
frac := frac_shift;
end if;
end case classcase;
result_big := to_ufixed (
arg => STD_ULOGIC_VECTOR(frac),
left_index => left_index,
right_index => (right_index-3));
result := resize (arg => result_big,
left_index => left_index,
right_index => right_index,
round_style => round_style,
overflow_style => overflow_style);
return result;
end function to_ufixed;
-- purpose: Converts a float to sfixed
function to_sfixed (
arg : UNRESOLVED_float; -- fp input
constant left_index : INTEGER; -- integer part
constant right_index : INTEGER; -- fraction part
constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate
constant round_style : fixed_round_style_type := fixed_round_style; -- rounding
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize)
return UNRESOLVED_sfixed
is
constant fraction_width : INTEGER := -mine(arg'low, arg'low); -- length of FP output fraction
constant exponent_width : INTEGER := arg'high; -- length of FP output exponent
constant size : INTEGER := left_index - right_index + 4; -- unsigned size
variable expon_base : INTEGER; -- exponent offset
variable validfp : valid_fpstate; -- Valid FP state
variable exp : INTEGER; -- Exponent
variable sign : BOOLEAN; -- true if negative
variable expon : UNSIGNED (exponent_width-1 downto 0); -- Vectorized exponent
-- Base to divide fraction by
variable frac : UNSIGNED (size-2 downto 0) := (others => '0'); -- Fraction
variable frac_shift : UNSIGNED (size-2 downto 0); -- Fraction shifted
variable shift : INTEGER;
variable rsigned : SIGNED (size-1 downto 0); -- signed version of result
variable result_big : UNRESOLVED_sfixed (left_index downto right_index-3);
variable result : UNRESOLVED_sfixed (left_index downto right_index)
:= (others => '0'); -- result
begin -- function to_sfixed
validfp := Classfp (arg, check_error);
classcase : case validfp is
when isx | nan | quiet_nan =>
result := (others => 'X');
when pos_zero | neg_zero =>
result := (others => '0'); -- return 0
when neg_inf =>
result (left_index) := '1'; -- return smallest negative number
when pos_inf =>
result := (others => '1'); -- return largest number
result (left_index) := '0';
when others =>
expon_base := 2**(exponent_width-1) -1; -- exponent offset
if arg(exponent_width) = '0' then
sign := false;
else
sign := true;
end if;
-- Figure out the fraction
if (validfp = pos_denormal or validfp = neg_denormal)
and denormalize then
exp := -expon_base +1;
frac (frac'high) := '0'; -- Add the "1.0".
else
-- exponent /= '0', normal floating point
expon := UNSIGNED(arg (exponent_width-1 downto 0));
expon(exponent_width-1) := not expon(exponent_width-1);
exp := to_integer (SIGNED(expon)) +1;
frac (frac'high) := '1'; -- Add the "1.0".
end if;
shift := (frac'high - 3 + right_index) - exp;
if fraction_width > frac'high then -- Can only use size-2 bits
frac (frac'high-1 downto 0) := UNSIGNED (to_slv (arg(-1 downto
-frac'high)));
else -- can use all bits
frac (frac'high-1 downto frac'high-fraction_width) :=
UNSIGNED (to_slv (arg(-1 downto -fraction_width)));
end if;
frac_shift := frac srl shift;
if shift < 0 then -- Overflow
frac := (others => '1');
else
frac := frac_shift;
end if;
if not sign then
rsigned := SIGNED("0" & frac);
else
rsigned := -(SIGNED("0" & frac));
end if;
result_big := to_sfixed (
arg => STD_LOGIC_VECTOR(rsigned),
left_index => left_index,
right_index => (right_index-3));
result := resize (arg => result_big,
left_index => left_index,
right_index => right_index,
round_style => round_style,
overflow_style => overflow_style);
end case classcase;
return result;
end function to_sfixed;
-- size_res versions
-- float to unsigned
function to_unsigned (
arg : UNRESOLVED_float; -- floating point input
size_res : UNRESOLVED_UNSIGNED;
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error) -- check for errors
return UNRESOLVED_UNSIGNED
is
variable result : UNRESOLVED_UNSIGNED (size_res'range);
begin
if (size_res'length = 0) then
return result;
else
result := to_unsigned (
arg => arg,
size => size_res'length,
round_style => round_style,
check_error => check_error);
return result;
end if;
end function to_unsigned;
-- float to signed
function to_signed (
arg : UNRESOLVED_float; -- floating point input
size_res : UNRESOLVED_SIGNED;
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error) -- check for errors
return UNRESOLVED_SIGNED
is
variable result : UNRESOLVED_SIGNED (size_res'range);
begin
if (size_res'length = 0) then
return result;
else
result := to_signed (
arg => arg,
size => size_res'length,
round_style => round_style,
check_error => check_error);
return result;
end if;
end function to_signed;
-- purpose: Converts a float to unsigned fixed point
function to_ufixed (
arg : UNRESOLVED_float; -- fp input
size_res : UNRESOLVED_ufixed;
constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate
constant round_style : fixed_round_style_type := fixed_round_style; -- rounding
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize)
return UNRESOLVED_ufixed
is
variable result : UNRESOLVED_ufixed (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := to_ufixed (
arg => arg,
left_index => size_res'high,
right_index => size_res'low,
overflow_style => overflow_style,
round_style => round_style,
check_error => check_error,
denormalize => denormalize);
return result;
end if;
end function to_ufixed;
-- float to signed fixed point
function to_sfixed (
arg : UNRESOLVED_float; -- fp input
size_res : UNRESOLVED_sfixed;
constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate
constant round_style : fixed_round_style_type := fixed_round_style; -- rounding
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize)
return UNRESOLVED_sfixed
is
variable result : UNRESOLVED_sfixed (size_res'left downto size_res'right);
begin
if (result'length < 1) then
return result;
else
result := to_sfixed (
arg => arg,
left_index => size_res'high,
right_index => size_res'low,
overflow_style => overflow_style,
round_style => round_style,
check_error => check_error,
denormalize => denormalize);
return result;
end if;
end function to_sfixed;
-- to_real (float)
-- typically not Synthesizable unless the input is a constant.
function to_real (
arg : UNRESOLVED_float; -- floating point input
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return REAL
is
constant fraction_width : INTEGER := -mine(arg'low, arg'low); -- length of FP output fraction
constant exponent_width : INTEGER := arg'high; -- length of FP output exponent
variable sign : REAL; -- Sign, + or - 1
variable exp : INTEGER; -- Exponent
variable expon_base : INTEGER; -- exponent offset
variable frac : REAL := 0.0; -- Fraction
variable validfp : valid_fpstate; -- Valid FP state
variable expon : UNSIGNED (exponent_width - 1 downto 0)
:= (others => '1'); -- Vectorized exponent
begin
validfp := Classfp (arg, check_error);
classcase : case validfp is
when isx | pos_zero | neg_zero | nan | quiet_nan =>
return 0.0;
when neg_inf =>
return REAL'low; -- Negative infinity.
when pos_inf =>
return REAL'high; -- Positive infinity
when others =>
expon_base := 2**(exponent_width-1) -1;
if to_X01(arg(exponent_width)) = '0' then
sign := 1.0;
else
sign := -1.0;
end if;
-- Figure out the fraction
for i in 0 to fraction_width-1 loop
if to_X01(arg (-1 - i)) = '1' then
frac := frac + (2.0 **(-1 - i));
end if;
end loop; -- i
if validfp = pos_normal or validfp = neg_normal or not denormalize then
-- exponent /= '0', normal floating point
expon := UNSIGNED(arg (exponent_width-1 downto 0));
expon(exponent_width-1) := not expon(exponent_width-1);
exp := to_integer (SIGNED(expon)) +1;
sign := sign * (2.0 ** exp) * (1.0 + frac);
else -- exponent = '0', IEEE extended floating point
exp := 1 - expon_base;
sign := sign * (2.0 ** exp) * frac;
end if;
return sign;
end case classcase;
end function to_real;
-- For Verilog compatability
function realtobits (arg : REAL) return STD_ULOGIC_VECTOR is
variable result : float64; -- 64 bit floating point
begin
result := to_float (arg => arg,
exponent_width => float64'high,
fraction_width => -float64'low);
return to_sulv (result);
end function realtobits;
function bitstoreal (arg : STD_ULOGIC_VECTOR) return REAL is
variable arg64 : float64; -- arg converted to float
begin
arg64 := to_float (arg => arg,
exponent_width => float64'high,
fraction_width => -float64'low);
return to_real (arg64);
end function bitstoreal;
-- purpose: Removes meta-logical values from FP string
function to_01 (
arg : UNRESOLVED_float; -- floating point input
XMAP : STD_LOGIC := '0')
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (arg'range);
begin -- function to_01
if (arg'length < 1) then
assert no_warning
report float_generic_pkg'instance_name
& "TO_01: null detected, returning NULL"
severity warning;
return NAFP;
end if;
result := UNRESOLVED_float (STD_LOGIC_VECTOR(to_01(UNSIGNED(to_slv(arg)), XMAP)));
return result;
end function to_01;
function Is_X
(arg : UNRESOLVED_float)
return BOOLEAN is
begin
return Is_X (to_slv(arg));
end function Is_X;
function to_X01 (arg : UNRESOLVED_float) return UNRESOLVED_float is
variable result : UNRESOLVED_float (arg'range);
begin
if (arg'length < 1) then
assert no_warning
report float_generic_pkg'instance_name
& "TO_X01: null detected, returning NULL"
severity warning;
return NAFP;
else
result := UNRESOLVED_float (to_X01(to_slv(arg)));
return result;
end if;
end function to_X01;
function to_X01Z (arg : UNRESOLVED_float) return UNRESOLVED_float is
variable result : UNRESOLVED_float (arg'range);
begin
if (arg'length < 1) then
assert no_warning
report float_generic_pkg'instance_name
& "TO_X01Z: null detected, returning NULL"
severity warning;
return NAFP;
else
result := UNRESOLVED_float (to_X01Z(to_slv(arg)));
return result;
end if;
end function to_X01Z;
function to_UX01 (arg : UNRESOLVED_float) return UNRESOLVED_float is
variable result : UNRESOLVED_float (arg'range);
begin
if (arg'length < 1) then
assert no_warning
report float_generic_pkg'instance_name
& "TO_UX01: null detected, returning NULL"
severity warning;
return NAFP;
else
result := UNRESOLVED_float (to_UX01(to_slv(arg)));
return result;
end if;
end function to_UX01;
-- These allows the base math functions to use the default values
-- of their parameters. Thus they do full IEEE floating point.
function "+" (l, r : UNRESOLVED_float) return UNRESOLVED_float is
begin
return add (l, r);
end function "+";
function "-" (l, r : UNRESOLVED_float) return UNRESOLVED_float is
begin
return subtract (l, r);
end function "-";
function "*" (l, r : UNRESOLVED_float) return UNRESOLVED_float is
begin
return multiply (l, r);
end function "*";
function "/" (l, r : UNRESOLVED_float) return UNRESOLVED_float is
begin
return divide (l, r);
end function "/";
function "rem" (l, r : UNRESOLVED_float) return UNRESOLVED_float is
begin
return remainder (l, r);
end function "rem";
function "mod" (l, r : UNRESOLVED_float) return UNRESOLVED_float is
begin
return modulo (l, r);
end function "mod";
-- overloaded versions
function "+" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return add (l, r_float);
end function "+";
function "+" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return add (l_float, r);
end function "+";
function "+" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return add (l, r_float);
end function "+";
function "+" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return add (l_float, r);
end function "+";
function "-" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return subtract (l, r_float);
end function "-";
function "-" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return subtract (l_float, r);
end function "-";
function "-" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return subtract (l, r_float);
end function "-";
function "-" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return subtract (l_float, r);
end function "-";
function "*" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return multiply (l, r_float);
end function "*";
function "*" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return multiply (l_float, r);
end function "*";
function "*" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return multiply (l, r_float);
end function "*";
function "*" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return multiply (l_float, r);
end function "*";
function "/" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return divide (l, r_float);
end function "/";
function "/" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return divide (l_float, r);
end function "/";
function "/" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return divide (l, r_float);
end function "/";
function "/" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return divide (l_float, r);
end function "/";
function "rem" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return remainder (l, r_float);
end function "rem";
function "rem" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return remainder (l_float, r);
end function "rem";
function "rem" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return remainder (l, r_float);
end function "rem";
function "rem" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return remainder (l_float, r);
end function "rem";
function "mod" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return modulo (l, r_float);
end function "mod";
function "mod" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return modulo (l_float, r);
end function "mod";
function "mod" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return modulo (l, r_float);
end function "mod";
function "mod" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return modulo (l_float, r);
end function "mod";
function "=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return eq (l, r_float);
end function "=";
function "/=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return ne (l, r_float);
end function "/=";
function ">=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return ge (l, r_float);
end function ">=";
function "<=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return le (l, r_float);
end function "<=";
function ">" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return gt (l, r_float);
end function ">";
function "<" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return lt (l, r_float);
end function "<";
function "=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return eq (l_float, r);
end function "=";
function "/=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return ne (l_float, r);
end function "/=";
function ">=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return ge (l_float, r);
end function ">=";
function "<=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return le (l_float, r);
end function "<=";
function ">" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return gt (l_float, r);
end function ">";
function "<" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return lt (l_float, r);
end function "<";
function "=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return eq (l, r_float);
end function "=";
function "/=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return ne (l, r_float);
end function "/=";
function ">=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return ge (l, r_float);
end function ">=";
function "<=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return le (l, r_float);
end function "<=";
function ">" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return gt (l, r_float);
end function ">";
function "<" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return lt (l, r_float);
end function "<";
function "=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return eq (l_float, r);
end function "=";
function "/=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return ne (l_float, r);
end function "/=";
function ">=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return ge (l_float, r);
end function ">=";
function "<=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return le (l_float, r);
end function "<=";
function ">" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return gt (l_float, r);
end function ">";
function "<" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float(l, r'high, -r'low);
return lt (l_float, r);
end function "<";
-- ?= overloads
function "?=" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?= r_float;
end function "?=";
function "?/=" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?/= r_float;
end function "?/=";
function "?>" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?> r_float;
end function "?>";
function "?>=" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?>= r_float;
end function "?>=";
function "?<" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?< r_float;
end function "?<";
function "?<=" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?<= r_float;
end function "?<=";
-- real and float
function "?=" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?= r;
end function "?=";
function "?/=" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?/= r;
end function "?/=";
function "?>" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?> r;
end function "?>";
function "?>=" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?>= r;
end function "?>=";
function "?<" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?< r;
end function "?<";
function "?<=" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?<= r;
end function "?<=";
-- ?= overloads
function "?=" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?= r_float;
end function "?=";
function "?/=" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?/= r_float;
end function "?/=";
function "?>" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?> r_float;
end function "?>";
function "?>=" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?>= r_float;
end function "?>=";
function "?<" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?< r_float;
end function "?<";
function "?<=" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return l ?<= r_float;
end function "?<=";
-- integer and float
function "?=" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?= r;
end function "?=";
function "?/=" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?/= r;
end function "?/=";
function "?>" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?> r;
end function "?>";
function "?>=" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?>= r;
end function "?>=";
function "?<" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?< r;
end function "?<";
function "?<=" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return l_float ?<= r;
end function "?<=";
-- minimum and maximum overloads
function minimum (l : UNRESOLVED_float; r : REAL)
return UNRESOLVED_float
is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return minimum (l, r_float);
end function minimum;
function maximum (l : UNRESOLVED_float; r : REAL)
return UNRESOLVED_float
is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return maximum (l, r_float);
end function maximum;
function minimum (l : REAL; r : UNRESOLVED_float)
return UNRESOLVED_float
is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return minimum (l_float, r);
end function minimum;
function maximum (l : REAL; r : UNRESOLVED_float)
return UNRESOLVED_float
is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return maximum (l_float, r);
end function maximum;
function minimum (l : UNRESOLVED_float; r : INTEGER)
return UNRESOLVED_float
is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return minimum (l, r_float);
end function minimum;
function maximum (l : UNRESOLVED_float; r : INTEGER)
return UNRESOLVED_float
is
variable r_float : UNRESOLVED_float (l'range);
begin
r_float := to_float (r, l'high, -l'low);
return maximum (l, r_float);
end function maximum;
function minimum (l : INTEGER; r : UNRESOLVED_float)
return UNRESOLVED_float
is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return minimum (l_float, r);
end function minimum;
function maximum (l : INTEGER; r : UNRESOLVED_float)
return UNRESOLVED_float
is
variable l_float : UNRESOLVED_float (r'range);
begin
l_float := to_float (l, r'high, -r'low);
return maximum (l_float, r);
end function maximum;
----------------------------------------------------------------------------
-- logical functions
----------------------------------------------------------------------------
function "not" (L : UNRESOLVED_float) return UNRESOLVED_float is
variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto
begin
RESULT := not to_sulv(L);
return to_float (RESULT, L'high, -L'low);
end function "not";
function "and" (L, R : UNRESOLVED_float) return UNRESOLVED_float is
variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto
begin
if (L'high = R'high and L'low = R'low) then
RESULT := to_sulv(L) and to_sulv(R);
else
assert no_warning
report float_generic_pkg'instance_name
& """and"": Range error L'RANGE /= R'RANGE"
severity warning;
RESULT := (others => 'X');
end if;
return to_float (RESULT, L'high, -L'low);
end function "and";
function "or" (L, R : UNRESOLVED_float) return UNRESOLVED_float is
variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto
begin
if (L'high = R'high and L'low = R'low) then
RESULT := to_sulv(L) or to_sulv(R);
else
assert no_warning
report float_generic_pkg'instance_name
& """or"": Range error L'RANGE /= R'RANGE"
severity warning;
RESULT := (others => 'X');
end if;
return to_float (RESULT, L'high, -L'low);
end function "or";
function "nand" (L, R : UNRESOLVED_float) return UNRESOLVED_float is
variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto
begin
if (L'high = R'high and L'low = R'low) then
RESULT := to_sulv(L) nand to_sulv(R);
else
assert no_warning
report float_generic_pkg'instance_name
& """nand"": Range error L'RANGE /= R'RANGE"
severity warning;
RESULT := (others => 'X');
end if;
return to_float (RESULT, L'high, -L'low);
end function "nand";
function "nor" (L, R : UNRESOLVED_float) return UNRESOLVED_float is
variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto
begin
if (L'high = R'high and L'low = R'low) then
RESULT := to_sulv(L) nor to_sulv(R);
else
assert no_warning
report float_generic_pkg'instance_name
& """nor"": Range error L'RANGE /= R'RANGE"
severity warning;
RESULT := (others => 'X');
end if;
return to_float (RESULT, L'high, -L'low);
end function "nor";
function "xor" (L, R : UNRESOLVED_float) return UNRESOLVED_float is
variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto
begin
if (L'high = R'high and L'low = R'low) then
RESULT := to_sulv(L) xor to_sulv(R);
else
assert no_warning
report float_generic_pkg'instance_name
& """xor"": Range error L'RANGE /= R'RANGE"
severity warning;
RESULT := (others => 'X');
end if;
return to_float (RESULT, L'high, -L'low);
end function "xor";
function "xnor" (L, R : UNRESOLVED_float) return UNRESOLVED_float is
variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto
begin
if (L'high = R'high and L'low = R'low) then
RESULT := to_sulv(L) xnor to_sulv(R);
else
assert no_warning
report float_generic_pkg'instance_name
& """xnor"": Range error L'RANGE /= R'RANGE"
severity warning;
RESULT := (others => 'X');
end if;
return to_float (RESULT, L'high, -L'low);
end function "xnor";
-- Vector and std_ulogic functions, same as functions in numeric_std
function "and" (L : STD_ULOGIC; R : UNRESOLVED_float)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (R'range);
begin
result := UNRESOLVED_float (L and to_sulv(R));
return result;
end function "and";
function "and" (L : UNRESOLVED_float; R : STD_ULOGIC)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (L'range);
begin
result := UNRESOLVED_float (to_sulv(L) and R);
return result;
end function "and";
function "or" (L : STD_ULOGIC; R : UNRESOLVED_float)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (R'range);
begin
result := UNRESOLVED_float (L or to_sulv(R));
return result;
end function "or";
function "or" (L : UNRESOLVED_float; R : STD_ULOGIC)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (L'range);
begin
result := UNRESOLVED_float (to_sulv(L) or R);
return result;
end function "or";
function "nand" (L : STD_ULOGIC; R : UNRESOLVED_float)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (R'range);
begin
result := UNRESOLVED_float (L nand to_sulv(R));
return result;
end function "nand";
function "nand" (L : UNRESOLVED_float; R : STD_ULOGIC)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (L'range);
begin
result := UNRESOLVED_float (to_sulv(L) nand R);
return result;
end function "nand";
function "nor" (L : STD_ULOGIC; R : UNRESOLVED_float)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (R'range);
begin
result := UNRESOLVED_float (L nor to_sulv(R));
return result;
end function "nor";
function "nor" (L : UNRESOLVED_float; R : STD_ULOGIC)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (L'range);
begin
result := UNRESOLVED_float (to_sulv(L) nor R);
return result;
end function "nor";
function "xor" (L : STD_ULOGIC; R : UNRESOLVED_float)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (R'range);
begin
result := UNRESOLVED_float (L xor to_sulv(R));
return result;
end function "xor";
function "xor" (L : UNRESOLVED_float; R : STD_ULOGIC)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (L'range);
begin
result := UNRESOLVED_float (to_sulv(L) xor R);
return result;
end function "xor";
function "xnor" (L : STD_ULOGIC; R : UNRESOLVED_float)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (R'range);
begin
result := UNRESOLVED_float (L xnor to_sulv(R));
return result;
end function "xnor";
function "xnor" (L : UNRESOLVED_float; R : STD_ULOGIC)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (L'range);
begin
result := UNRESOLVED_float (to_sulv(L) xnor R);
return result;
end function "xnor";
-- Reduction operators, same as numeric_std functions
function "and" (l : UNRESOLVED_float) return STD_ULOGIC is
begin
return and to_sulv(l);
end function "and";
function "nand" (l : UNRESOLVED_float) return STD_ULOGIC is
begin
return nand to_sulv(l);
end function "nand";
function "or" (l : UNRESOLVED_float) return STD_ULOGIC is
begin
return or to_sulv(l);
end function "or";
function "nor" (l : UNRESOLVED_float) return STD_ULOGIC is
begin
return nor to_sulv(l);
end function "nor";
function "xor" (l : UNRESOLVED_float) return STD_ULOGIC is
begin
return xor to_sulv(l);
end function "xor";
function "xnor" (l : UNRESOLVED_float) return STD_ULOGIC is
begin
return xnor to_sulv(l);
end function "xnor";
-----------------------------------------------------------------------------
-- Recommended Functions from the IEEE 754 Appendix
-----------------------------------------------------------------------------
-- returns x with the sign of y.
function Copysign (
x, y : UNRESOLVED_float) -- floating point input
return UNRESOLVED_float is
begin
return y(y'high) & x (x'high-1 downto x'low);
end function Copysign;
-- Returns y * 2**n for integral values of N without computing 2**n
function Scalb (
y : UNRESOLVED_float; -- floating point input
N : INTEGER; -- exponent to add
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(y'low, y'low); -- length of FP output fraction
constant exponent_width : NATURAL := y'high; -- length of FP output exponent
variable arg, result : UNRESOLVED_float (exponent_width downto -fraction_width); -- internal argument
variable expon : SIGNED (exponent_width-1 downto 0); -- Vectorized exp
variable exp : SIGNED (exponent_width downto 0);
variable ufract : UNSIGNED (fraction_width downto 0);
variable fptype : valid_fpstate;
begin
-- This can be done by simply adding N to the exponent.
arg := to_01 (y, 'X');
fptype := Classfp(arg, check_error);
classcase : case fptype is
when isx =>
result := (others => 'X');
when nan | quiet_nan =>
-- Return quiet NAN, IEEE754-1985-7.1,1
result := qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
when others =>
break_number (
arg => arg,
fptyp => fptype,
denormalize => denormalize,
fract => ufract,
expon => expon);
exp := resize (expon, exp'length) + N;
result := normalize (
fract => ufract,
expon => exp,
sign => to_x01 (arg (arg'high)),
fraction_width => fraction_width,
exponent_width => exponent_width,
round_style => round_style,
denormalize => denormalize,
nguard => 0);
end case classcase;
return result;
end function Scalb;
-- Returns y * 2**n for integral values of N without computing 2**n
function Scalb (
y : UNRESOLVED_float; -- floating point input
N : UNRESOLVED_SIGNED; -- exponent to add
constant round_style : round_type := float_round_style; -- rounding option
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP
return UNRESOLVED_float
is
variable n_int : INTEGER;
begin
n_int := to_integer(N);
return Scalb (y => y,
N => n_int,
round_style => round_style,
check_error => check_error,
denormalize => denormalize);
end function Scalb;
-- returns the unbiased exponent of x
function Logb (
x : UNRESOLVED_float) -- floating point input
return INTEGER
is
constant fraction_width : NATURAL := -mine (x'low, x'low); -- length of FP output fraction
constant exponent_width : NATURAL := x'high; -- length of FP output exponent
variable result : INTEGER; -- result
variable arg : UNRESOLVED_float (exponent_width downto -fraction_width); -- internal argument
variable expon : SIGNED (exponent_width - 1 downto 0);
variable fract : UNSIGNED (fraction_width downto 0);
constant expon_base : INTEGER := 2**(exponent_width-1) -1; -- exponent
-- offset +1
variable fptype : valid_fpstate;
begin
-- Just return the exponent.
arg := to_01 (x, 'X');
fptype := Classfp(arg);
classcase : case fptype is
when isx | nan | quiet_nan =>
-- Return quiet NAN, IEEE754-1985-7.1,1
result := 0;
when pos_denormal | neg_denormal =>
fract (fraction_width) := '0';
fract (fraction_width-1 downto 0) :=
UNSIGNED (to_slv(arg(-1 downto -fraction_width)));
result := find_leftmost (fract, '1') -- Find the first "1"
- fraction_width; -- subtract the length we want
result := -expon_base + 1 + result;
when others =>
expon := SIGNED(arg (exponent_width - 1 downto 0));
expon(exponent_width-1) := not expon(exponent_width-1);
expon := expon + 1;
result := to_integer (expon);
end case classcase;
return result;
end function Logb;
-- returns the unbiased exponent of x
function Logb (
x : UNRESOLVED_float) -- floating point input
return UNRESOLVED_SIGNED
is
constant exponent_width : NATURAL := x'high; -- length of FP output exponent
variable result : SIGNED (exponent_width - 1 downto 0); -- result
begin
-- Just return the exponent.
result := to_signed (Logb (x), exponent_width);
return result;
end function Logb;
-- returns the next representable neighbor of x in the direction toward y
function Nextafter (
x, y : UNRESOLVED_float; -- floating point input
constant check_error : BOOLEAN := float_check_error; -- check for errors
constant denormalize : BOOLEAN := float_denormalize)
return UNRESOLVED_float
is
constant fraction_width : NATURAL := -mine(x'low, x'low); -- length of FP output fraction
constant exponent_width : NATURAL := x'high; -- length of FP output exponent
function "=" (
l, r : UNRESOLVED_float) -- inputs
return BOOLEAN is
begin -- function "="
return eq (l => l,
r => r,
check_error => false);
end function "=";
function ">" (
l, r : UNRESOLVED_float) -- inputs
return BOOLEAN is
begin -- function ">"
return gt (l => l,
r => r,
check_error => false);
end function ">";
variable fract : UNSIGNED (fraction_width-1 downto 0);
variable expon : UNSIGNED (exponent_width-1 downto 0);
variable sign : STD_ULOGIC;
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
variable validfpx, validfpy : valid_fpstate; -- Valid FP state
begin -- fp_Nextafter
-- If Y > X, add one to the fraction, otherwise subtract.
validfpx := Classfp (x, check_error);
validfpy := Classfp (y, check_error);
if validfpx = isx or validfpy = isx then
result := (others => 'X');
return result;
elsif (validfpx = nan or validfpy = nan) then
return nanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif (validfpx = quiet_nan or validfpy = quiet_nan) then
return qnanfp (fraction_width => fraction_width,
exponent_width => exponent_width);
elsif x = y then -- Return X
return x;
else
fract := UNSIGNED (to_slv (x (-1 downto -fraction_width))); -- Fraction
expon := UNSIGNED (x (exponent_width - 1 downto 0)); -- exponent
sign := x(exponent_width); -- sign bit
if (y > x) then
-- Increase the number given
if validfpx = neg_inf then
-- return most negative number
expon := (others => '1');
expon (0) := '0';
fract := (others => '1');
elsif validfpx = pos_zero or validfpx = neg_zero then
-- return smallest denormal number
sign := '0';
expon := (others => '0');
fract := (others => '0');
fract(0) := '1';
elsif validfpx = pos_normal then
if and (fract) = '1' then -- fraction is all "1".
if and (expon (exponent_width-1 downto 1)) = '1'
and expon (0) = '0' then
-- Exponent is one away from infinity.
assert no_warning
report float_generic_pkg'instance_name
& "FP_NEXTAFTER: NextAfter overflow"
severity warning;
return pos_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
expon := expon + 1;
fract := (others => '0');
end if;
else
fract := fract + 1;
end if;
elsif validfpx = pos_denormal then
if and (fract) = '1' then -- fraction is all "1".
-- return smallest possible normal number
expon := (others => '0');
expon(0) := '1';
fract := (others => '0');
else
fract := fract + 1;
end if;
elsif validfpx = neg_normal then
if or (fract) = '0' then -- fraction is all "0".
if or (expon (exponent_width-1 downto 1)) = '0' and
expon (0) = '1' then -- Smallest exponent
-- return the largest negative denormal number
expon := (others => '0');
fract := (others => '1');
else
expon := expon - 1;
fract := (others => '1');
end if;
else
fract := fract - 1;
end if;
elsif validfpx = neg_denormal then
if or (fract(fract'high downto 1)) = '0'
and fract (0) = '1' then -- Smallest possible fraction
return zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
fract := fract - 1;
end if;
end if;
else
-- Decrease the number
if validfpx = pos_inf then
-- return most positive number
expon := (others => '1');
expon (0) := '0';
fract := (others => '1');
elsif validfpx = pos_zero
or Classfp (x) = neg_zero then
-- return smallest negative denormal number
sign := '1';
expon := (others => '0');
fract := (others => '0');
fract(0) := '1';
elsif validfpx = neg_normal then
if and (fract) = '1' then -- fraction is all "1".
if and (expon (exponent_width-1 downto 1)) = '1'
and expon (0) = '0' then
-- Exponent is one away from infinity.
assert no_warning
report float_generic_pkg'instance_name
& "FP_NEXTAFTER: NextAfter overflow"
severity warning;
return neg_inffp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
expon := expon + 1; -- Fraction overflow
fract := (others => '0');
end if;
else
fract := fract + 1;
end if;
elsif validfpx = neg_denormal then
if and (fract) = '1' then -- fraction is all "1".
-- return smallest possible normal number
expon := (others => '0');
expon(0) := '1';
fract := (others => '0');
else
fract := fract + 1;
end if;
elsif validfpx = pos_normal then
if or (fract) = '0' then -- fraction is all "0".
if or (expon (exponent_width-1 downto 1)) = '0' and
expon (0) = '1' then -- Smallest exponent
-- return the largest positive denormal number
expon := (others => '0');
fract := (others => '1');
else
expon := expon - 1;
fract := (others => '1');
end if;
else
fract := fract - 1;
end if;
elsif validfpx = pos_denormal then
if or (fract(fract'high downto 1)) = '0'
and fract (0) = '1' then -- Smallest possible fraction
return zerofp (fraction_width => fraction_width,
exponent_width => exponent_width);
else
fract := fract - 1;
end if;
end if;
end if;
result (-1 downto -fraction_width) := UNRESOLVED_float(fract);
result (exponent_width -1 downto 0) := UNRESOLVED_float(expon);
result (exponent_width) := sign;
return result;
end if;
end function Nextafter;
-- Returns True if X is unordered with Y.
function Unordered (
x, y : UNRESOLVED_float) -- floating point input
return BOOLEAN
is
variable lfptype, rfptype : valid_fpstate;
begin
lfptype := Classfp (x);
rfptype := Classfp (y);
if (lfptype = nan or lfptype = quiet_nan or
rfptype = nan or rfptype = quiet_nan or
lfptype = isx or rfptype = isx) then
return true;
else
return false;
end if;
end function Unordered;
function Finite (
x : UNRESOLVED_float)
return BOOLEAN
is
variable fp_state : valid_fpstate; -- fp state
begin
fp_state := Classfp (x);
if (fp_state = pos_inf) or (fp_state = neg_inf) then
return true;
else
return false;
end if;
end function Finite;
function Isnan (
x : UNRESOLVED_float)
return BOOLEAN
is
variable fp_state : valid_fpstate; -- fp state
begin
fp_state := Classfp (x);
if (fp_state = nan) or (fp_state = quiet_nan) then
return true;
else
return false;
end if;
end function Isnan;
-- Function to return constants.
function zerofp (
constant exponent_width : NATURAL := float_exponent_width; -- exponent
constant fraction_width : NATURAL := float_fraction_width) -- fraction
return UNRESOLVED_float
is
constant result : UNRESOLVED_float (exponent_width downto -fraction_width) :=
(others => '0'); -- zero
begin
return result;
end function zerofp;
function nanfp (
constant exponent_width : NATURAL := float_exponent_width; -- exponent
constant fraction_width : NATURAL := float_fraction_width) -- fraction
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width) :=
(others => '0'); -- zero
begin
result (exponent_width-1 downto 0) := (others => '1');
-- Exponent all "1"
result (-1) := '1'; -- MSB of Fraction "1"
-- Note: From W. Khan "IEEE Standard 754 for Binary Floating Point"
-- The difference between a signaling NAN and a quiet NAN is that
-- the MSB of the Fraction is a "1" in a Signaling NAN, and is a
-- "0" in a quiet NAN.
return result;
end function nanfp;
function qnanfp (
constant exponent_width : NATURAL := float_exponent_width; -- exponent
constant fraction_width : NATURAL := float_fraction_width) -- fraction
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width) :=
(others => '0'); -- zero
begin
result (exponent_width-1 downto 0) := (others => '1');
-- Exponent all "1"
result (-fraction_width) := '1'; -- LSB of Fraction "1"
-- (Could have been any bit)
return result;
end function qnanfp;
function pos_inffp (
constant exponent_width : NATURAL := float_exponent_width; -- exponent
constant fraction_width : NATURAL := float_fraction_width) -- fraction
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width) :=
(others => '0'); -- zero
begin
result (exponent_width-1 downto 0) := (others => '1'); -- Exponent all "1"
return result;
end function pos_inffp;
function neg_inffp (
constant exponent_width : NATURAL := float_exponent_width; -- exponent
constant fraction_width : NATURAL := float_fraction_width) -- fraction
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width) :=
(others => '0'); -- zero
begin
result (exponent_width downto 0) := (others => '1'); -- top bits all "1"
return result;
end function neg_inffp;
function neg_zerofp (
constant exponent_width : NATURAL := float_exponent_width; -- exponent
constant fraction_width : NATURAL := float_fraction_width) -- fraction
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width) :=
(others => '0'); -- zero
begin
result (exponent_width) := '1';
return result;
end function neg_zerofp;
-- size_res versions
function zerofp (
size_res : UNRESOLVED_float) -- variable is only use for sizing
return UNRESOLVED_float is
begin
return zerofp (
exponent_width => size_res'high,
fraction_width => -size_res'low);
end function zerofp;
function nanfp (
size_res : UNRESOLVED_float) -- variable is only use for sizing
return UNRESOLVED_float is
begin
return nanfp (
exponent_width => size_res'high,
fraction_width => -size_res'low);
end function nanfp;
function qnanfp (
size_res : UNRESOLVED_float) -- variable is only use for sizing
return UNRESOLVED_float is
begin
return qnanfp (
exponent_width => size_res'high,
fraction_width => -size_res'low);
end function qnanfp;
function pos_inffp (
size_res : UNRESOLVED_float) -- variable is only use for sizing
return UNRESOLVED_float is
begin
return pos_inffp (
exponent_width => size_res'high,
fraction_width => -size_res'low);
end function pos_inffp;
function neg_inffp (
size_res : UNRESOLVED_float) -- variable is only use for sizing
return UNRESOLVED_float is
begin
return neg_inffp (
exponent_width => size_res'high,
fraction_width => -size_res'low);
end function neg_inffp;
function neg_zerofp (
size_res : UNRESOLVED_float) -- variable is only use for sizing
return UNRESOLVED_float is
begin
return neg_zerofp (
exponent_width => size_res'high,
fraction_width => -size_res'low);
end function neg_zerofp;
-- Textio functions
-- purpose: writes float into a line (NOTE changed basetype)
type MVL9plus is ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-', error);
type char_indexed_by_MVL9 is array (STD_ULOGIC) of CHARACTER;
type MVL9_indexed_by_char is array (CHARACTER) of STD_ULOGIC;
type MVL9plus_indexed_by_char is array (CHARACTER) of MVL9plus;
constant NBSP : CHARACTER := CHARACTER'val(160); -- space character
constant MVL9_to_char : char_indexed_by_MVL9 := "UX01ZWLH-";
constant char_to_MVL9 : MVL9_indexed_by_char :=
('U' => 'U', 'X' => 'X', '0' => '0', '1' => '1', 'Z' => 'Z',
'W' => 'W', 'L' => 'L', 'H' => 'H', '-' => '-', others => 'U');
constant char_to_MVL9plus : MVL9plus_indexed_by_char :=
('U' => 'U', 'X' => 'X', '0' => '0', '1' => '1', 'Z' => 'Z',
'W' => 'W', 'L' => 'L', 'H' => 'H', '-' => '-', others => error);
-- purpose: Skips white space
procedure skip_whitespace (
L : inout LINE) is
variable c : CHARACTER;
variable left : positive;
begin
while L /= null and L.all'length /= 0 loop
left := L.all'left;
c := L.all(left);
if (c = ' ' or c = NBSP or c = HT) then
read (L, c);
else
exit;
end if;
end loop;
end procedure skip_whitespace;
-- purpose: Checks the punctuation in a line
procedure check_punctuation (
arg : in STRING;
colon : out BOOLEAN; -- There was a colon in the line
dot : out BOOLEAN; -- There was a dot in the line
good : out BOOLEAN; -- True if enough characters found
chars : in INTEGER) is
-- Examples. Legal inputs are "0000000", "0000.000", "0:000:000"
alias xarg : STRING (1 to arg'length) is arg; -- make it downto range
variable icolon, idot : BOOLEAN; -- internal
variable j : INTEGER := 0; -- charters read
begin
good := false;
icolon := false;
idot := false;
for i in 1 to arg'length loop
if xarg(i) = ' ' or xarg(i) = NBSP or xarg(i) = HT or j = chars then
exit;
elsif xarg(i) = ':' then
icolon := true;
elsif xarg(i) = '.' then
idot := true;
elsif xarg (i) /= '_' then
j := j + 1;
end if;
end loop;
if j = chars then
good := true; -- There are enough charactes to read
end if;
colon := icolon;
if idot and icolon then
dot := false;
else
dot := idot;
end if;
end procedure check_punctuation;
-- purpose: Searches a line for a ":" and replaces it with a ".".
procedure fix_colon (
arg : inout STRING;
chars : in integer) is
alias xarg : STRING (1 to arg'length) is arg; -- make it downto range
variable j : INTEGER := 0; -- charters read
begin
for i in 1 to arg'length loop
if xarg(i) = ' ' or xarg(i) = NBSP or xarg(i) = HT or j > chars then
exit;
elsif xarg(i) = ':' then
xarg (i) := '.';
elsif xarg (i) /= '_' then
j := j + 1;
end if;
end loop;
end procedure fix_colon;
procedure WRITE (
L : inout LINE; -- input line
VALUE : in UNRESOLVED_float; -- floating point input
JUSTIFIED : in SIDE := right;
FIELD : in WIDTH := 0) is
variable s : STRING(1 to VALUE'high - VALUE'low +3);
variable sindx : INTEGER;
begin -- function write
s(1) := MVL9_to_char(STD_ULOGIC(VALUE(VALUE'high)));
s(2) := ':';
sindx := 3;
for i in VALUE'high-1 downto 0 loop
s(sindx) := MVL9_to_char(STD_ULOGIC(VALUE(i)));
sindx := sindx + 1;
end loop;
s(sindx) := ':';
sindx := sindx + 1;
for i in -1 downto VALUE'low loop
s(sindx) := MVL9_to_char(STD_ULOGIC(VALUE(i)));
sindx := sindx + 1;
end loop;
WRITE (L, s, JUSTIFIED, FIELD);
end procedure WRITE;
procedure READ (L : inout LINE; VALUE : out UNRESOLVED_float) is
-- Possible data: 0:0000:0000000
-- 000000000000
variable c : CHARACTER;
variable mv : UNRESOLVED_float (VALUE'range);
variable readOk : BOOLEAN;
variable lastu : BOOLEAN := false; -- last character was an "_"
variable i : INTEGER; -- index variable
begin -- READ
VALUE := (VALUE'range => 'U'); -- initialize to a "U"
skip_whitespace (L);
READ (L, c, readOk);
if VALUE'length > 0 then
i := VALUE'high;
readloop : loop
if readOk = false then -- Bail out if there was a bad read
report float_generic_pkg'instance_name
& "READ(float): "
& "Error end of file encountered."
severity error;
return;
elsif c = ' ' or c = CR or c = HT then -- reading done.
if (i /= VALUE'low) then
report float_generic_pkg'instance_name
& "READ(float): "
& "Warning: Value truncated."
severity warning;
return;
end if;
elsif c = '_' then
if i = VALUE'high then -- Begins with an "_"
report float_generic_pkg'instance_name
& "READ(float): "
& "String begins with an ""_""" severity error;
return;
elsif lastu then -- "__" detected
report float_generic_pkg'instance_name
& "READ(float): "
& "Two underscores detected in input string ""__"""
severity error;
return;
else
lastu := true;
end if;
elsif c = ':' or c = '.' then -- separator, ignore
if not (i = -1 or i = VALUE'high-1) then
report float_generic_pkg'instance_name
& "READ(float): "
& "Warning: Separator point does not match number format: '"
& c & "' encountered at location " & INTEGER'image(i) & "."
severity warning;
end if;
lastu := false;
elsif (char_to_MVL9plus(c) = error) then
report float_generic_pkg'instance_name
& "READ(float): "
& "Error: Character '" & c & "' read, expected STD_ULOGIC literal."
severity error;
return;
else
mv (i) := char_to_MVL9(c);
i := i - 1;
if i < VALUE'low then
VALUE := mv;
return;
end if;
lastu := false;
end if;
READ (L, c, readOk);
end loop readloop;
end if;
end procedure READ;
procedure READ (L : inout LINE; VALUE : out UNRESOLVED_float; GOOD : out BOOLEAN) is
-- Possible data: 0:0000:0000000
-- 000000000000
variable c : CHARACTER;
variable mv : UNRESOLVED_float (VALUE'range);
variable lastu : BOOLEAN := false; -- last character was an "_"
variable i : INTEGER; -- index variable
variable readOk : BOOLEAN;
begin -- READ
VALUE := (VALUE'range => 'U'); -- initialize to a "U"
skip_whitespace (L);
READ (L, c, readOk);
if VALUE'length > 0 then
i := VALUE'high;
GOOD := false;
readloop : loop
if readOk = false then -- Bail out if there was a bad read
return;
elsif c = ' ' or c = CR or c = HT then -- reading done
return;
elsif c = '_' then
if i = 0 then -- Begins with an "_"
return;
elsif lastu then -- "__" detected
return;
else
lastu := true;
end if;
elsif c = ':' or c = '.' then -- separator, ignore
-- good := (i = -1 or i = value'high-1);
lastu := false;
elsif (char_to_MVL9plus(c) = error) then
return;
else
mv (i) := char_to_MVL9(c);
i := i - 1;
if i < VALUE'low then
GOOD := true;
VALUE := mv;
return;
end if;
lastu := false;
end if;
READ (L, c, readOk);
end loop readloop;
else
GOOD := true; -- read into a null array
end if;
end procedure READ;
procedure OWRITE (
L : inout LINE; -- access type (pointer)
VALUE : in UNRESOLVED_float; -- value to write
JUSTIFIED : in SIDE := right; -- which side to justify text
FIELD : in WIDTH := 0) is -- width of field
begin
WRITE (L => L,
VALUE => to_ostring(VALUE),
JUSTIFIED => JUSTIFIED,
FIELD => FIELD);
end procedure OWRITE;
procedure OREAD (L : inout LINE; VALUE : out UNRESOLVED_float) is
constant ne : INTEGER := ((VALUE'length+2)/3) * 3; -- pad
variable slv : STD_LOGIC_VECTOR (ne-1 downto 0); -- slv
variable slvu : ufixed (VALUE'range); -- Unsigned fixed point
variable c : CHARACTER;
variable ok : BOOLEAN;
variable nybble : STD_LOGIC_VECTOR (2 downto 0); -- 3 bits
variable colon, dot : BOOLEAN;
begin
VALUE := (VALUE'range => 'U'); -- initialize to a "U"
skip_whitespace (L);
if VALUE'length > 0 then
check_punctuation (arg => L.all,
colon => colon,
dot => dot,
good => ok,
chars => ne/3);
if not ok then
report float_generic_pkg'instance_name & "OREAD: "
& "short string encounted: " & L.all
& " needs to have " & integer'image (ne/3)
& " valid octal characters."
severity error;
return;
elsif dot then
OREAD (L, slvu, ok); -- read it like a UFIXED number
if not ok then
report float_generic_pkg'instance_name & "OREAD: "
& "error encounted reading STRING " & L.all
severity error;
return;
else
VALUE := UNRESOLVED_float (slvu);
end if;
elsif colon then
OREAD (L, nybble, ok); -- read the sign bit
if not ok then
report float_generic_pkg'instance_name & "OREAD: "
& "End of string encountered"
severity error;
return;
elsif nybble (2 downto 1) /= "00" then
report float_generic_pkg'instance_name & "OREAD: "
& "Illegal sign bit STRING encounted "
severity error;
return;
end if;
read (L, c, ok); -- read the colon
fix_colon (L.all, ne/3); -- replaces the colon with a ".".
OREAD (L, slvu (slvu'high-1 downto slvu'low), ok); -- read it like a UFIXED number
if not ok then
report float_generic_pkg'instance_name & "OREAD: "
& "error encounted reading STRING " & L.all
severity error;
return;
else
slvu (slvu'high) := nybble (0);
VALUE := UNRESOLVED_float (slvu);
end if;
else
OREAD (L, slv, ok);
if not ok then
report float_generic_pkg'instance_name & "OREAD: "
& "Error encounted during read"
severity error;
return;
end if;
if (or (slv(ne-1 downto VALUE'high-VALUE'low+1)) = '1') then
report float_generic_pkg'instance_name & "OREAD: "
& "Vector truncated."
severity error;
return;
end if;
VALUE := to_float (slv(VALUE'high-VALUE'low downto 0),
VALUE'high, -VALUE'low);
end if;
end if;
end procedure OREAD;
procedure OREAD(L : inout LINE; VALUE : out UNRESOLVED_float; GOOD : out BOOLEAN) is
constant ne : INTEGER := ((VALUE'length+2)/3) * 3; -- pad
variable slv : STD_LOGIC_VECTOR (ne-1 downto 0); -- slv
variable slvu : ufixed (VALUE'range); -- Unsigned fixed point
variable c : CHARACTER;
variable ok : BOOLEAN;
variable nybble : STD_LOGIC_VECTOR (2 downto 0); -- 3 bits
variable colon, dot : BOOLEAN;
begin
VALUE := (VALUE'range => 'U'); -- initialize to a "U"
GOOD := false;
skip_whitespace (L);
if VALUE'length > 0 then
check_punctuation (arg => L.all,
colon => colon,
dot => dot,
good => ok,
chars => ne/3);
if not ok then
return;
elsif dot then
OREAD (L, slvu, ok); -- read it like a UFIXED number
if not ok then
return;
else
VALUE := UNRESOLVED_float (slvu);
end if;
elsif colon then
OREAD (L, nybble, ok); -- read the sign bit
if not ok then
return;
elsif nybble (2 downto 1) /= "00" then
return;
end if;
read (L, c, ok); -- read the colon
fix_colon (L.all, ne/3); -- replaces the colon with a ".".
OREAD (L, slvu (slvu'high-1 downto slvu'low), ok); -- read it like a UFIXED number
if not ok then
return;
else
slvu (slvu'high) := nybble (0);
VALUE := UNRESOLVED_float (slvu);
end if;
else
OREAD (L, slv, ok);
if not ok then
return;
end if;
if (or (slv(ne-1 downto VALUE'high-VALUE'low+1)) = '1') then
return;
end if;
VALUE := to_float (slv(VALUE'high-VALUE'low downto 0),
VALUE'high, -VALUE'low);
end if;
GOOD := true;
end if;
end procedure OREAD;
procedure HWRITE (
L : inout LINE; -- access type (pointer)
VALUE : in UNRESOLVED_float; -- value to write
JUSTIFIED : in SIDE := right; -- which side to justify text
FIELD : in WIDTH := 0) is -- width of field
begin
WRITE (L => L,
VALUE => to_hstring(VALUE),
JUSTIFIED => JUSTIFIED,
FIELD => FIELD);
end procedure HWRITE;
procedure HREAD (L : inout LINE; VALUE : out UNRESOLVED_float) is
constant ne : INTEGER := ((VALUE'length+3)/4) * 4; -- pad
variable slv : STD_LOGIC_VECTOR (ne-1 downto 0); -- slv
variable slvu : ufixed (VALUE'range); -- Unsigned fixed point
variable c : CHARACTER;
variable ok : BOOLEAN;
variable nybble : STD_LOGIC_VECTOR (3 downto 0); -- 4 bits
variable colon, dot : BOOLEAN;
begin
VALUE := (VALUE'range => 'U'); -- initialize to a "U"
skip_whitespace (L);
if VALUE'length > 0 then
check_punctuation (arg => L.all,
colon => colon,
dot => dot,
good => ok,
chars => ne/4);
if not ok then
report float_generic_pkg'instance_name & "HREAD: "
& "short string encounted: " & L.all
& " needs to have " & integer'image (ne/4)
& " valid hex characters."
severity error;
return;
elsif dot then
HREAD (L, slvu, ok); -- read it like a UFIXED number
if not ok then
report float_generic_pkg'instance_name & "HREAD: "
& "error encounted reading STRING " & L.all
severity error;
return;
else
VALUE := UNRESOLVED_float (slvu);
end if;
elsif colon then
HREAD (L, nybble, ok); -- read the sign bit
if not ok then
report float_generic_pkg'instance_name & "HREAD: "
& "End of string encountered"
severity error;
return;
elsif nybble (3 downto 1) /= "000" then
report float_generic_pkg'instance_name & "HREAD: "
& "Illegal sign bit STRING encounted "
severity error;
return;
end if;
read (L, c, ok); -- read the colon
fix_colon (L.all, ne/4); -- replaces the colon with a ".".
HREAD (L, slvu (slvu'high-1 downto slvu'low), ok); -- read it like a UFIXED number
if not ok then
report float_generic_pkg'instance_name & "HREAD: "
& "error encounted reading STRING " & L.all
severity error;
return;
else
slvu (slvu'high) := nybble (0);
VALUE := UNRESOLVED_float (slvu);
end if;
else
HREAD (L, slv, ok);
if not ok then
report float_generic_pkg'instance_name & "HREAD: "
& "Error encounted during read"
severity error;
return;
end if;
if (or (slv(ne-1 downto VALUE'high-VALUE'low+1)) = '1') then
report float_generic_pkg'instance_name & "HREAD: "
& "Vector truncated."
severity error;
return;
end if;
VALUE := to_float (slv(VALUE'high-VALUE'low downto 0),
VALUE'high, -VALUE'low);
end if;
end if;
end procedure HREAD;
procedure HREAD (L : inout LINE; VALUE : out UNRESOLVED_float; GOOD : out BOOLEAN) is
constant ne : INTEGER := ((VALUE'length+3)/4) * 4; -- pad
variable slv : STD_LOGIC_VECTOR (ne-1 downto 0); -- slv
variable slvu : ufixed (VALUE'range); -- Unsigned fixed point
variable c : CHARACTER;
variable ok : BOOLEAN;
variable nybble : STD_LOGIC_VECTOR (3 downto 0); -- 4 bits
variable colon, dot : BOOLEAN;
begin
VALUE := (VALUE'range => 'U'); -- initialize to a "U"
GOOD := false;
skip_whitespace (L);
if VALUE'length > 0 then
check_punctuation (arg => L.all,
colon => colon,
dot => dot,
good => ok,
chars => ne/4);
if not ok then
return;
elsif dot then
HREAD (L, slvu, ok); -- read it like a UFIXED number
if not ok then
return;
else
VALUE := UNRESOLVED_float (slvu);
end if;
elsif colon then
HREAD (L, nybble, ok); -- read the sign bit
if not ok then
return;
elsif nybble (3 downto 1) /= "000" then
return;
end if;
read (L, c, ok); -- read the colon
fix_colon (L.all, ne/4); -- replaces the colon with a ".".
HREAD (L, slvu (slvu'high-1 downto slvu'low), ok); -- read it like a UFIXED number
if not ok then
return;
else
slvu (slvu'high) := nybble (0);
VALUE := UNRESOLVED_float (slvu);
end if;
else
HREAD (L, slv, ok);
if not ok then
return;
end if;
if (or (slv(ne-1 downto VALUE'high-VALUE'low+1)) = '1') then
return;
end if;
VALUE := to_float (slv(VALUE'high-VALUE'low downto 0),
VALUE'high, -VALUE'low);
end if;
GOOD := true;
end if;
end procedure HREAD;
function to_string (value : UNRESOLVED_float) return STRING is
variable s : STRING(1 to value'high - value'low +3);
variable sindx : INTEGER;
begin -- function write
s(1) := MVL9_to_char(STD_ULOGIC(value(value'high)));
s(2) := ':';
sindx := 3;
for i in value'high-1 downto 0 loop
s(sindx) := MVL9_to_char(STD_ULOGIC(value(i)));
sindx := sindx + 1;
end loop;
s(sindx) := ':';
sindx := sindx + 1;
for i in -1 downto value'low loop
s(sindx) := MVL9_to_char(STD_ULOGIC(value(i)));
sindx := sindx + 1;
end loop;
return s;
end function to_string;
function to_hstring (value : UNRESOLVED_float) return STRING is
variable slv : STD_LOGIC_VECTOR (value'length-1 downto 0);
begin
floop : for i in slv'range loop
slv(i) := to_X01Z (value(i + value'low));
end loop floop;
return to_hstring (slv);
end function to_hstring;
function to_ostring (value : UNRESOLVED_float) return STRING is
variable slv : STD_LOGIC_VECTOR (value'length-1 downto 0);
begin
floop : for i in slv'range loop
slv(i) := to_X01Z (value(i + value'low));
end loop floop;
return to_ostring (slv);
end function to_ostring;
function from_string (
bstring : STRING; -- binary string
constant exponent_width : NATURAL := float_exponent_width;
constant fraction_width : NATURAL := float_fraction_width)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
variable L : LINE;
variable good : BOOLEAN;
begin
L := new STRING'(bstring);
READ (L, result, good);
deallocate (L);
assert (good)
report float_generic_pkg'instance_name
& "from_string: Bad string " & bstring
severity error;
return result;
end function from_string;
function from_ostring (
ostring : STRING; -- Octal string
constant exponent_width : NATURAL := float_exponent_width;
constant fraction_width : NATURAL := float_fraction_width)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
variable L : LINE;
variable good : BOOLEAN;
begin
L := new STRING'(ostring);
OREAD (L, result, good);
deallocate (L);
assert (good)
report float_generic_pkg'instance_name
& "from_ostring: Bad string " & ostring
severity error;
return result;
end function from_ostring;
function from_hstring (
hstring : STRING; -- hex string
constant exponent_width : NATURAL := float_exponent_width;
constant fraction_width : NATURAL := float_fraction_width)
return UNRESOLVED_float
is
variable result : UNRESOLVED_float (exponent_width downto -fraction_width);
variable L : LINE;
variable good : BOOLEAN;
begin
L := new STRING'(hstring);
HREAD (L, result, good);
deallocate (L);
assert (good)
report float_generic_pkg'instance_name
& "from_hstring: Bad string " & hstring
severity error;
return result;
end function from_hstring;
function from_string (
bstring : STRING; -- binary string
size_res : UNRESOLVED_float) -- used for sizing only
return UNRESOLVED_float is
begin
return from_string (bstring => bstring,
exponent_width => size_res'high,
fraction_width => -size_res'low);
end function from_string;
function from_ostring (
ostring : STRING; -- Octal string
size_res : UNRESOLVED_float) -- used for sizing only
return UNRESOLVED_float is
begin
return from_ostring (ostring => ostring,
exponent_width => size_res'high,
fraction_width => -size_res'low);
end function from_ostring;
function from_hstring (
hstring : STRING; -- hex string
size_res : UNRESOLVED_float) -- used for sizing only
return UNRESOLVED_float is
begin
return from_hstring (hstring => hstring,
exponent_width => size_res'high,
fraction_width => -size_res'low);
end function from_hstring;
end package body float_generic_pkg;
|