1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
-- -----------------------------------------------------------------
--
-- Copyright 2019 IEEE P1076 WG Authors
--
-- See the LICENSE file distributed with this work for copyright and
-- licensing information and the AUTHORS file.
--
-- This file to you under the Apache License, Version 2.0 (the "License").
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
-- implied. See the License for the specific language governing
-- permissions and limitations under the License.
--
-- Title : Standard VHDL Mathematical Packages
-- : (MATH_REAL package declaration)
-- :
-- Library : This package shall be compiled into a library
-- : symbolically named IEEE.
-- :
-- Developers: IEEE DASC VHDL Mathematical Packages Working Group
-- :
-- Purpose : This package defines a standard for designers to use in
-- : describing VHDL models that make use of common REAL
-- : constants and common REAL elementary mathematical
-- : functions.
-- :
-- Limitation: The values generated by the functions in this package
-- : may vary from platform to platform, and the precision
-- : of results is only guaranteed to be the minimum required
-- : by IEEE Std 1076-2008.
-- :
-- Note : This package may be modified to include additional data
-- : required by tools, but it must in no way change the
-- : external interfaces or simulation behavior of the
-- : description. It is permissible to add comments and/or
-- : attributes to the package declarations, but not to change
-- : or delete any original lines of the package declaration.
-- : The package body may be changed only in accordance with
-- : the terms of Clause 16 of this standard.
-- :
-- --------------------------------------------------------------------
-- $Revision: 1220 $
-- $Date: 2008-04-10 17:16:09 +0930 (Thu, 10 Apr 2008) $
-- --------------------------------------------------------------------
package MATH_REAL is
constant CopyRightNotice : STRING
:= "Copyright IEEE P1076 WG. Licensed Apache 2.0";
--
-- Constant Definitions
--
constant MATH_E : REAL := 2.71828_18284_59045_23536;
-- Value of e
constant MATH_1_OVER_E : REAL := 0.36787_94411_71442_32160;
-- Value of 1/e
constant MATH_PI : REAL := 3.14159_26535_89793_23846;
-- Value of pi
constant MATH_2_PI : REAL := 6.28318_53071_79586_47693;
-- Value of 2*pi
constant MATH_1_OVER_PI : REAL := 0.31830_98861_83790_67154;
-- Value of 1/pi
constant MATH_PI_OVER_2 : REAL := 1.57079_63267_94896_61923;
-- Value of pi/2
constant MATH_PI_OVER_3 : REAL := 1.04719_75511_96597_74615;
-- Value of pi/3
constant MATH_PI_OVER_4 : REAL := 0.78539_81633_97448_30962;
-- Value of pi/4
constant MATH_3_PI_OVER_2 : REAL := 4.71238_89803_84689_85769;
-- Value 3*pi/2
constant MATH_LOG_OF_2 : REAL := 0.69314_71805_59945_30942;
-- Natural log of 2
constant MATH_LOG_OF_10 : REAL := 2.30258_50929_94045_68402;
-- Natural log of 10
constant MATH_LOG2_OF_E : REAL := 1.44269_50408_88963_4074;
-- Log base 2 of e
constant MATH_LOG10_OF_E : REAL := 0.43429_44819_03251_82765;
-- Log base 10 of e
constant MATH_SQRT_2 : REAL := 1.41421_35623_73095_04880;
-- square root of 2
constant MATH_1_OVER_SQRT_2 : REAL := 0.70710_67811_86547_52440;
-- square root of 1/2
constant MATH_SQRT_PI : REAL := 1.77245_38509_05516_02730;
-- square root of pi
constant MATH_DEG_TO_RAD : REAL := 0.01745_32925_19943_29577;
-- Conversion factor from degree to radian
constant MATH_RAD_TO_DEG : REAL := 57.29577_95130_82320_87680;
-- Conversion factor from radian to degree
--
-- Function Declarations
--
function SIGN (X : in REAL) return REAL;
-- Purpose:
-- Returns 1.0 if X > 0.0; 0.0 if X = 0.0; -1.0 if X < 0.0
-- Special values:
-- None
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- ABS(SIGN(X)) <= 1.0
-- Notes:
-- None
function CEIL (X : in REAL) return REAL;
-- Purpose:
-- Returns smallest INTEGER value (as REAL) not less than X
-- Special values:
-- None
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- CEIL(X) is mathematically unbounded
-- Notes:
-- a) Implementations have to support at least the domain
-- ABS(X) < REAL(INTEGER'HIGH)
function FLOOR (X : in REAL) return REAL;
-- Purpose:
-- Returns largest INTEGER value (as REAL) not greater than X
-- Special values:
-- FLOOR(0.0) = 0.0
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- FLOOR(X) is mathematically unbounded
-- Notes:
-- a) Implementations have to support at least the domain
-- ABS(X) < REAL(INTEGER'HIGH)
function ROUND (X : in REAL) return REAL;
-- Purpose:
-- Rounds X to the nearest integer value (as real). If X is
-- halfway between two integers, rounding is away from 0.0
-- Special values:
-- ROUND(0.0) = 0.0
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- ROUND(X) is mathematically unbounded
-- Notes:
-- a) Implementations have to support at least the domain
-- ABS(X) < REAL(INTEGER'HIGH)
function TRUNC (X : in REAL) return REAL;
-- Purpose:
-- Truncates X towards 0.0 and returns truncated value
-- Special values:
-- TRUNC(0.0) = 0.0
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- TRUNC(X) is mathematically unbounded
-- Notes:
-- a) Implementations have to support at least the domain
-- ABS(X) < REAL(INTEGER'HIGH)
function "MOD" (X, Y : in REAL) return REAL;
-- Purpose:
-- Returns floating point modulus of X/Y, with the same sign as
-- Y, and absolute value less than the absolute value of Y, and
-- for some INTEGER value N the result satisfies the relation
-- X = Y*N + MOD(X,Y)
-- Special values:
-- None
-- Domain:
-- X in REAL; Y in REAL and Y /= 0.0
-- Error conditions:
-- Error if Y = 0.0
-- Range:
-- ABS(MOD(X,Y)) < ABS(Y)
-- Notes:
-- None
function REALMAX (X, Y : in REAL) return REAL;
-- Purpose:
-- Returns the algebraically larger of X and Y
-- Special values:
-- REALMAX(X,Y) = X when X = Y
-- Domain:
-- X in REAL; Y in REAL
-- Error conditions:
-- None
-- Range:
-- REALMAX(X,Y) is mathematically unbounded
-- Notes:
-- None
function REALMIN (X, Y : in REAL) return REAL;
-- Purpose:
-- Returns the algebraically smaller of X and Y
-- Special values:
-- REALMIN(X,Y) = X when X = Y
-- Domain:
-- X in REAL; Y in REAL
-- Error conditions:
-- None
-- Range:
-- REALMIN(X,Y) is mathematically unbounded
-- Notes:
-- None
procedure UNIFORM(variable SEED1, SEED2 : inout POSITIVE; variable X : out REAL);
-- Purpose:
-- Returns, in X, a pseudo-random number with uniform
-- distribution in the open interval (0.0, 1.0).
-- Special values:
-- None
-- Domain:
-- 1 <= SEED1 <= 2147483562; 1 <= SEED2 <= 2147483398
-- Error conditions:
-- Error if SEED1 or SEED2 outside of valid domain
-- Range:
-- 0.0 < X < 1.0
-- Notes:
-- a) The semantics for this function are described by the
-- algorithm published by Pierre L'Ecuyer in "Communications
-- of the ACM," vol. 31, no. 6, June 1988, pp. 742-774.
-- The algorithm is based on the combination of two
-- multiplicative linear congruential generators for 32-bit
-- platforms.
--
-- b) Before the first call to UNIFORM, the seed values
-- (SEED1, SEED2) have to be initialized to values in the range
-- [1, 2147483562] and [1, 2147483398] respectively. The
-- seed values are modified after each call to UNIFORM.
--
-- c) This random number generator is portable for 32-bit
-- computers, and it has a period of ~2.30584*(10**18) for each
-- set of seed values.
--
-- d) For information on spectral tests for the algorithm, refer
-- to the L'Ecuyer article.
function SQRT (X : in REAL) return REAL;
-- Purpose:
-- Returns square root of X
-- Special values:
-- SQRT(0.0) = 0.0
-- SQRT(1.0) = 1.0
-- Domain:
-- X >= 0.0
-- Error conditions:
-- Error if X < 0.0
-- Range:
-- SQRT(X) >= 0.0
-- Notes:
-- a) The upper bound of the reachable range of SQRT is
-- approximately given by:
-- SQRT(X) <= SQRT(REAL'HIGH)
function CBRT (X : in REAL) return REAL;
-- Purpose:
-- Returns cube root of X
-- Special values:
-- CBRT(0.0) = 0.0
-- CBRT(1.0) = 1.0
-- CBRT(-1.0) = -1.0
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- CBRT(X) is mathematically unbounded
-- Notes:
-- a) The reachable range of CBRT is approximately given by:
-- ABS(CBRT(X)) <= CBRT(REAL'HIGH)
function "**" (X : in INTEGER; Y : in REAL) return REAL;
-- Purpose:
-- Returns Y power of X ==> X**Y
-- Special values:
-- X**0.0 = 1.0; X /= 0
-- 0**Y = 0.0; Y > 0.0
-- X**1.0 = REAL(X); X >= 0
-- 1**Y = 1.0
-- Domain:
-- X > 0
-- X = 0 for Y > 0.0
-- X < 0 for Y = 0.0
-- Error conditions:
-- Error if X < 0 and Y /= 0.0
-- Error if X = 0 and Y <= 0.0
-- Range:
-- X**Y >= 0.0
-- Notes:
-- a) The upper bound of the reachable range for "**" is
-- approximately given by:
-- X**Y <= REAL'HIGH
function "**" (X : in REAL; Y : in REAL) return REAL;
-- Purpose:
-- Returns Y power of X ==> X**Y
-- Special values:
-- X**0.0 = 1.0; X /= 0.0
-- 0.0**Y = 0.0; Y > 0.0
-- X**1.0 = X; X >= 0.0
-- 1.0**Y = 1.0
-- Domain:
-- X > 0.0
-- X = 0.0 for Y > 0.0
-- X < 0.0 for Y = 0.0
-- Error conditions:
-- Error if X < 0.0 and Y /= 0.0
-- Error if X = 0.0 and Y <= 0.0
-- Range:
-- X**Y >= 0.0
-- Notes:
-- a) The upper bound of the reachable range for "**" is
-- approximately given by:
-- X**Y <= REAL'HIGH
function EXP (X : in REAL) return REAL;
-- Purpose:
-- Returns e**X; where e = MATH_E
-- Special values:
-- EXP(0.0) = 1.0
-- EXP(1.0) = MATH_E
-- EXP(-1.0) = MATH_1_OVER_E
-- EXP(X) = 0.0 for X <= -LOG(REAL'HIGH)
-- Domain:
-- X in REAL such that EXP(X) <= REAL'HIGH
-- Error conditions:
-- Error if X > LOG(REAL'HIGH)
-- Range:
-- EXP(X) >= 0.0
-- Notes:
-- a) The usable domain of EXP is approximately given by:
-- X <= LOG(REAL'HIGH)
function LOG (X : in REAL) return REAL;
-- Purpose:
-- Returns natural logarithm of X
-- Special values:
-- LOG(1.0) = 0.0
-- LOG(MATH_E) = 1.0
-- Domain:
-- X > 0.0
-- Error conditions:
-- Error if X <= 0.0
-- Range:
-- LOG(X) is mathematically unbounded
-- Notes:
-- a) The reachable range of LOG is approximately given by:
-- LOG(0+) <= LOG(X) <= LOG(REAL'HIGH)
function LOG2 (X : in REAL) return REAL;
-- Purpose:
-- Returns logarithm base 2 of X
-- Special values:
-- LOG2(1.0) = 0.0
-- LOG2(2.0) = 1.0
-- Domain:
-- X > 0.0
-- Error conditions:
-- Error if X <= 0.0
-- Range:
-- LOG2(X) is mathematically unbounded
-- Notes:
-- a) The reachable range of LOG2 is approximately given by:
-- LOG2(0+) <= LOG2(X) <= LOG2(REAL'HIGH)
function LOG10 (X : in REAL) return REAL;
-- Purpose:
-- Returns logarithm base 10 of X
-- Special values:
-- LOG10(1.0) = 0.0
-- LOG10(10.0) = 1.0
-- Domain:
-- X > 0.0
-- Error conditions:
-- Error if X <= 0.0
-- Range:
-- LOG10(X) is mathematically unbounded
-- Notes:
-- a) The reachable range of LOG10 is approximately given by:
-- LOG10(0+) <= LOG10(X) <= LOG10(REAL'HIGH)
function LOG (X : in REAL; BASE : in REAL) return REAL;
-- Purpose:
-- Returns logarithm base BASE of X
-- Special values:
-- LOG(1.0, BASE) = 0.0
-- LOG(BASE, BASE) = 1.0
-- Domain:
-- X > 0.0
-- BASE > 0.0
-- BASE /= 1.0
-- Error conditions:
-- Error if X <= 0.0
-- Error if BASE <= 0.0
-- Error if BASE = 1.0
-- Range:
-- LOG(X, BASE) is mathematically unbounded
-- Notes:
-- a) When BASE > 1.0, the reachable range of LOG is
-- approximately given by:
-- LOG(0+, BASE) <= LOG(X, BASE) <= LOG(REAL'HIGH, BASE)
-- b) When 0.0 < BASE < 1.0, the reachable range of LOG is
-- approximately given by:
-- LOG(REAL'HIGH, BASE) <= LOG(X, BASE) <= LOG(0+, BASE)
function SIN (X : in REAL) return REAL;
-- Purpose:
-- Returns sine of X; X in radians
-- Special values:
-- SIN(X) = 0.0 for X = k*MATH_PI, where k is an INTEGER
-- SIN(X) = 1.0 for X = (4*k+1)*MATH_PI_OVER_2, where k is an
-- INTEGER
-- SIN(X) = -1.0 for X = (4*k+3)*MATH_PI_OVER_2, where k is an
-- INTEGER
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- ABS(SIN(X)) <= 1.0
-- Notes:
-- a) For larger values of ABS(X), degraded accuracy is allowed.
function COS (X : in REAL) return REAL;
-- Purpose:
-- Returns cosine of X; X in radians
-- Special values:
-- COS(X) = 0.0 for X = (2*k+1)*MATH_PI_OVER_2, where k is an
-- INTEGER
-- COS(X) = 1.0 for X = (2*k)*MATH_PI, where k is an INTEGER
-- COS(X) = -1.0 for X = (2*k+1)*MATH_PI, where k is an INTEGER
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- ABS(COS(X)) <= 1.0
-- Notes:
-- a) For larger values of ABS(X), degraded accuracy is allowed.
function TAN (X : in REAL) return REAL;
-- Purpose:
-- Returns tangent of X; X in radians
-- Special values:
-- TAN(X) = 0.0 for X = k*MATH_PI, where k is an INTEGER
-- Domain:
-- X in REAL and
-- X /= (2*k+1)*MATH_PI_OVER_2, where k is an INTEGER
-- Error conditions:
-- Error if X = ((2*k+1) * MATH_PI_OVER_2), where k is an
-- INTEGER
-- Range:
-- TAN(X) is mathematically unbounded
-- Notes:
-- a) For larger values of ABS(X), degraded accuracy is allowed.
function ARCSIN (X : in REAL) return REAL;
-- Purpose:
-- Returns inverse sine of X
-- Special values:
-- ARCSIN(0.0) = 0.0
-- ARCSIN(1.0) = MATH_PI_OVER_2
-- ARCSIN(-1.0) = -MATH_PI_OVER_2
-- Domain:
-- ABS(X) <= 1.0
-- Error conditions:
-- Error if ABS(X) > 1.0
-- Range:
-- ABS(ARCSIN(X) <= MATH_PI_OVER_2
-- Notes:
-- None
function ARCCOS (X : in REAL) return REAL;
-- Purpose:
-- Returns inverse cosine of X
-- Special values:
-- ARCCOS(1.0) = 0.0
-- ARCCOS(0.0) = MATH_PI_OVER_2
-- ARCCOS(-1.0) = MATH_PI
-- Domain:
-- ABS(X) <= 1.0
-- Error conditions:
-- Error if ABS(X) > 1.0
-- Range:
-- 0.0 <= ARCCOS(X) <= MATH_PI
-- Notes:
-- None
function ARCTAN (Y : in REAL) return REAL;
-- Purpose:
-- Returns the value of the angle in radians of the point
-- (1.0, Y), which is in rectangular coordinates
-- Special values:
-- ARCTAN(0.0) = 0.0
-- Domain:
-- Y in REAL
-- Error conditions:
-- None
-- Range:
-- ABS(ARCTAN(Y)) <= MATH_PI_OVER_2
-- Notes:
-- None
function ARCTAN (Y : in REAL; X : in REAL) return REAL;
-- Purpose:
-- Returns the principal value of the angle in radians of
-- the point (X, Y), which is in rectangular coordinates
-- Special values:
-- ARCTAN(0.0, X) = 0.0 if X > 0.0
-- ARCTAN(0.0, X) = MATH_PI if X < 0.0
-- ARCTAN(Y, 0.0) = MATH_PI_OVER_2 if Y > 0.0
-- ARCTAN(Y, 0.0) = -MATH_PI_OVER_2 if Y < 0.0
-- Domain:
-- Y in REAL
-- X in REAL, X /= 0.0 when Y = 0.0
-- Error conditions:
-- Error if X = 0.0 and Y = 0.0
-- Range:
-- -MATH_PI < ARCTAN(Y,X) <= MATH_PI
-- Notes:
-- None
function SINH (X : in REAL) return REAL;
-- Purpose:
-- Returns hyperbolic sine of X
-- Special values:
-- SINH(0.0) = 0.0
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- SINH(X) is mathematically unbounded
-- Notes:
-- a) The usable domain of SINH is approximately given by:
-- ABS(X) <= LOG(REAL'HIGH)
function COSH (X : in REAL) return REAL;
-- Purpose:
-- Returns hyperbolic cosine of X
-- Special values:
-- COSH(0.0) = 1.0
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- COSH(X) >= 1.0
-- Notes:
-- a) The usable domain of COSH is approximately given by:
-- ABS(X) <= LOG(REAL'HIGH)
function TANH (X : in REAL) return REAL;
-- Purpose:
-- Returns hyperbolic tangent of X
-- Special values:
-- TANH(0.0) = 0.0
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- ABS(TANH(X)) <= 1.0
-- Notes:
-- None
function ARCSINH (X : in REAL) return REAL;
-- Purpose:
-- Returns inverse hyperbolic sine of X
-- Special values:
-- ARCSINH(0.0) = 0.0
-- Domain:
-- X in REAL
-- Error conditions:
-- None
-- Range:
-- ARCSINH(X) is mathematically unbounded
-- Notes:
-- a) The reachable range of ARCSINH is approximately given by:
-- ABS(ARCSINH(X)) <= LOG(REAL'HIGH)
function ARCCOSH (X : in REAL) return REAL;
-- Purpose:
-- Returns inverse hyperbolic cosine of X
-- Special values:
-- ARCCOSH(1.0) = 0.0
-- Domain:
-- X >= 1.0
-- Error conditions:
-- Error if X < 1.0
-- Range:
-- ARCCOSH(X) >= 0.0
-- Notes:
-- a) The upper bound of the reachable range of ARCCOSH is
-- approximately given by: ARCCOSH(X) <= LOG(REAL'HIGH)
function ARCTANH (X : in REAL) return REAL;
-- Purpose:
-- Returns inverse hyperbolic tangent of X
-- Special values:
-- ARCTANH(0.0) = 0.0
-- Domain:
-- ABS(X) < 1.0
-- Error conditions:
-- Error if ABS(X) >= 1.0
-- Range:
-- ARCTANH(X) is mathematically unbounded
-- Notes:
-- a) The reachable range of ARCTANH is approximately given by:
-- ABS(ARCTANH(X)) < LOG(REAL'HIGH)
end package MATH_REAL;
|