1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
-- ======================================================================
-- AES encryption/decryption
-- Copyright (C) 2019 Torsten Meissner
-------------------------------------------------------------------------
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-- ======================================================================
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.aes_pkg.all;
entity aes_enc is
generic (
design_type : string := "ITER"
);
port (
reset_i : in std_logic; -- async reset
clk_i : in std_logic; -- clock
key_i : in std_logic_vector(0 to 127); -- key input
data_i : in std_logic_vector(0 to 127); -- data input
valid_i : in std_logic; -- input key/data valid flag
accept_o : out std_logic;
data_o : out std_logic_vector(0 to 127); -- data output
valid_o : out std_logic; -- output data valid flag
accept_i : in std_logic
);
end entity aes_enc;
architecture rtl of aes_enc is
begin
IterG : if design_type = "ITER" generate
signal s_round : t_enc_rounds;
begin
CryptP : process (reset_i, clk_i) is
variable v_state : t_datatable2d;
variable v_key : t_key;
begin
if (reset_i = '0') then
v_state := (others => (others => (others => '0')));
v_key := (others => (others => '0'));
s_round <= 0;
accept_o <= '0';
data_o <= (others => '0');
valid_o <= '0';
elsif (rising_edge(clk_i)) then
case s_round is
when 0 =>
accept_o <= '1';
if (accept_o = '1' and valid_i = '1') then
accept_o <= '0';
v_state := set_state(data_i);
v_key := set_key(key_i);
s_round <= s_round + 1;
end if;
when 1 =>
v_state := addroundkey(v_state, v_key);
v_key := key_round(v_key, s_round-1);
s_round <= s_round + 1;
when t_enc_rounds'high-1 =>
v_state := subbytes(v_state);
v_state := shiftrow(v_state);
v_state := addroundkey(v_state, v_key);
s_round <= s_round + 1;
-- set data & valid to save one cycle
valid_o <= '1';
data_o <= get_state(v_state);
when t_enc_rounds'high =>
if (valid_o = '1' and accept_i = '1') then
valid_o <= '0';
data_o <= (others => '0');
s_round <= 0;
-- Set accept to save one cycle
accept_o <= '1';
end if;
when others =>
v_state := subbytes(v_state);
v_state := shiftrow(v_state);
v_state := mixcolumns(v_state);
v_state := addroundkey(v_state, v_key);
v_key := key_round(v_key, s_round-1);
s_round <= s_round + 1;
end case;
end if;
end process CryptP;
psl : block is
signal s_key , s_din, s_dout : std_logic_vector(0 to 127) := (others => '0');
begin
process (clk_i) is
begin
if (rising_edge(clk_i)) then
s_key <= key_i;
s_din <= data_i;
s_dout <= data_o;
end if;
end process;
default clock is rising_edge(clk_i);
-- initial reset
restrict {not reset_i; reset_i[+]}[*1];
-- constraints
assume always (valid_i and not accept_o -> next valid_i);
assume always (valid_i and not accept_o -> next key_i = s_key);
assume always (valid_i and not accept_o -> next data_i = s_din);
ACCEPTO_c : cover {accept_o};
ACCEPT_IN_ROUND_0_ONLY_a : assert always (accept_o -> s_round = 0);
VALIDI_AND_ACCEPTO_c : cover {valid_i and accept_o};
ACCEPT_OFF_WHEN_VALID_a : assert always (valid_i and accept_o -> next not accept_o);
VALIDO_c : cover {valid_o};
VALID_IN_LAST_ROUND_ONLY_a : assert always (valid_o -> s_round = t_enc_rounds'high);
VALIDO_AND_ACCEPTI_c : cover {valid_o and accept_i};
VALID_OFF_WHEN_ACCEPTED_a : assert always (valid_o and accept_i -> next not valid_o);
VALIDO_AND_NOT_ACCEPTI_c : cover {valid_o and not accept_i};
VALID_STABLE_WHEN_NOT_ACCEPTED_a : assert always (valid_o and not accept_i -> next valid_o);
DATA_STABLE_WHEN_NOT_ACCEPTED_a : assert always (valid_o and not accept_i -> next data_o = s_dout);
end block psl;
end generate IterG;
end architecture rtl;
|