File: reprod.vhdl

package info (click to toggle)
ghdl 5.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 86,000 kB
  • sloc: ada: 309,826; vhdl: 209,727; ansic: 31,072; python: 19,213; sh: 14,214; cpp: 2,345; makefile: 1,542; pascal: 585; asm: 45; exp: 40; fortran: 33
file content (258 lines) | stat: -rw-r--r-- 8,221 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity reprod is
  generic (
    abits : integer := 16;
    dbits : integer := 128;
    ncpu     : integer range 1 to 16 := 1; 
    ncnt      : integer range 1 to 32 := 4; 
    cnt_width : integer range 1 to 64 := 32; 
    reg_width : integer range 1 to 128 := 32; 
    cmax      : integer range 0 to 1  := 1; 
    ahb2      : integer range 0 to 1  := 1;
    pipeline : integer range 0 to 15 := 0);

  port (
    clk     : in  std_ulogic;
    rstn    : in  std_ulogic;
    address : in  std_logic_vector (abits-1 downto 0);
    datain  : in  std_logic_vector (dbits-1 downto 0);
    dataout : out std_logic_vector (dbits-1 downto 0);
    enable  : in  std_logic_vector (dbits/8-1 downto 0);
    write   : in  std_logic_vector (dbits/8-1 downto 0);
    read    : in  std_logic_vector (dbits/8-1 downto 0)
    );
end;

architecture rtl of reprod is

  constant cmax_width : integer range 1 to 64 := 16; 
  constant n_type : integer := 4; 

  type reg_type is record
    di  : std_logic_vector(127 downto 0); 
    do  : std_logic_vector(127 downto 0); 
  end record;

  type counter_array is array (0 to ncnt-1) of std_logic_vector( cnt_width-1 downto 0);
  type cmax_array is array (0 to ncnt-1) of std_logic_vector( cmax_width-1 downto 0);
  type conf_array is array (0 to ncnt-1) of std_logic_vector( reg_width-1 downto 0);
  type cpu_type is record
    conf  : conf_array; 
    count :counter_array; 
    ml  : conf_array; 
    ts  : conf_array; 
    ov  : std_logic_vector(reg_width-1 downto 0); 
    cmax  : cmax_array; 
    icmax : cmax_array; 
  end record;

  type cpu_array is array( 0 to ncpu-1) of cpu_type;
  type reg_bank is record
    cpu : cpu_array;   
  end record;

  type ce_type is record 
    count : std_logic_vector (ncnt-1 downto 0); 
  end record;
  type ev_array is array( 0 to ncpu-1) of ce_type;
  type ev_bank is record
    cpu_ev : ev_array;
  end record;

  constant cnt_pad0 : std_logic_vector(reg_width-cnt_width-1 downto 0) := (others => '0');
  constant cmax_pad0 : std_logic_vector(reg_width-cmax_width-1 downto 0) := (others => '0');
  
  
  constant counter_array_NONE : counter_array :=
    (others => (others => '0'));
  constant cmax_array_NONE : cmax_array :=
    (others => (others => '0'));
  constant conf_array_NONE : conf_array :=
    (others => (others => '0'));
  
  constant ov_array_NONE : std_logic_vector (reg_width-1 downto 0) :=
    (others => '0');
  constant cpu_type_NONE : cpu_type :=
   (conf => conf_array_NONE, count => counter_array_NONE, ml => conf_array_NONE,
    ts => conf_array_NONE, ov => ov_array_NONE, cmax => cmax_array_NONE, icmax => cmax_array_NONE);
  constant ev_array_NONE : ev_array :=
   (others => (others => (others => '0')));
  constant ev_bank_NONE : ev_bank :=
   (others =>ev_array_NONE); 
  constant cpu_array_NONE : cpu_array :=
  (others => (cpu_type_NONE));
  constant reg_bank_NONE : reg_bank :=
  (cpu => cpu_array_NONE);
  
  
  type addr_type is record
    i  : integer; 
    t  : integer; 
    c  : integer; 
  
  end record;
  
  constant T_CNT : integer := 0; 
  constant T_CNF : integer := 1; 
  constant T_CMAX : integer := 2; 
  constant T_OV : integer := 3; 
  function adr2reg (address :  std_logic_vector (abits-1 downto 0)) return addr_type is 
    variable ret: addr_type;
  begin
      
    ret.i := to_integer(unsigned(address(3 downto 0)));
    ret.t := to_integer(unsigned(address(7 downto 4)));
    ret.c := to_integer(unsigned(address(11 downto 8)));
    return ret;
  end;

  type evs_type is record
    eid  : integer; 
    cid  : integer; 
  end record;

  function fillout (address : std_logic_vector (abits-1 downto 0); rb : reg_bank) return std_logic_vector is 
    variable at: addr_type;
    variable ret: std_logic_vector (dbits-1 downto 0);
    variable ws: natural ; 
    variable id,did: natural ;
    variable i: integer; 
    variable ro,tmp: integer; 
    constant nr: integer := dbits/reg_width; 
    constant bw: integer := reg_width/8; 
  begin
    at := adr2reg(address);
    ws := 0; 
    ro := at.i*nr+ws; 
    if at.c < ncpu and ro <ncnt then 
      
      for i in 0 to (dbits / reg_width)-1 loop
        tmp := ro+(3-i); 
          did := i*reg_width;
          if tmp < ncnt then
            case at.t is
              when T_CNT => ret(reg_width*(i+1)-1 downto reg_width*i) := cnt_pad0 & rb.cpu(at.c).count(tmp);
              when T_CNF => ret(reg_width*(i+1)-1 downto reg_width*i) := rb.cpu(at.c).conf(tmp);
              when T_OV => ret(reg_width*(i+1)-1 downto reg_width*i) := rb.cpu(at.c).ov;
              when T_CMAX => ret(reg_width*(i+1)-1 downto reg_width*i) := cmax_pad0 & rb.cpu(at.c).cmax(tmp);
              when others => ret := (others => '1'); 
            end case;
          else
            ret := (others => '1'); 
          end if;
      end loop;
    else
      
      ret := (others => '1'); 
    end if; 
    return ret;
  end;

  function fillin (address : std_logic_vector (abits-1 downto 0); rb : reg_bank;
  datain : std_logic_vector (dbits-1 downto 0); write : std_logic_vector (dbits/8-1 downto 0);
  enable : std_logic_vector (dbits/8-1 downto 0); byte : natural) return reg_bank is 
  variable at: addr_type;
  variable ret: reg_bank;  
  variable ws: natural ; 
  variable id,did: natural ;
  variable i: integer; 
  variable ro: integer; 
  constant nr: integer := dbits/reg_width; 
  constant bw: integer := reg_width/8; 
  begin 
    i := byte; 
    if write(i) = '1' and enable(i) = '1'then
      ret := rb;
      at := adr2reg(address);
      ws := bw - byte/(bw) -1; 
      ro := at.i*nr+ws; 
      id := byte mod bw * 8;
      did := id+ws*reg_width;
      if (ro< ncnt and at.c<ncpu and at.t<n_type) then
        case at.t is
          when T_CNT =>
            ret.cpu(at.c).count(ro)( id+7 downto id) := datain(did+7 downto did); 
          when T_CNF =>
            ret.cpu(at.c).conf(ro)( id+7 downto id) := datain(did+7 downto did);
          when T_OV => 
            ret.cpu(at.c).ov(id+7 downto id) := datain(did+7 downto did); 
          when T_CMAX => 
            if(id+7 <= cmax_width ) then
                       ret.cpu(at.c).cmax(ro)( id+7 downto id) := datain(did+7 downto did); 
          end if;
        when others => 
      end case;
    else
            
    end if;
  end if;
  return ret;
    end;

  function  cl_en (rb : reg_bank; cpu : natural; cnt : natural) return std_logic is 
    variable ret : std_logic;
  begin
    ret := rb.cpu(cpu).conf(cnt)(13);
    return ret;
  end;

  signal rb : reg_bank; 
  signal le : ev_bank; 
  signal la, la2 :  std_logic_vector (abits-1 downto 0); 

begin

  m: process (clk,rstn) 
    variable rbv    : reg_bank; 
    variable tdo : std_logic_vector (dbits-1 downto 0); 
    variable at, at2: addr_type;
    variable ws : natural ; 
    variable id : natural ; 
    variable lev : ev_bank; 
    variable lav, lav2 :  std_logic_vector (abits-1 downto 0); 
    variable lov: std_logic_vector(ncpu-1 downto 0); 
  begin
    
    if rising_edge(clk) then
      if rstn = '0' then
        lev := ev_bank_NONE; 
        lav := (others => '0'); 
        rbv := reg_bank_NONE;
        lov := (others => '0');
        lav2  := (others => '0');
      else 
        lav := la;  
        lav2 := la2;  
      
      end if;
      for i in 0 to (dbits/8-1) loop 
        if write(i) = '1' and enable(i) = '1'then 
          rbv := fillin(address,rbv,datain, write, enable,i); -- Comment me
        elsif write(i) = '0' and enable(i) = '1'  and read(i) = '0' then 
          lav := address; 
          tdo := fillout(address,rb); 
        elsif  read(i) = '1' and enable(i) = '1'then 
          tdo := fillout(address,rb); 
          at := adr2reg(la); 
          
          if (at.t = T_CNT) or (at.t = T_CMAX) then 
            if at.i < ncnt and at.c < ncpu then 
              if cl_en(rb,at.c,at.i) = '1' then 
                rbv := fillin(la,rbv,(others => '0'),read,enable,i); -- Comment me
              end if;
            end if;
          end if;
        end if;
      end loop;
    end if;
    dataout <= tdo;
    rb <= rbv;
    le <= lev;
    la <= lav;
    la2 <= lav2;
    end process;

end architecture;