1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
/* compfg.f -- translated by f2c (version 19991025).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
integer nvar, loc[720] /* was [2][360] */, idumy;
doublereal dumy[360];
} geovar_;
#define geovar_1 geovar_
struct {
integer ndep, locpar[360], idepfn[360], locdep[360];
} geosym_;
#define geosym_1 geosym_
struct {
doublereal geo[360] /* was [3][120] */, xcoord[360] /* was [3][120] */;
} geom_;
#define geom_1 geom_
struct {
doublereal atheat;
} atheat_;
#define atheat_1 atheat_
struct {
doublereal wj[214770], wk[214770];
} wmatrx_;
#define wmatrx_1 wmatrx_
struct {
doublereal enuclr;
} enuclr_;
#define enuclr_1 enuclr_
struct {
integer nztype[107], mtype[30], ltype;
} natype_;
#define natype_1 natype_
struct {
doublereal elect;
} elect_;
#define elect_1 elect_
struct {
doublereal rxyz[45150], xdumy[84450];
} scrach_;
#define scrach_1 scrach_
struct {
doublereal h__[45150];
} hmatrx_;
#define hmatrx_1 hmatrx_
struct {
integer natoms, labels[120], na[120], nb[120], nc[120];
} geokst_;
#define geokst_1 geokst_
struct {
doublereal errfn[360], aicorr[360];
} errfn_;
#define errfn_1 errfn_
struct {
doublereal c__[90000], eigs[300], cbeta[90000], eigb[300];
} vector_;
#define vector_1 vector_
struct {
integer last;
} last_;
#define last_1 last_
struct {
integer numcal;
} numcal_;
#define numcal_1 numcal_
struct {
doublereal emin;
logical limscf;
} scftyp_;
#define scftyp_1 scftyp_
struct {
doublereal htype[4];
integer nhco[80] /* was [4][20] */, nnhco, itype;
} molmec_;
#define molmec_1 molmec_
struct {
integer numat, nat[120], nfirst[120], nmidle[120], nlast[120], norbs,
nelecs, nalpha, nbeta, nclose, nopen, ndumy;
doublereal fract;
} molkst_;
#define molkst_1 molkst_
struct {
logical iseps, useps, upda;
} iseps_;
#define iseps_1 iseps_
struct {
char keywrd[241];
} keywrd_;
#define keywrd_1 keywrd_
/* Table of constant values */
static integer c__1 = 1;
static logical c_true = TRUE_;
/* Subroutine */ int compfg_(xparam, int__, escf, fulscf, grad, lgrad)
doublereal *xparam;
logical *int__;
doublereal *escf;
logical *fulscf;
doublereal *grad;
logical *lgrad;
{
/* Initialized data */
static integer icalcn = 0;
/* System generated locals */
integer i__1, i__2;
doublereal d__1;
alist al__1;
/* Builtin functions */
integer i_indx(), s_wsfe(), do_fio(), e_wsfe(), f_rew();
double sin();
/* Local variables */
extern /* Subroutine */ int btoc_(), iter_();
static integer i__, j, k, l;
extern /* Subroutine */ int dihed_();
static logical aider, debug;
#define w ((doublereal *)&wmatrx_1)
static doublereal angle;
static logical large, force;
static doublereal delta[2400];
extern /* Subroutine */ int hcore_(), mecip_();
static doublereal coord[360] /* was [3][120] */;
extern /* Subroutine */ int deriv_(), timer_();
static logical times, print;
static doublereal degree[3];
static logical usedci, analyt;
static doublereal xparef[360], deltap[64];
extern /* Subroutine */ int setupg_(), gmetry_();
static integer indeps;
extern /* Subroutine */ int initsv_(), consts_(), symtry_();
/* Fortran I/O blocks */
static cilist io___17 = { 0, 6, 0, "(' INTERNAL COORDS',/100(/,3F12.6))",
0 };
static cilist io___19 = { 0, 6, 0, "(' CARTESIAN COORDS',/100(/,3F16.9))",
0 };
static cilist io___22 = { 0, 6, 0, "(/10X,' HEAT OF FORMATION',G30.17)",
0 };
static cilist io___23 = { 0, 6, 0, "(' GRADIENT ',8F8.2,(/10F8.2))",
0 };
/* COMDECK SIZES */
/* *********************************************************************** */
/* THIS FILE CONTAINS ALL THE ARRAY SIZES FOR USE IN MOPAC. */
/* THERE ARE ONLY 5 PARAMETERS THAT THE PROGRAMMER NEED SET: */
/* MAXHEV = MAXIMUM NUMBER OF HEAVY ATOMS (HEAVY: NON-HYDROGEN ATOMS) */
/* MAXLIT = MAXIMUM NUMBER OF HYDROGEN ATOMS. */
/* MAXTIM = DEFAULT TIME FOR A JOB. (SECONDS) */
/* MAXDMP = DEFAULT TIME FOR AUTOMATIC RESTART FILE GENERATION (SECS) */
/* ISYBYL = 1 IF MOPAC IS TO BE USED IN THE SYBYL PACKAGE, =0 OTHERWISE */
/* SEE ALSO NMECI, NPULAY AND MESP AT THE END OF THIS FILE */
/* *********************************************************************** */
/* THE FOLLOWING CODE DOES NOT NEED TO BE ALTERED BY THE PROGRAMMER */
/* *********************************************************************** */
/* ALL OTHER PARAMETERS ARE DERIVED FUNCTIONS OF THESE TWO PARAMETERS */
/* NAME DEFINITION */
/* NUMATM MAXIMUM NUMBER OF ATOMS ALLOWED. */
/* MAXORB MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXPAR MAXIMUM NUMBER OF PARAMETERS FOR OPTIMISATION. */
/* N2ELEC MAXIMUM NUMBER OF TWO ELECTRON INTEGRALS ALLOWED. */
/* MPACK AREA OF LOWER HALF TRIANGLE OF DENSITY MATRIX. */
/* MORB2 SQUARE OF THE MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXHES AREA OF HESSIAN MATRIX */
/* MAXALL LARGER THAN MAXORB OR MAXPAR. */
/* *********************************************************************** */
/* *********************************************************************** */
/* DECK MOPAC */
/* COSMO change A. Klamt */
/* end of COSMO change */
/* *********************************************************************** */
/* COMPFG CALCULATES (A) THE HEAT OF FORMATION OF THE SYSTEM, AND */
/* (B) THE GRADIENTS, IF LGRAD IS .TRUE. */
/* ON INPUT XPARAM = ARRAY OF PARAMETERS TO BE USED IN INTERNAL COORDS */
/* LGRAD = .TRUE. IF GRADIENTS ARE NEEDED, .FALSE. OTHERWISE */
/* INT = .TRUE. IF HEAT OF FORMATION IS TO BE CALCULATED */
/* FULSCF = .TRUE. IF FULL SCF TO BE DONE, .FALSE. OTHERWISE. */
/* ON OUTPUT ESCF = HEAT OF FORMATION. */
/* GRAD = ARRAY OF GRADIENTS, IF LGRAD = .TRUE. */
/* *********************************************************************** */
/* Parameter adjustments */
--grad;
--xparam;
/* Function Body */
/* MNDO AM1 PM3 MINDO/ */
if (icalcn != numcal_1.numcal) {
icalcn = numcal_1.numcal;
molmec_1.htype[0] = 6.1737;
molmec_1.htype[1] = 3.3191;
molmec_1.htype[2] = 7.1853;
molmec_1.htype[3] = 1.7712;
natype_1.ltype = 0;
i__1 = molkst_1.numat;
for (i__ = 1; i__ <= i__1; ++i__) {
if (molkst_1.nat[i__ - 1] < 99) {
i__2 = natype_1.ltype;
for (j = 1; j <= i__2; ++j) {
/* L10: */
if (molkst_1.nat[i__ - 1] == natype_1.mtype[j - 1]) {
goto L20;
}
}
++natype_1.ltype;
natype_1.mtype[natype_1.ltype - 1] = molkst_1.nat[i__ - 1];
natype_1.nztype[molkst_1.nat[i__ - 1] - 1] = natype_1.ltype;
/* LTYPE = NUMBER OF TYPES OF REAL ATOM PRESENT */
/* MTYPE = TYPES OF REAL ATOMS PRESENT */
j = natype_1.ltype;
L20:
;
}
/* L30: */
}
aider = i_indx(keywrd_1.keywrd, "AIDER", (ftnlen)241, (ftnlen)5) != 0;
times = i_indx(keywrd_1.keywrd, "TIMES", (ftnlen)241, (ftnlen)5) != 0;
analyt = i_indx(keywrd_1.keywrd, "ANALYT", (ftnlen)241, (ftnlen)6) !=
0;
if (*int__ && analyt) {
setupg_();
}
degree[0] = 1.;
if (i_indx(keywrd_1.keywrd, " XYZ", (ftnlen)241, (ftnlen)4) != 0) {
degree[1] = 1.;
} else {
degree[1] = 57.295779531334603;
}
degree[2] = degree[1];
usedci = molkst_1.nclose != molkst_1.nopen && molkst_1.fract != 2. &&
molkst_1.fract != 0. || i_indx(keywrd_1.keywrd, "C.I.", (
ftnlen)241, (ftnlen)4) != 0;
force = i_indx(keywrd_1.keywrd, "FORCE", (ftnlen)241, (ftnlen)5) != 0;
large = i_indx(keywrd_1.keywrd, "LARGE", (ftnlen)241, (ftnlen)5) != 0;
print = i_indx(keywrd_1.keywrd, "COMPFG", (ftnlen)241, (ftnlen)6) !=
0;
debug = i_indx(keywrd_1.keywrd, "DEBUG", (ftnlen)241, (ftnlen)5) != 0
&& print;
scftyp_1.emin = 0.;
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
/* L40: */
xparef[i__ - 1] = xparam[i__];
}
}
/* SET UP COORDINATES FOR CURRENT CALCULATION */
/* PLACE THE NEW VALUES OF THE VARIABLES IN THE ARRAY GEO. */
/* MAKE CHANGES IN THE GEOMETRY. */
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
k = geovar_1.loc[(i__ << 1) - 2];
l = geovar_1.loc[(i__ << 1) - 1];
/* L50: */
geom_1.geo[l + k * 3 - 4] = xparam[i__];
}
/* IMPOSE THE SYMMETRY CONDITIONS + COMPUTE THE DEPENDENT-PARAMETERS */
if (geosym_1.ndep != 0) {
symtry_();
}
/* NOW COMPUTE THE ATOMIC COORDINATES. */
if (debug) {
if (large) {
k = geokst_1.natoms;
} else {
k = min(5,geokst_1.natoms);
}
s_wsfe(&io___17);
i__1 = k;
for (i__ = 1; i__ <= i__1; ++i__) {
for (j = 1; j <= 3; ++j) {
d__1 = geom_1.geo[j + i__ * 3 - 4] * degree[j - 1];
do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(doublereal));
}
}
e_wsfe();
}
gmetry_(geom_1.geo, coord);
if (debug) {
if (large) {
k = molkst_1.numat;
} else {
k = min(5,molkst_1.numat);
}
s_wsfe(&io___19);
i__1 = k;
for (i__ = 1; i__ <= i__1; ++i__) {
for (j = 1; j <= 3; ++j) {
do_fio(&c__1, (char *)&coord[j + i__ * 3 - 4], (ftnlen)sizeof(
doublereal));
}
}
e_wsfe();
}
if (*int__ && analyt) {
al__1.aerr = 0;
al__1.aunit = 2;
f_rew(&al__1);
}
/* COSMO change A. Klamt */
/* IF (.NOT. USEPS) THEN */
if (! iseps_1.iseps) {
/* end of COSMO change */
if (times) {
timer_("BEFORE HCORE", (ftnlen)12);
}
if (*int__) {
hcore_(coord, hmatrx_1.h__, w, wmatrx_1.wj, wmatrx_1.wk, &
enuclr_1.enuclr);
}
if (times) {
timer_("AFTER HCORE", (ftnlen)11);
}
/* COMPUTE THE HEAT OF FORMATION. */
if (molkst_1.norbs > 0 && molkst_1.nelecs > 0) {
if (times) {
timer_("BEFORE ITER", (ftnlen)11);
}
if (*int__) {
iter_(hmatrx_1.h__, w, wmatrx_1.wj, wmatrx_1.wk, &
elect_1.elect, fulscf, &c_true);
}
if (times) {
timer_("AFTER ITER", (ftnlen)10);
}
} else {
elect_1.elect = 0.;
}
*escf = (elect_1.elect + enuclr_1.enuclr) * 23.061 + atheat_1.atheat;
if (*escf < scftyp_1.emin || scftyp_1.emin == 0.) {
scftyp_1.emin = *escf;
}
i__1 = molmec_1.nnhco;
for (i__ = 1; i__ <= i__1; ++i__) {
dihed_(coord, &molmec_1.nhco[(i__ << 2) - 4], &molmec_1.nhco[(i__
<< 2) - 3], &molmec_1.nhco[(i__ << 2) - 2], &
molmec_1.nhco[(i__ << 2) - 1], &angle);
/* Computing 2nd power */
d__1 = sin(angle);
*escf += molmec_1.htype[molmec_1.itype - 1] * (d__1 * d__1);
/* L60: */
}
/* COSMO change A. Klamt 18.7.91 */
}
if (iseps_1.iseps) {
indeps = i_indx(keywrd_1.keywrd, "EPS=", (ftnlen)241, (ftnlen)4);
initsv_(&indeps);
/* The following routine constructs the dielectric screening surface */
consts_(coord);
/* The following routine constructs dielectric response matrix CCMAT */
btoc_(coord);
/* A. Klamt 18.7.91 */
iseps_1.useps = TRUE_;
if (times) {
timer_("BEFORE HCORE", (ftnlen)12);
}
if (*int__) {
hcore_(coord, hmatrx_1.h__, w, wmatrx_1.wj, wmatrx_1.wk, &
enuclr_1.enuclr);
}
if (times) {
timer_("AFTER HCORE", (ftnlen)11);
}
/* COMPUTE THE HEAT OF FORMATION. */
if (molkst_1.norbs > 0 && molkst_1.nelecs > 0) {
if (times) {
timer_("BEFORE ITER", (ftnlen)11);
}
if (*int__) {
iter_(hmatrx_1.h__, w, wmatrx_1.wj, wmatrx_1.wk, &
elect_1.elect, fulscf, &c_true);
}
if (times) {
timer_("AFTER ITER", (ftnlen)10);
}
} else {
elect_1.elect = 0.;
}
*escf = (elect_1.elect + enuclr_1.enuclr) * 23.061 + atheat_1.atheat;
if (*escf < scftyp_1.emin || scftyp_1.emin == 0.) {
scftyp_1.emin = *escf;
}
i__1 = molmec_1.nnhco;
for (i__ = 1; i__ <= i__1; ++i__) {
dihed_(coord, &molmec_1.nhco[(i__ << 2) - 4], &molmec_1.nhco[(i__
<< 2) - 3], &molmec_1.nhco[(i__ << 2) - 2], &
molmec_1.nhco[(i__ << 2) - 1], &angle);
/* Computing 2nd power */
d__1 = sin(angle);
*escf += molmec_1.htype[molmec_1.itype - 1] * (d__1 * d__1);
/* L61: */
}
}
/* end of COSMO change */
/* FIND DERIVATIVES IF DESIRED */
if (*lgrad) {
if (times) {
timer_("BEFORE DERIV", (ftnlen)12);
}
deriv_(geom_1.geo, &grad[1]);
if (times) {
timer_("AFTER DERIV", (ftnlen)11);
}
}
if (aider) {
/* ADD IN AB INITIO CORRECTION */
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
/* L70: */
*escf += (xparam[i__] - xparef[i__ - 1]) * errfn_1.aicorr[i__ - 1]
;
}
}
if (*int__ && print) {
s_wsfe(&io___22);
do_fio(&c__1, (char *)&(*escf), (ftnlen)sizeof(doublereal));
e_wsfe();
}
if (print && *lgrad) {
s_wsfe(&io___23);
i__1 = geovar_1.nvar;
for (i__ = 1; i__ <= i__1; ++i__) {
do_fio(&c__1, (char *)&grad[i__], (ftnlen)sizeof(doublereal));
}
e_wsfe();
}
/* REFORM DENSITY MATRIX, IF A C.I. DONE AND EITHER THE LAST SCF OR A */
/* FORCE CALCULATION */
if (usedci && (last_1.last == 1 || force)) {
mecip_(vector_1.c__, &molkst_1.norbs, deltap, delta);
}
return 0;
} /* compfg_ */
#undef w
|