1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/* dgetf2.f -- translated by f2c (version 19991025).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b6 = -1.;
/* Subroutine */ int dgetf2_(m, n, a, lda, ipiv, info)
integer *m, *n;
doublereal *a;
integer *lda, *ipiv, *info;
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1;
/* Local variables */
extern /* Subroutine */ int dger_();
static integer j;
extern /* Subroutine */ int mMdscal_(), mMdswap_();
static integer jp;
extern integer idamax_();
extern /* Subroutine */ int xerbla_();
/* -- LAPACK ROUTINE (VERSION 1.0B) -- */
/* UNIV. OF TENNESSEE, UNIV. OF CALIFORNIA BERKELEY, NAG LTD., */
/* COURANT INSTITUTE, ARGONNE NATIONAL LAB, AND RICE UNIVERSITY */
/* JUNE 30, 1992 */
/* .. SCALAR ARGUMENTS .. */
/* .. */
/* .. ARRAY ARGUMENTS .. */
/* .. */
/* PURPOSE */
/* ======= */
/* DGETF2 COMPUTES AN LU FACTORIZATION OF A GENERAL M-BY-N MATRIX A */
/* USING PARTIAL PIVOTING WITH ROW INTERCHANGES. */
/* THE FACTORIZATION HAS THE FORM */
/* A = P * L * U */
/* WHERE P IS A PERMUTATION MATRIX, L IS LOWER TRIANGULAR WITH UNIT */
/* DIAGONAL ELEMENTS (LOWER TRAPEZOIDAL IF M > N), AND U IS UPPER */
/* TRIANGULAR (UPPER TRAPEZOIDAL IF M < N). */
/* THIS IS THE RIGHT-LOOKING LEVEL 2 BLAS VERSION OF THE ALGORITHM. */
/* ARGUMENTS */
/* ========= */
/* M (INPUT) INTEGER */
/* THE NUMBER OF ROWS OF THE MATRIX A. M >= 0. */
/* N (INPUT) INTEGER */
/* THE NUMBER OF COLUMNS OF THE MATRIX A. N >= 0. */
/* A (INPUT/OUTPUT) DOUBLE PRECISION ARRAY, DIMENSION (LDA,N) */
/* ON ENTRY, THE M BY N MATRIX TO BE FACTORED. */
/* ON EXIT, THE FACTORS L AND U FROM THE FACTORIZATION */
/* A = P*L*U; THE UNIT DIAGONAL ELEMENTS OF L ARE NOT STORED. */
/* LDA (INPUT) INTEGER */
/* THE LEADING DIMENSION OF THE ARRAY A. LDA >= MAX(1,M). */
/* IPIV (OUTPUT) INTEGER ARRAY, DIMENSION (MIN(M,N)) */
/* THE PIVOT INDICES; FOR 1 <= I <= MIN(M,N), ROW I OF THE */
/* MATRIX WAS INTERCHANGED WITH ROW IPIV(I). */
/* INFO (OUTPUT) INTEGER */
/* = 0: SUCCESSFUL EXIT */
/* < 0: IF INFO = -K, THE K-TH ARGUMENT HAD AN ILLEGAL VALUE */
/* > 0: IF INFO = K, U(K,K) IS EXACTLY ZERO. THE FACTORIZATION */
/* HAS BEEN COMPLETED, BUT THE FACTOR U IS EXACTLY */
/* SINGULAR, AND DIVISION BY ZERO WILL OCCUR IF IT IS USED */
/* TO SOLVE A SYSTEM OF EQUATIONS. */
/* ===================================================================== */
/* .. PARAMETERS .. */
/* .. */
/* .. LOCAL SCALARS .. */
/* .. */
/* .. EXTERNAL FUNCTIONS .. */
/* .. */
/* .. EXTERNAL SUBROUTINES .. */
/* .. */
/* .. INTRINSIC FUNCTIONS .. */
/* .. */
/* .. EXECUTABLE STATEMENTS .. */
/* TEST THE INPUT PARAMETERS. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--ipiv;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGETF2", &i__1, (ftnlen)6);
return 0;
}
/* QUICK RETURN IF POSSIBLE */
if (*m == 0 || *n == 0) {
return 0;
}
i__1 = min(*m,*n);
for (j = 1; j <= i__1; ++j) {
/* FIND PIVOT AND TEST FOR SINGULARITY. */
i__2 = *m - j + 1;
jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1);
ipiv[j] = jp;
if (a[jp + j * a_dim1] != 0.) {
/* APPLY THE INTERCHANGE TO COLUMNS 1:N. */
if (jp != j) {
mMdswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
}
/* COMPUTE ELEMENTS J+1:M OF J-TH COLUMN. */
if (j < *m) {
i__2 = *m - j;
d__1 = 1. / a[j + j * a_dim1];
mMdscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
}
} else if (*info == 0) {
*info = j;
}
if (j < min(*m,*n)) {
/* UPDATE TRAILING SUBMATRIX. */
i__2 = *m - j;
i__3 = *n - j;
dger_(&i__2, &i__3, &c_b6, &a[j + 1 + j * a_dim1], &c__1, &a[j + (
j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda);
}
/* L10: */
}
return 0;
/* END OF DGETF2 */
} /* dgetf2_ */
|