File: dofs.c

package info (click to toggle)
ghemical 0.82-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 9,448 kB
  • ctags: 18,571
  • sloc: ansic: 68,828; cpp: 51,774; fortran: 35,324; sh: 2,505; makefile: 475; perl: 70
file content (161 lines) | stat: -rw-r--r-- 4,547 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/* dofs.f -- translated by f2c (version 19991025).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int dofs_(eref, mono3, n, dd, m, bottom, top)
doublereal *eref;
integer *mono3, *n;
doublereal *dd;
integer *m;
doublereal *bottom, *top;
{
    /* System generated locals */
    integer eref_dim1, eref_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Builtin functions */
    integer s_wsfe(), do_fio(), e_wsfe();

    /* Local variables */
    static doublereal a, b;
    static integer i__, j, k, l;
    static doublereal x, range, partj, partk;
    static integer ii;
    static doublereal spread;

    /* Fortran I/O blocks */
    static cilist io___13 = { 0, 6, 0, "(A)", 0 };
    static cilist io___14 = { 0, 6, 0, "(F9.2,F12.6)", 0 };


/* *********************************************************************** */
/*                                                                      * */
/* DOFS FORMS A NORMALISED, SLIGHTLY SMOOTHED DENSITY OF STATES FOR A   * */
/*      1-D DENSITY OF STATES                                           * */
/*  ON INPUT EREF = REFERENCE ENERGY LEVELS                             * */
/*           P    = POPULATION OF ENERGY LEVELS (=1 FOR ENERGY D.O.S.   * */
/*                  OR ATOMIC ORBITAL POPULATION FOR PARTIAL D.O.S.)    * */
/*           N    = NUMBER OF ENERGY LEVELS SUPPLIED                    * */
/*           M    = SIZE OF D.O.S. VECTOR                               * */
/*           D    = ARRAY TO HOLD D.O.S.                                * */
/*           BOTTOM = BOTTOM OF D.O.S. VECTOR                           * */
/*           TOP    = TOP OF D.O.S. VECTOR                              * */
/*                                                                      * */
/*   ON OUTPUT D = DENSITY OF STATES.  THIS ANALYSES IS INDEPENDENT OF N* */
/*                 ROUGHNESS WILL OCCUR IF N < CA. 30.                  * */
/*                                                                      * */
/* *********************************************************************** */

/*  FIRST, EMPTY THE DENSITY-OF-STATES (DOS) BINS */

    /* Parameter adjustments */
    eref_dim1 = *mono3;
    eref_offset = 1 + eref_dim1 * 1;
    eref -= eref_offset;
    --dd;

    /* Function Body */
    for (i__ = 1; i__ <= 500; ++i__) {
/* L10: */
	dd[i__] = 0.;
    }

/*   SPREAD OUT THE ENERGIES OVER THE ENERGY SPECTRUM, TOP TO BOTTOM */

    range = (*m + 1) / (*top - *bottom);
    i__1 = *mono3;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    x = eref[j + i__ * eref_dim1];
	    if (x < *bottom || x > *top) {
		x = -1e7;
	    }
/* L20: */
	    eref[j + i__ * eref_dim1] = (x - *bottom) * range;
	}
    }
    i__2 = *mono3;
    for (ii = 1; ii <= i__2; ++ii) {
	i__1 = *n;
	for (i__ = 2; i__ <= i__1; ++i__) {
	    b = eref[ii + (i__ - 1) * eref_dim1];
	    if (b < 1.) {
		goto L40;
	    }
	    a = eref[ii + i__ * eref_dim1];
	    if (a < 1.) {
		goto L40;
	    }
	    if (b > a) {
		x = b;
		b = a;
		a = x;
	    }
	    j = (integer) b;
	    k = (integer) a;

/* IF J EQUALS K THE INTERVAL FALLS WITHIN ONE BIN */

	    if (j == k) {
		dd[k] += 1.;
	    } else {
		spread = 1. / (a - b + 1e-12);
		partj = (j + 1 - b) * spread;
		partk = (a - k) * spread;
		dd[j] += partj;
		dd[k] += partk;

/* IF K EQUALS J+1 THE INTERVAL STRADDLES TWO BINS */

		if (k != j + 1) {

/* IF K IS GREATER THAN J+1 THE INTERVAL COVERS MORE THAN TWO BINS */

		    ++j;
		    --k;
		    i__3 = k;
		    for (l = j; l <= i__3; ++l) {
/* L30: */
			dd[l] += spread;
		    }
		}
	    }
L40:
	    ;
	}
    }
    x = *m / ((*n - 1) * (*top - *bottom));
    i__1 = *m;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* L50: */
	dd[i__] *= x;
    }
    s_wsfe(&io___13);
    do_fio(&c__1, " NORMALIZED DENSITY OF STATES", (ftnlen)29);
    e_wsfe();

/*  THE FIRST 'BIN' HAS LOWER BOUND AT BOTTOM AND UPPER BOUND */
/*  AT BOTTOM+RANGE, THEREFORE THE FIRST 'BIN' IS FOR BOTTOM+0.5*RANGE */
/*  THE LAST 'BIN' HAS BOUNDS TOP-RANGE AND TOP, */
/*  THEREFOR THE LAST 'BIN' IS FOR TOP-0.5*RANGE */
    range = *m / (*top - *bottom);
    i__1 = *m;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* L60: */
	s_wsfe(&io___14);
	d__1 = *bottom + (i__ - .5) / range;
	do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(doublereal));
	do_fio(&c__1, (char *)&dd[i__], (ftnlen)sizeof(doublereal));
	e_wsfe();
    }
    return 0;
} /* dofs_ */