File: hcore.c

package info (click to toggle)
ghemical 0.82-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 9,448 kB
  • ctags: 18,571
  • sloc: ansic: 68,828; cpp: 51,774; fortran: 35,324; sh: 2,505; makefile: 475; perl: 70
file content (448 lines) | stat: -rw-r--r-- 11,824 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/* hcore.f -- translated by f2c (version 19991025).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    integer numat, nat[120], nfirst[120], nmidle[120], nlast[120], norbs, 
	    nelecs, nalpha, nbeta, nclose, nopen, ndumy;
    doublereal fract;
} molkst_;

#define molkst_1 molkst_

struct {
    doublereal uspd[300], dumy[300];
} molorb_;

#define molorb_1 molorb_

struct {
    char keywrd[241];
} keywrd_;

#define keywrd_1 keywrd_

struct {
    doublereal tvec[9]	/* was [3][3] */;
    integer id;
} euler_;

#define euler_1 euler_

struct {
    doublereal dd[107], qq[107], am[107], ad[107], aq[107];
} multip_;

#define multip_1 multip_

struct {
    doublereal core[107];
} core_;

#define core_1 core_

struct {
    doublereal efield[3];
} field_;

#define field_1 field_

struct {
    integer numcal;
} numcal_;

#define numcal_1 numcal_

struct {
    logical iseps, useps, upda;
} iseps_;

#define iseps_1 iseps_

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int hcore_(coord, h__, w, wj, wk, enuclr)
doublereal *coord, *h__, *w, *wj, *wk, *enuclr;
{
    /* Initialized data */

    static integer icalcn = 0;

    /* Format strings */
    static char fmt_120[] = "(10f8.4)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Builtin functions */
    integer i_indx();
    /* Subroutine */ int s_copy();
    integer s_wsfe(), do_fio(), e_wsfe();

    /* Local variables */
    static doublereal half;
    static integer ione;
    static doublereal fnuc, enuc;
    static integer i__, j;
    extern doublereal reada_();
    static logical debug, fldon, first;
    static integer i1, i2, j1, j2;
    extern /* Subroutine */ int h1elec_();
    static integer ia, ib, ic;
    static doublereal di[81]	/* was [9][9] */;
    static integer ja, jb, jc, ii, jj, ni, nj;
    extern /* Subroutine */ int addhcr_();
    static integer kr;
    static doublereal xf, yf, zf, fldcon;
    extern /* Subroutine */ int addnuc_();
    static doublereal hterme, cutoff, e1b[10], e2a[10];
    extern /* Subroutine */ int rotate_(), vecprt_();
    static integer im1;
    static char tmpkey[241];
    static integer io1, jo1;
    extern /* Subroutine */ int solrot_();
    static doublereal wjd[100], wkd[100];
    static integer kro;

    /* Fortran I/O blocks */
    static cilist io___11 = { 0, 6, 0, "(/10X,'THE ELECTRIC FIELD IS',3F10.5)"
	    , 0 };
    static cilist io___12 = { 0, 6, 0, "(10X,'IN 8*A.U. (8*27.21/0.529 VOLTS\
/ANGSTROM)',/)", 0 };
    static cilist io___44 = { 0, 6, 0, "(//10X,'ONE-ELECTRON MATRIX FROM HCO\
RE')", 0 };
    static cilist io___45 = { 0, 6, 0, "(//10X,'TWO-ELECTRON MATRIX IN HCORE\
'/)", 0 };
    static cilist io___46 = { 0, 6, 0, fmt_120, 0 };
    static cilist io___47 = { 0, 6, 0, "(//10X,'TWO-ELECTRON J MATRIX IN HCO\
RE'/)", 0 };
    static cilist io___48 = { 0, 6, 0, fmt_120, 0 };
    static cilist io___49 = { 0, 6, 0, "(//10X,'TWO-ELECTRON K MATRIX IN HCO\
RE'/)", 0 };
    static cilist io___50 = { 0, 6, 0, fmt_120, 0 };


/* COMDECK SIZES */
/* *********************************************************************** */
/*   THIS FILE CONTAINS ALL THE ARRAY SIZES FOR USE IN MOPAC. */

/*     THERE ARE ONLY 5 PARAMETERS THAT THE PROGRAMMER NEED SET: */
/*     MAXHEV = MAXIMUM NUMBER OF HEAVY ATOMS (HEAVY: NON-HYDROGEN ATOMS) */
/*     MAXLIT = MAXIMUM NUMBER OF HYDROGEN ATOMS. */
/*     MAXTIM = DEFAULT TIME FOR A JOB. (SECONDS) */
/*     MAXDMP = DEFAULT TIME FOR AUTOMATIC RESTART FILE GENERATION (SECS) */
/*     ISYBYL = 1 IF MOPAC IS TO BE USED IN THE SYBYL PACKAGE, =0 OTHERWISE */
/*     SEE ALSO NMECI, NPULAY AND MESP AT THE END OF THIS FILE */


/* *********************************************************************** */

/*   THE FOLLOWING CODE DOES NOT NEED TO BE ALTERED BY THE PROGRAMMER */

/* *********************************************************************** */

/*    ALL OTHER PARAMETERS ARE DERIVED FUNCTIONS OF THESE TWO PARAMETERS */

/*      NAME                   DEFINITION */
/*     NUMATM         MAXIMUM NUMBER OF ATOMS ALLOWED. */
/*     MAXORB         MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/*     MAXPAR         MAXIMUM NUMBER OF PARAMETERS FOR OPTIMISATION. */
/*     N2ELEC         MAXIMUM NUMBER OF TWO ELECTRON INTEGRALS ALLOWED. */
/*     MPACK          AREA OF LOWER HALF TRIANGLE OF DENSITY MATRIX. */
/*     MORB2          SQUARE OF THE MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/*     MAXHES         AREA OF HESSIAN MATRIX */
/*     MAXALL         LARGER THAN MAXORB OR MAXPAR. */
/* *********************************************************************** */

/* *********************************************************************** */
/* DECK MOPAC */
/* COSMO change */
/* end of COSMO change */
/* *********************************************************************** */

/*   HCORE GENERATES THE ONE-ELECTRON MATRIX AND TWO ELECTRON INTEGRALS */
/*         FOR A GIVEN MOLECULE WHOSE GEOMETRY IS DEFINED IN CARTESIAN */
/*         COORDINATES. */

/*  ON INPUT  COORD   = COORDINATES OF THE MOLECULE. */

/*  ON OUTPUT  H      = ONE-ELECTRON MATRIX. */
/*             W      = TWO-ELECTRON INTEGRALS. */
/*             ENUCLR = NUCLEAR ENERGY */
/* *********************************************************************** */
    /* Parameter adjustments */
    --wk;
    --wj;
    --w;
    --h__;
    coord -= 4;

    /* Function Body */
    first = icalcn != numcal_1.numcal;
    icalcn = numcal_1.numcal;
    if (first) {
	ione = 1;
	cutoff = 1e10;
	if (euler_1.id != 0) {
	    cutoff = 60.;
	}
	if (euler_1.id != 0) {
	    ione = 0;
	}
	debug = i_indx(keywrd_1.keywrd, "HCORE", (ftnlen)241, (ftnlen)5) != 0;
/* ****************************************************************** */
	xf = 0.;
	yf = 0.;
	zf = 0.;
	s_copy(tmpkey, keywrd_1.keywrd, (ftnlen)241, (ftnlen)241);
	i__ = i_indx(tmpkey, " FIELD(", (ftnlen)241, (ftnlen)7);
	if (i__ == 0) {
	    goto L6;
	}

/*   ERASE ALL TEXT FROM TMPKEY EXCEPT FIELD DATA */

	s_copy(tmpkey, " ", i__, (ftnlen)1);
	i__1 = i_indx(tmpkey, ")", (ftnlen)241, (ftnlen)1) - 1;
	s_copy(tmpkey + i__1, " ", 241 - i__1, (ftnlen)1);

/*   READ IN THE EFFECTIVE FIELD IN X,Y,Z COORDINATES */

	xf = reada_(tmpkey, &i__, (ftnlen)241);
	i__ = i_indx(tmpkey, ",", (ftnlen)241, (ftnlen)1);
	if (i__ == 0) {
	    goto L5;
	}
	*(unsigned char *)&tmpkey[i__ - 1] = ' ';
	yf = reada_(tmpkey, &i__, (ftnlen)241);
	i__ = i_indx(tmpkey, ",", (ftnlen)241, (ftnlen)1);
	if (i__ == 0) {
	    goto L5;
	}
	*(unsigned char *)&tmpkey[i__ - 1] = ' ';
	zf = reada_(tmpkey, &i__, (ftnlen)241);
L5:
	s_wsfe(&io___11);
	do_fio(&c__1, (char *)&xf, (ftnlen)sizeof(doublereal));
	do_fio(&c__1, (char *)&yf, (ftnlen)sizeof(doublereal));
	do_fio(&c__1, (char *)&zf, (ftnlen)sizeof(doublereal));
	e_wsfe();
	s_wsfe(&io___12);
	e_wsfe();
L6:
	field_1.efield[0] = xf;
	field_1.efield[1] = yf;
	field_1.efield[2] = zf;
/* ********************************************************************** */
    }
    fldon = FALSE_;
    if (field_1.efield[0] != 0. || field_1.efield[1] != 0. || field_1.efield[
	    2] != 0.) {
	fldcon = 51.4257;
	fldon = TRUE_;
    }
    i__1 = molkst_1.norbs * (molkst_1.norbs + 1) / 2;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* L10: */
	h__[i__] = 0.;
    }
    *enuclr = 0.;
    kr = 1;
    i__1 = molkst_1.numat;
    for (i__ = 1; i__ <= i__1; ++i__) {
	ia = molkst_1.nfirst[i__ - 1];
	ib = molkst_1.nlast[i__ - 1];
	ic = molkst_1.nmidle[i__ - 1];
	ni = molkst_1.nat[i__ - 1];

/* FIRST WE FILL THE DIAGONALS, AND OFF-DIAGONALS ON THE SAME ATOM */

	i__2 = ib;
	for (i1 = ia; i1 <= i__2; ++i1) {
	    i2 = i1 * (i1 - 1) / 2 + ia - 1;
	    i__3 = i1;
	    for (j1 = ia; j1 <= i__3; ++j1) {
		++i2;
		h__[i2] = 0.;
		if (fldon) {
		    io1 = i1 - ia;
		    jo1 = j1 - ia;
		    if (jo1 == 0 && io1 == 1) {
			hterme = multip_1.dd[ni - 1] * -.529177 * 
				field_1.efield[0] * fldcon;
			h__[i2] = hterme;
		    }
		    if (jo1 == 0 && io1 == 2) {
			hterme = multip_1.dd[ni - 1] * -.529177 * 
				field_1.efield[1] * fldcon;
			h__[i2] = hterme;
		    }
		    if (jo1 == 0 && io1 == 3) {
			hterme = multip_1.dd[ni - 1] * -.529177 * 
				field_1.efield[2] * fldcon;
			h__[i2] = hterme;
		    }
		}
/* L20: */
	    }
	    h__[i2] = molorb_1.uspd[i1 - 1];
	    if (fldon) {
		fnuc = -(field_1.efield[0] * coord[i__ * 3 + 1] + 
			field_1.efield[1] * coord[i__ * 3 + 2] + 
			field_1.efield[2] * coord[i__ * 3 + 3]) * fldcon;
		h__[i2] += fnuc;
	    }
/* L30: */
	}

/*   FILL THE ATOM-OTHER ATOM ONE-ELECTRON MATRIX<PSI(LAMBDA)|PSI(SIGMA)> */

	im1 = i__ - ione;
	i__2 = im1;
	for (j = 1; j <= i__2; ++j) {
	    half = 1.;
	    if (i__ == j) {
		half = .5;
	    }
	    ja = molkst_1.nfirst[j - 1];
	    jb = molkst_1.nlast[j - 1];
	    jc = molkst_1.nmidle[j - 1];
	    nj = molkst_1.nat[j - 1];
	    h1elec_(&ni, &nj, &coord[i__ * 3 + 1], &coord[j * 3 + 1], di);
	    i2 = 0;
	    i__3 = ib;
	    for (i1 = ia; i1 <= i__3; ++i1) {
		ii = i1 * (i1 - 1) / 2 + ja - 1;
		++i2;
		j2 = 0;
		jj = min(i1,jb);
		i__4 = jj;
		for (j1 = ja; j1 <= i__4; ++j1) {
		    ++ii;
		    ++j2;
/* L40: */
		    h__[ii] += di[i2 + j2 * 9 - 10];
		}
	    }

/*   CALCULATE THE TWO-ELECTRON INTEGRALS, W; THE ELECTRON NUCLEAR TERMS */
/*   E1B AND E2A; AND THE NUCLEAR-NUCLEAR TERM ENUC. */

	    if (euler_1.id == 0) {
		rotate_(&ni, &nj, &coord[i__ * 3 + 1], &coord[j * 3 + 1], &w[
			kr], &kr, e1b, e2a, &enuc, &cutoff);
	    } else {
		kro = kr;
		solrot_(&ni, &nj, &coord[i__ * 3 + 1], &coord[j * 3 + 1], wjd,
			 wkd, &kr, e1b, e2a, &enuc, &cutoff);
		jj = 0;
		i__4 = kr - 1;
		for (ii = kro; ii <= i__4; ++ii) {
		    ++jj;
		    wj[ii] = wjd[jj - 1];
/* L50: */
		    wk[ii] = wkd[jj - 1];
		}
	    }
	    *enuclr += enuc;

/*   ADD ON THE ELECTRON-NUCLEAR ATTRACTION TERM FOR ATOM I. */

	    i2 = 0;
	    i__4 = ic;
	    for (i1 = ia; i1 <= i__4; ++i1) {
		ii = i1 * (i1 - 1) / 2 + ia - 1;
		i__3 = i1;
		for (j1 = ia; j1 <= i__3; ++j1) {
		    ++ii;
		    ++i2;
/* L60: */
		    h__[ii] += e1b[i2 - 1] * half;
		}
	    }
	    i__3 = ib;
	    for (i1 = ic + 1; i1 <= i__3; ++i1) {
		ii = i1 * (i1 + 1) / 2;
/* L70: */
		h__[ii] += e1b[0] * half;
	    }

/*   ADD ON THE ELECTRON-NUCLEAR ATTRACTION TERM FOR ATOM J. */

	    i2 = 0;
	    i__3 = jc;
	    for (i1 = ja; i1 <= i__3; ++i1) {
		ii = i1 * (i1 - 1) / 2 + ja - 1;
		i__4 = i1;
		for (j1 = ja; j1 <= i__4; ++j1) {
		    ++ii;
		    ++i2;
/* L80: */
		    h__[ii] += e2a[i2 - 1] * half;
		}
	    }
	    i__4 = jb;
	    for (i1 = jc + 1; i1 <= i__4; ++i1) {
		ii = i1 * (i1 + 1) / 2;
/* L90: */
		h__[ii] += e2a[0] * half;
	    }
/* L100: */
	}
/* L110: */
    }
/* COSMO change */
/* A. KLAMT 16.7.91 */
    if (iseps_1.useps) {
/* The following routine adds the dielectric correction for the electron-core */
/* interaction to the diagonal elements of H */
	addhcr_(&h__[1]);
/* In the following routine the dielectric correction to the core-core- */
/* interaction is added to ENUCLR */
	addnuc_(enuclr);
    }
/* end of COSMO change */
    if (! debug) {
	return 0;
    }
    s_wsfe(&io___44);
    e_wsfe();
    vecprt_(&h__[1], &molkst_1.norbs);
    j = min(400,kr);
    if (euler_1.id == 0) {
	s_wsfe(&io___45);
	e_wsfe();
	s_wsfe(&io___46);
	i__1 = j;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    do_fio(&c__1, (char *)&w[i__], (ftnlen)sizeof(doublereal));
	}
	e_wsfe();
    } else {
	s_wsfe(&io___47);
	e_wsfe();
	s_wsfe(&io___48);
	i__1 = j;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    do_fio(&c__1, (char *)&wj[i__], (ftnlen)sizeof(doublereal));
	}
	e_wsfe();
	s_wsfe(&io___49);
	e_wsfe();
	s_wsfe(&io___50);
	i__1 = j;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    do_fio(&c__1, (char *)&wk[i__], (ftnlen)sizeof(doublereal));
	}
	e_wsfe();
    }
    return 0;
} /* hcore_ */