1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
/* hcore.f -- translated by f2c (version 19991025).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
integer numat, nat[120], nfirst[120], nmidle[120], nlast[120], norbs,
nelecs, nalpha, nbeta, nclose, nopen, ndumy;
doublereal fract;
} molkst_;
#define molkst_1 molkst_
struct {
doublereal uspd[300], dumy[300];
} molorb_;
#define molorb_1 molorb_
struct {
char keywrd[241];
} keywrd_;
#define keywrd_1 keywrd_
struct {
doublereal tvec[9] /* was [3][3] */;
integer id;
} euler_;
#define euler_1 euler_
struct {
doublereal dd[107], qq[107], am[107], ad[107], aq[107];
} multip_;
#define multip_1 multip_
struct {
doublereal core[107];
} core_;
#define core_1 core_
struct {
doublereal efield[3];
} field_;
#define field_1 field_
struct {
integer numcal;
} numcal_;
#define numcal_1 numcal_
struct {
logical iseps, useps, upda;
} iseps_;
#define iseps_1 iseps_
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int hcore_(coord, h__, w, wj, wk, enuclr)
doublereal *coord, *h__, *w, *wj, *wk, *enuclr;
{
/* Initialized data */
static integer icalcn = 0;
/* Format strings */
static char fmt_120[] = "(10f8.4)";
/* System generated locals */
integer i__1, i__2, i__3, i__4;
/* Builtin functions */
integer i_indx();
/* Subroutine */ int s_copy();
integer s_wsfe(), do_fio(), e_wsfe();
/* Local variables */
static doublereal half;
static integer ione;
static doublereal fnuc, enuc;
static integer i__, j;
extern doublereal reada_();
static logical debug, fldon, first;
static integer i1, i2, j1, j2;
extern /* Subroutine */ int h1elec_();
static integer ia, ib, ic;
static doublereal di[81] /* was [9][9] */;
static integer ja, jb, jc, ii, jj, ni, nj;
extern /* Subroutine */ int addhcr_();
static integer kr;
static doublereal xf, yf, zf, fldcon;
extern /* Subroutine */ int addnuc_();
static doublereal hterme, cutoff, e1b[10], e2a[10];
extern /* Subroutine */ int rotate_(), vecprt_();
static integer im1;
static char tmpkey[241];
static integer io1, jo1;
extern /* Subroutine */ int solrot_();
static doublereal wjd[100], wkd[100];
static integer kro;
/* Fortran I/O blocks */
static cilist io___11 = { 0, 6, 0, "(/10X,'THE ELECTRIC FIELD IS',3F10.5)"
, 0 };
static cilist io___12 = { 0, 6, 0, "(10X,'IN 8*A.U. (8*27.21/0.529 VOLTS\
/ANGSTROM)',/)", 0 };
static cilist io___44 = { 0, 6, 0, "(//10X,'ONE-ELECTRON MATRIX FROM HCO\
RE')", 0 };
static cilist io___45 = { 0, 6, 0, "(//10X,'TWO-ELECTRON MATRIX IN HCORE\
'/)", 0 };
static cilist io___46 = { 0, 6, 0, fmt_120, 0 };
static cilist io___47 = { 0, 6, 0, "(//10X,'TWO-ELECTRON J MATRIX IN HCO\
RE'/)", 0 };
static cilist io___48 = { 0, 6, 0, fmt_120, 0 };
static cilist io___49 = { 0, 6, 0, "(//10X,'TWO-ELECTRON K MATRIX IN HCO\
RE'/)", 0 };
static cilist io___50 = { 0, 6, 0, fmt_120, 0 };
/* COMDECK SIZES */
/* *********************************************************************** */
/* THIS FILE CONTAINS ALL THE ARRAY SIZES FOR USE IN MOPAC. */
/* THERE ARE ONLY 5 PARAMETERS THAT THE PROGRAMMER NEED SET: */
/* MAXHEV = MAXIMUM NUMBER OF HEAVY ATOMS (HEAVY: NON-HYDROGEN ATOMS) */
/* MAXLIT = MAXIMUM NUMBER OF HYDROGEN ATOMS. */
/* MAXTIM = DEFAULT TIME FOR A JOB. (SECONDS) */
/* MAXDMP = DEFAULT TIME FOR AUTOMATIC RESTART FILE GENERATION (SECS) */
/* ISYBYL = 1 IF MOPAC IS TO BE USED IN THE SYBYL PACKAGE, =0 OTHERWISE */
/* SEE ALSO NMECI, NPULAY AND MESP AT THE END OF THIS FILE */
/* *********************************************************************** */
/* THE FOLLOWING CODE DOES NOT NEED TO BE ALTERED BY THE PROGRAMMER */
/* *********************************************************************** */
/* ALL OTHER PARAMETERS ARE DERIVED FUNCTIONS OF THESE TWO PARAMETERS */
/* NAME DEFINITION */
/* NUMATM MAXIMUM NUMBER OF ATOMS ALLOWED. */
/* MAXORB MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXPAR MAXIMUM NUMBER OF PARAMETERS FOR OPTIMISATION. */
/* N2ELEC MAXIMUM NUMBER OF TWO ELECTRON INTEGRALS ALLOWED. */
/* MPACK AREA OF LOWER HALF TRIANGLE OF DENSITY MATRIX. */
/* MORB2 SQUARE OF THE MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXHES AREA OF HESSIAN MATRIX */
/* MAXALL LARGER THAN MAXORB OR MAXPAR. */
/* *********************************************************************** */
/* *********************************************************************** */
/* DECK MOPAC */
/* COSMO change */
/* end of COSMO change */
/* *********************************************************************** */
/* HCORE GENERATES THE ONE-ELECTRON MATRIX AND TWO ELECTRON INTEGRALS */
/* FOR A GIVEN MOLECULE WHOSE GEOMETRY IS DEFINED IN CARTESIAN */
/* COORDINATES. */
/* ON INPUT COORD = COORDINATES OF THE MOLECULE. */
/* ON OUTPUT H = ONE-ELECTRON MATRIX. */
/* W = TWO-ELECTRON INTEGRALS. */
/* ENUCLR = NUCLEAR ENERGY */
/* *********************************************************************** */
/* Parameter adjustments */
--wk;
--wj;
--w;
--h__;
coord -= 4;
/* Function Body */
first = icalcn != numcal_1.numcal;
icalcn = numcal_1.numcal;
if (first) {
ione = 1;
cutoff = 1e10;
if (euler_1.id != 0) {
cutoff = 60.;
}
if (euler_1.id != 0) {
ione = 0;
}
debug = i_indx(keywrd_1.keywrd, "HCORE", (ftnlen)241, (ftnlen)5) != 0;
/* ****************************************************************** */
xf = 0.;
yf = 0.;
zf = 0.;
s_copy(tmpkey, keywrd_1.keywrd, (ftnlen)241, (ftnlen)241);
i__ = i_indx(tmpkey, " FIELD(", (ftnlen)241, (ftnlen)7);
if (i__ == 0) {
goto L6;
}
/* ERASE ALL TEXT FROM TMPKEY EXCEPT FIELD DATA */
s_copy(tmpkey, " ", i__, (ftnlen)1);
i__1 = i_indx(tmpkey, ")", (ftnlen)241, (ftnlen)1) - 1;
s_copy(tmpkey + i__1, " ", 241 - i__1, (ftnlen)1);
/* READ IN THE EFFECTIVE FIELD IN X,Y,Z COORDINATES */
xf = reada_(tmpkey, &i__, (ftnlen)241);
i__ = i_indx(tmpkey, ",", (ftnlen)241, (ftnlen)1);
if (i__ == 0) {
goto L5;
}
*(unsigned char *)&tmpkey[i__ - 1] = ' ';
yf = reada_(tmpkey, &i__, (ftnlen)241);
i__ = i_indx(tmpkey, ",", (ftnlen)241, (ftnlen)1);
if (i__ == 0) {
goto L5;
}
*(unsigned char *)&tmpkey[i__ - 1] = ' ';
zf = reada_(tmpkey, &i__, (ftnlen)241);
L5:
s_wsfe(&io___11);
do_fio(&c__1, (char *)&xf, (ftnlen)sizeof(doublereal));
do_fio(&c__1, (char *)&yf, (ftnlen)sizeof(doublereal));
do_fio(&c__1, (char *)&zf, (ftnlen)sizeof(doublereal));
e_wsfe();
s_wsfe(&io___12);
e_wsfe();
L6:
field_1.efield[0] = xf;
field_1.efield[1] = yf;
field_1.efield[2] = zf;
/* ********************************************************************** */
}
fldon = FALSE_;
if (field_1.efield[0] != 0. || field_1.efield[1] != 0. || field_1.efield[
2] != 0.) {
fldcon = 51.4257;
fldon = TRUE_;
}
i__1 = molkst_1.norbs * (molkst_1.norbs + 1) / 2;
for (i__ = 1; i__ <= i__1; ++i__) {
/* L10: */
h__[i__] = 0.;
}
*enuclr = 0.;
kr = 1;
i__1 = molkst_1.numat;
for (i__ = 1; i__ <= i__1; ++i__) {
ia = molkst_1.nfirst[i__ - 1];
ib = molkst_1.nlast[i__ - 1];
ic = molkst_1.nmidle[i__ - 1];
ni = molkst_1.nat[i__ - 1];
/* FIRST WE FILL THE DIAGONALS, AND OFF-DIAGONALS ON THE SAME ATOM */
i__2 = ib;
for (i1 = ia; i1 <= i__2; ++i1) {
i2 = i1 * (i1 - 1) / 2 + ia - 1;
i__3 = i1;
for (j1 = ia; j1 <= i__3; ++j1) {
++i2;
h__[i2] = 0.;
if (fldon) {
io1 = i1 - ia;
jo1 = j1 - ia;
if (jo1 == 0 && io1 == 1) {
hterme = multip_1.dd[ni - 1] * -.529177 *
field_1.efield[0] * fldcon;
h__[i2] = hterme;
}
if (jo1 == 0 && io1 == 2) {
hterme = multip_1.dd[ni - 1] * -.529177 *
field_1.efield[1] * fldcon;
h__[i2] = hterme;
}
if (jo1 == 0 && io1 == 3) {
hterme = multip_1.dd[ni - 1] * -.529177 *
field_1.efield[2] * fldcon;
h__[i2] = hterme;
}
}
/* L20: */
}
h__[i2] = molorb_1.uspd[i1 - 1];
if (fldon) {
fnuc = -(field_1.efield[0] * coord[i__ * 3 + 1] +
field_1.efield[1] * coord[i__ * 3 + 2] +
field_1.efield[2] * coord[i__ * 3 + 3]) * fldcon;
h__[i2] += fnuc;
}
/* L30: */
}
/* FILL THE ATOM-OTHER ATOM ONE-ELECTRON MATRIX<PSI(LAMBDA)|PSI(SIGMA)> */
im1 = i__ - ione;
i__2 = im1;
for (j = 1; j <= i__2; ++j) {
half = 1.;
if (i__ == j) {
half = .5;
}
ja = molkst_1.nfirst[j - 1];
jb = molkst_1.nlast[j - 1];
jc = molkst_1.nmidle[j - 1];
nj = molkst_1.nat[j - 1];
h1elec_(&ni, &nj, &coord[i__ * 3 + 1], &coord[j * 3 + 1], di);
i2 = 0;
i__3 = ib;
for (i1 = ia; i1 <= i__3; ++i1) {
ii = i1 * (i1 - 1) / 2 + ja - 1;
++i2;
j2 = 0;
jj = min(i1,jb);
i__4 = jj;
for (j1 = ja; j1 <= i__4; ++j1) {
++ii;
++j2;
/* L40: */
h__[ii] += di[i2 + j2 * 9 - 10];
}
}
/* CALCULATE THE TWO-ELECTRON INTEGRALS, W; THE ELECTRON NUCLEAR TERMS */
/* E1B AND E2A; AND THE NUCLEAR-NUCLEAR TERM ENUC. */
if (euler_1.id == 0) {
rotate_(&ni, &nj, &coord[i__ * 3 + 1], &coord[j * 3 + 1], &w[
kr], &kr, e1b, e2a, &enuc, &cutoff);
} else {
kro = kr;
solrot_(&ni, &nj, &coord[i__ * 3 + 1], &coord[j * 3 + 1], wjd,
wkd, &kr, e1b, e2a, &enuc, &cutoff);
jj = 0;
i__4 = kr - 1;
for (ii = kro; ii <= i__4; ++ii) {
++jj;
wj[ii] = wjd[jj - 1];
/* L50: */
wk[ii] = wkd[jj - 1];
}
}
*enuclr += enuc;
/* ADD ON THE ELECTRON-NUCLEAR ATTRACTION TERM FOR ATOM I. */
i2 = 0;
i__4 = ic;
for (i1 = ia; i1 <= i__4; ++i1) {
ii = i1 * (i1 - 1) / 2 + ia - 1;
i__3 = i1;
for (j1 = ia; j1 <= i__3; ++j1) {
++ii;
++i2;
/* L60: */
h__[ii] += e1b[i2 - 1] * half;
}
}
i__3 = ib;
for (i1 = ic + 1; i1 <= i__3; ++i1) {
ii = i1 * (i1 + 1) / 2;
/* L70: */
h__[ii] += e1b[0] * half;
}
/* ADD ON THE ELECTRON-NUCLEAR ATTRACTION TERM FOR ATOM J. */
i2 = 0;
i__3 = jc;
for (i1 = ja; i1 <= i__3; ++i1) {
ii = i1 * (i1 - 1) / 2 + ja - 1;
i__4 = i1;
for (j1 = ja; j1 <= i__4; ++j1) {
++ii;
++i2;
/* L80: */
h__[ii] += e2a[i2 - 1] * half;
}
}
i__4 = jb;
for (i1 = jc + 1; i1 <= i__4; ++i1) {
ii = i1 * (i1 + 1) / 2;
/* L90: */
h__[ii] += e2a[0] * half;
}
/* L100: */
}
/* L110: */
}
/* COSMO change */
/* A. KLAMT 16.7.91 */
if (iseps_1.useps) {
/* The following routine adds the dielectric correction for the electron-core */
/* interaction to the diagonal elements of H */
addhcr_(&h__[1]);
/* In the following routine the dielectric correction to the core-core- */
/* interaction is added to ENUCLR */
addnuc_(enuclr);
}
/* end of COSMO change */
if (! debug) {
return 0;
}
s_wsfe(&io___44);
e_wsfe();
vecprt_(&h__[1], &molkst_1.norbs);
j = min(400,kr);
if (euler_1.id == 0) {
s_wsfe(&io___45);
e_wsfe();
s_wsfe(&io___46);
i__1 = j;
for (i__ = 1; i__ <= i__1; ++i__) {
do_fio(&c__1, (char *)&w[i__], (ftnlen)sizeof(doublereal));
}
e_wsfe();
} else {
s_wsfe(&io___47);
e_wsfe();
s_wsfe(&io___48);
i__1 = j;
for (i__ = 1; i__ <= i__1; ++i__) {
do_fio(&c__1, (char *)&wj[i__], (ftnlen)sizeof(doublereal));
}
e_wsfe();
s_wsfe(&io___49);
e_wsfe();
s_wsfe(&io___50);
i__1 = j;
for (i__ = 1; i__ <= i__1; ++i__) {
do_fio(&c__1, (char *)&wk[i__], (ftnlen)sizeof(doublereal));
}
e_wsfe();
}
return 0;
} /* hcore_ */
|