1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/* pathk.f -- translated by f2c (version 19991025).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
doublereal geo[360] /* was [3][120] */, xcoord[360] /* was [3][120] */;
} geom_;
#define geom_1 geom_
struct {
integer nvar, loc[720] /* was [2][360] */, idumy;
doublereal xparam[360];
} geovar_;
#define geovar_1 geovar_
struct {
doublereal grad[360], gnorm;
} gradnt_;
#define gradnt_1 gradnt_
struct {
doublereal cosine;
} gravec_;
#define gravec_1 gravec_
struct {
integer latom, lparam;
doublereal react[200];
} path_;
#define path_1 path_
struct {
doublereal currt;
} pparam_;
#define pparam_1 pparam_
struct {
integer kloop;
} kloop_;
#define kloop_1 kloop_
struct {
doublereal profil[200];
} profic_;
#define profic_1 profic_
struct {
char keywrd[241];
} keywrd_;
#define keywrd_1 keywrd_
/* Table of constant values */
static integer c__1 = 1;
static integer c__6 = 6;
static integer c__12 = 12;
/* Subroutine */ int pathk_()
{
/* Format strings */
static char fmt_30[] = "(\002 ARCHIVE FILE FOR PATH CALCULATION\002/\002\
A PROFIL OF COORDINATES - HEATS\002/)";
/* System generated locals */
integer i__1, i__2;
doublereal d__1;
char ch__1[80];
olist o__1;
/* Builtin functions */
integer i_indx(), s_wsfe(), do_fio(), e_wsfe(), f_open();
/* Local variables */
static doublereal escf;
static integer mdfp[20];
static doublereal xdfp[20], step;
static integer npts, i__, k;
extern doublereal reada_();
static integer l, m;
extern /* Subroutine */ int flepo_();
static integer iloop;
static doublereal c1;
extern /* Subroutine */ int geout_();
static doublereal xlast[360], gd[360], degree;
extern /* Character */ VOID getnam_();
extern doublereal second_();
extern /* Subroutine */ int dfpsav_();
static doublereal cputot;
extern /* Subroutine */ int wrttxt_();
static doublereal cpu1, cpu2, cpu3;
/* Fortran I/O blocks */
static cilist io___11 = { 0, 6, 0, "(//10X,' RESTARTING AT POINT ',I3)",
0 };
static cilist io___16 = { 0, 6, 0, "(/' VARIABLE FUNCTIO\
N')", 0 };
static cilist io___17 = { 0, 6, 0, "(' :',F16.5,F16.6)", 0 };
static cilist io___19 = { 0, 6, 0, "(/16X,'POINTS ON REACTION PATH ', \
/16X,'AND CORRESPONDING HEATS',//)", 0 };
static cilist io___20 = { 0, 12, 0, fmt_30, 0 };
static cilist io___21 = { 0, 12, 0, "(/' TOTAL CPU TIME IN FLEPO : ',F10\
.3/)", 0 };
static cilist io___25 = { 0, 6, 0, "(8F7.2)", 0 };
static cilist io___26 = { 0, 6, 0, "(8F7.2,/)", 0 };
static cilist io___27 = { 0, 12, 0, "(8F7.2)", 0 };
static cilist io___28 = { 0, 12, 0, "(8F7.2,/)", 0 };
static cilist io___29 = { 0, 6, 0, "(8F7.2)", 0 };
static cilist io___30 = { 0, 6, 0, "(8F7.2,/)", 0 };
static cilist io___31 = { 0, 12, 0, "(8F7.2)", 0 };
static cilist io___32 = { 0, 12, 0, "(8F7.2,/)", 0 };
/* *********************************************************************** */
/* Written by Manyin Yi, Aug 1989. */
/* Restartable reaction_path calulation. */
/* The number of path_step and step value are read in through */
/* keyword POINT and STEP. */
/* The reaction profile is archived. */
/* *********************************************************************** */
/* COMDECK SIZES */
/* *********************************************************************** */
/* THIS FILE CONTAINS ALL THE ARRAY SIZES FOR USE IN MOPAC. */
/* THERE ARE ONLY 5 PARAMETERS THAT THE PROGRAMMER NEED SET: */
/* MAXHEV = MAXIMUM NUMBER OF HEAVY ATOMS (HEAVY: NON-HYDROGEN ATOMS) */
/* MAXLIT = MAXIMUM NUMBER OF HYDROGEN ATOMS. */
/* MAXTIM = DEFAULT TIME FOR A JOB. (SECONDS) */
/* MAXDMP = DEFAULT TIME FOR AUTOMATIC RESTART FILE GENERATION (SECS) */
/* ISYBYL = 1 IF MOPAC IS TO BE USED IN THE SYBYL PACKAGE, =0 OTHERWISE */
/* SEE ALSO NMECI, NPULAY AND MESP AT THE END OF THIS FILE */
/* *********************************************************************** */
/* THE FOLLOWING CODE DOES NOT NEED TO BE ALTERED BY THE PROGRAMMER */
/* *********************************************************************** */
/* ALL OTHER PARAMETERS ARE DERIVED FUNCTIONS OF THESE TWO PARAMETERS */
/* NAME DEFINITION */
/* NUMATM MAXIMUM NUMBER OF ATOMS ALLOWED. */
/* MAXORB MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXPAR MAXIMUM NUMBER OF PARAMETERS FOR OPTIMISATION. */
/* N2ELEC MAXIMUM NUMBER OF TWO ELECTRON INTEGRALS ALLOWED. */
/* MPACK AREA OF LOWER HALF TRIANGLE OF DENSITY MATRIX. */
/* MORB2 SQUARE OF THE MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXHES AREA OF HESSIAN MATRIX */
/* MAXALL LARGER THAN MAXORB OR MAXPAR. */
/* *********************************************************************** */
/* *********************************************************************** */
/* DECK MOPAC */
/* ***** Modified by Jiro Toyoda at 1994-05-25 ***** */
/* COMMON /PROFIL/ PROFIL */
/* ***************************** at 1994-05-25 ***** */
i__1 = i_indx(keywrd_1.keywrd, "STEP", (ftnlen)241, (ftnlen)4) + 5;
step = reada_(keywrd_1.keywrd, &i__1, (ftnlen)241);
i__1 = i_indx(keywrd_1.keywrd, "POINT", (ftnlen)241, (ftnlen)5) + 6;
npts = (integer) reada_(keywrd_1.keywrd, &i__1, (ftnlen)241);
/* THE SMALLEST VALUE IN THE PATH IS */
/* REACT(1) DEGREE OR GEO(LPARAM,LATOM) RADIANS */
degree = 57.29577951307855;
if (path_1.lparam != 1) {
step /= degree;
}
/* NOW TO SWEEP THROUGH THE PATH */
if (path_1.lparam != 1) {
c1 = degree;
} else {
c1 = 1.;
}
kloop_1.kloop = 1;
cputot = 0.;
pparam_1.currt = geom_1.geo[path_1.lparam + path_1.latom * 3 - 4];
profic_1.profil[0] = 0.;
if (i_indx(keywrd_1.keywrd, "RESTART", (ftnlen)241, (ftnlen)7) != 0) {
mdfp[8] = 0;
dfpsav_(&cputot, geovar_1.xparam, gd, xlast, &escf, mdfp, xdfp);
s_wsfe(&io___11);
do_fio(&c__1, (char *)&kloop_1.kloop, (ftnlen)sizeof(integer));
e_wsfe();
}
geom_1.geo[path_1.lparam + path_1.latom * 3 - 4] = pparam_1.currt;
i__1 = npts;
for (iloop = kloop_1.kloop; iloop <= i__1; ++iloop) {
cpu1 = second_();
pparam_1.currt = geom_1.geo[path_1.lparam + path_1.latom * 3 - 4];
flepo_(geovar_1.xparam, &geovar_1.nvar, &escf);
++kloop_1.kloop;
cpu2 = second_();
cpu3 = cpu2 - cpu1;
cputot += cpu3;
profic_1.profil[iloop - 1] = escf;
s_wsfe(&io___16);
e_wsfe();
s_wsfe(&io___17);
d__1 = geom_1.geo[path_1.lparam + path_1.latom * 3 - 4] * c1;
do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(doublereal));
do_fio(&c__1, (char *)&escf, (ftnlen)sizeof(doublereal));
e_wsfe();
geout_(&c__6);
geom_1.geo[path_1.lparam + path_1.latom * 3 - 4] += step;
/* L10: */
}
i__1 = npts;
for (i__ = 2; i__ <= i__1; ++i__) {
/* L20: */
path_1.react[i__ - 1] = path_1.react[i__ - 2] + step * c1;
}
s_wsfe(&io___19);
e_wsfe();
o__1.oerr = 0;
o__1.ounit = 12;
o__1.ofnmlen = 80;
getnam_(ch__1, (ftnlen)80, "FOR012", (ftnlen)6);
o__1.ofnm = ch__1;
o__1.orl = 0;
o__1.osta = "UNKNOWN";
o__1.oacc = 0;
o__1.ofm = 0;
o__1.oblnk = 0;
f_open(&o__1);
s_wsfe(&io___20);
e_wsfe();
wrttxt_(&c__12);
s_wsfe(&io___21);
do_fio(&c__1, (char *)&cputot, (ftnlen)sizeof(doublereal));
e_wsfe();
l = npts / 8;
m = npts - (l << 3);
if (l < 1) {
goto L50;
}
i__1 = l - 1;
for (k = 0; k <= i__1; ++k) {
s_wsfe(&io___25);
i__2 = (k << 3) + 8;
for (i__ = (k << 3) + 1; i__ <= i__2; ++i__) {
do_fio(&c__1, (char *)&path_1.react[i__ - 1], (ftnlen)sizeof(
doublereal));
}
e_wsfe();
s_wsfe(&io___26);
i__2 = (k << 3) + 8;
for (i__ = (k << 3) + 1; i__ <= i__2; ++i__) {
do_fio(&c__1, (char *)&profic_1.profil[i__ - 1], (ftnlen)sizeof(
doublereal));
}
e_wsfe();
s_wsfe(&io___27);
i__2 = (k << 3) + 8;
for (i__ = (k << 3) + 1; i__ <= i__2; ++i__) {
do_fio(&c__1, (char *)&path_1.react[i__ - 1], (ftnlen)sizeof(
doublereal));
}
e_wsfe();
/* L40: */
s_wsfe(&io___28);
i__2 = (k << 3) + 8;
for (i__ = (k << 3) + 1; i__ <= i__2; ++i__) {
do_fio(&c__1, (char *)&profic_1.profil[i__ - 1], (ftnlen)sizeof(
doublereal));
}
e_wsfe();
}
L50:
if (m > 0) {
s_wsfe(&io___29);
i__2 = (l << 3) + m;
for (i__ = (l << 3) + 1; i__ <= i__2; ++i__) {
do_fio(&c__1, (char *)&path_1.react[i__ - 1], (ftnlen)sizeof(
doublereal));
}
e_wsfe();
s_wsfe(&io___30);
i__2 = (l << 3) + m;
for (i__ = (l << 3) + 1; i__ <= i__2; ++i__) {
do_fio(&c__1, (char *)&profic_1.profil[i__ - 1], (ftnlen)sizeof(
doublereal));
}
e_wsfe();
s_wsfe(&io___31);
i__2 = (l << 3) + m;
for (i__ = (l << 3) + 1; i__ <= i__2; ++i__) {
do_fio(&c__1, (char *)&path_1.react[i__ - 1], (ftnlen)sizeof(
doublereal));
}
e_wsfe();
s_wsfe(&io___32);
i__2 = (l << 3) + m;
for (i__ = (l << 3) + 1; i__ <= i__2; ++i__) {
do_fio(&c__1, (char *)&profic_1.profil[i__ - 1], (ftnlen)sizeof(
doublereal));
}
e_wsfe();
}
return 0;
} /* pathk_ */
|