File: react1.c

package info (click to toggle)
ghemical 0.82-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 9,448 kB
  • ctags: 18,571
  • sloc: ansic: 68,828; cpp: 51,774; fortran: 35,324; sh: 2,505; makefile: 475; perl: 70
file content (826 lines) | stat: -rw-r--r-- 24,038 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
/* react1.f -- translated by f2c (version 19991025).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    doublereal geo[360]	/* was [3][120] */, xcoord[360]	/* was [3][120] */;
} geom_;

#define geom_1 geom_

struct {
    integer natoms, labels[120], na[120], nb[120], nc[120];
} geokst_;

#define geokst_1 geokst_

struct {
    doublereal p[45150], pa[45150], pb[45150];
} densty_;

#define densty_1 densty_

struct {
    integer ndep, locpar[360], idepfn[360], locdep[360];
} geosym_;

#define geosym_1 geosym_

struct {
    integer nvar, loc[720]	/* was [2][360] */, idumy;
    doublereal xparam[360];
} geovar_;

#define geovar_1 geovar_

struct {
    doublereal grad[360], gnorm;
} gradnt_;

#define gradnt_1 gradnt_

struct {
    doublereal ams[107];
} istope_;

#define istope_1 istope_

struct {
    doublereal cosine;
} gravec_;

#define gravec_1 gravec_

struct {
    char keywrd[241];
} keywrd_;

#define keywrd_1 keywrd_

struct {
    integer iflepo, iscf;
} mesage_;

#define mesage_1 mesage_

struct {
    integer numat, nat[120], nfirst[120], nmidle[120], nlast[120], norbs, 
	    nelecs, nalpha, nbeta, nclose, nopen, ndumy;
    doublereal fract;
} molkst_;

#define molkst_1 molkst_

struct {
    doublereal step, geoa[360]	/* was [3][120] */, geovec[360]	/* was [3][
	    120] */, calcst;
} reactn_;

#define reactn_1 reactn_

/* Table of constant values */

static integer c__5 = 5;
static integer c__1 = 1;
static doublereal c_b64 = 4.;
static logical c_true = TRUE_;
static integer c__6 = 6;

/* Subroutine */ int react1_(escf)
doublereal *escf;
{
    /* Initialized data */

    static integer irot[6]	/* was [2][3] */ = { 1,2,1,3,2,3 };

    /* System generated locals */
    integer i__1, i__2;
    doublereal d__1, d__2, d__3;
    static doublereal equiv_0[360];

    /* Builtin functions */
    integer i_indx(), s_wsfe(), e_wsfe(), do_fio();
    /* Subroutine */ int s_stop();
    double pow_di(), cos(), sqrt();

    /* Local variables */
    static doublereal dell, eold, gold, xold[360], swap, summ, sumx, sumy, 
	    sumz, time0;
    static integer idum1[120], idum2[120], idum3[120];
    static doublereal time1, time2, step0;
    static integer i__, j, k;
    extern doublereal reada_();
    static integer l, iflag;
    static doublereal x;
    extern /* Subroutine */ int flepo_();
#define coord (equiv_0)
    static doublereal grold[360];
    extern /* Subroutine */ int geout_();
    static integer iloop;
    static doublereal c1, c2, funct1, ca;
    static integer numat2;
    static doublereal sa;
    static integer ir, jr;
    static logical gradnt, finish;
    static integer linear;
    extern /* Subroutine */ int getgeo_();
    extern doublereal second_();
    extern /* Subroutine */ int compfg_();
#define idummy ((integer *)equiv_0)
    extern /* Subroutine */ int gmetry_();
    static real pastor[45150], pbstor[45150];
    static integer maxstp;
    static doublereal stepmx;
    extern /* Subroutine */ int writmo_();
    static doublereal xstore[360];
    extern /* Subroutine */ int symtry_();
    static logical gok[2];
    static doublereal one;
    extern doublereal dot_();
    static logical int__;
    static doublereal sum;
    static logical xyz;

    /* Fortran I/O blocks */
    static cilist io___18 = { 0, 6, 0, "(10X,'ERRORS DETECTED IN CONNECTIVIT\
Y')", 0 };
    static cilist io___19 = { 0, 6, 0, "(A,I3,A,I3,A,I3,A)", 0 };
    static cilist io___20 = { 0, 6, 0, "(10X,'ERRORS DETECTED IN CONNECTIVIT\
Y')", 0 };
    static cilist io___21 = { 0, 6, 0, "(A,I3,A,I3,A,I3,A)", 0 };
    static cilist io___22 = { 0, 6, 0, "(10X,'ERRORS DETECTED IN CONNECTIVIT\
Y')", 0 };
    static cilist io___23 = { 0, 6, 0, "(A,I3,A,I3,A,I3,A)", 0 };
    static cilist io___24 = { 0, 6, 0, "(10X,A)", 0 };
    static cilist io___28 = { 0, 6, 0, "(//10X,' NUMBER OF ATOMS IN SECOND S\
YSTEM IS ',     'INCORRECT',/)", 0 };
    static cilist io___29 = { 0, 6, 0, "(' NUMBER OF ATOMS IN FIRST  SYSTEM \
=',I4)", 0 };
    static cilist io___30 = { 0, 6, 0, "(' NUMBER OF ATOMS IN SECOND SYSTEM \
=',I4)", 0 };
    static cilist io___31 = { 0, 6, 0, "(//10X,' GEOMETRY OF SECOND SYSTEM',\
/)", 0 };
    static cilist io___36 = { 0, 6, 0, "(//,'  CARTESIAN GEOMETRY OF FIRST S\
YSTEM',//)", 0 };
    static cilist io___37 = { 0, 6, 0, "(3F14.5)", 0 };
    static cilist io___45 = { 0, 6, 0, "(//,'  CARTESIAN GEOMETRY OF SECOND \
SYSTEM',//)", 0 };
    static cilist io___46 = { 0, 6, 0, "(3F14.5)", 0 };
    static cilist io___47 = { 0, 6, 0, "(//,'   \"DISTANCE\":',F13.6)", 0 };
    static cilist io___48 = { 0, 6, 0, "(//,'  REACTION COORDINATE VECTOR',/\
/)", 0 };
    static cilist io___49 = { 0, 6, 0, "(3F14.5)", 0 };
    static cilist io___50 = { 0, 6, 0, "(///10X,'THERE ARE NO VARIABLES IN T\
HE SADDLE',     ' CALCULATION!')", 0 };
    static cilist io___54 = { 0, 6, 0, "(//,3(5X,A,/))", 0 };
    static cilist io___61 = { 0, 6, 0, "(' ',40('*+'))", 0 };
    static cilist io___62 = { 0, 6, 0, "('  BAR SHORTENED BY',F12.7,' PERCEN\
T')", 0 };
    static cilist io___66 = { 0, 6, 0, "(//10X,'FOR POINT',I3,' SECOND STRUC\
TURE')", 0 };
    static cilist io___67 = { 0, 6, 0, "(//10X,'FOR POINT',I3,' FIRST  STRUC\
TURE')", 0 };
    static cilist io___68 = { 0, 6, 0, "(' DISTANCE A - B  ',F12.6)", 0 };
    static cilist io___70 = { 0, 6, 0, "('  ACTUAL GRADIENTS OF THIS POINT')",
	     0 };
    static cilist io___71 = { 0, 6, 0, "(8F10.4)", 0 };
    static cilist io___72 = { 0, 6, 0, "(' HEAT            ',F12.6)", 0 };
    static cilist io___73 = { 0, 6, 0, "(' GRADIENT NORM   ',F12.6)", 0 };
    static cilist io___74 = { 0, 6, 0, "(' DIRECTION COSINE',F12.6)", 0 };
    static cilist io___76 = { 0, 6, 0, "(//10X,' BOTH SYSTEMS ARE ON THE SAM\
E SIDE OF THE ','TRANSITION STATE -',/10X,' GEOMETRIES OF THE SYSTEMS', ' ON\
 EACH SIDE OF THE T.S. ARE AS FOLLOWS')", 0 };
    static cilist io___77 = { 0, 6, 0, "(//10X,' GEOMETRY ON ONE SIDE OF THE\
 TRANSITION',' STATE')", 0 };
    static cilist io___79 = { 0, 6, 0, "(' TIME=',F9.2)", 0 };
    static cilist io___80 = { 0, 6, 0, "('  REACTANTS AND PRODUCTS SWAPPED A\
ROUND')", 0 };
    static cilist io___81 = { 0, 6, 0, "(' AT END OF REACTION')", 0 };
    static cilist io___84 = { 0, 6, 0, "(' BEST ESTIMATE GEOMETRY OF THE TRA\
NSITION STATE')", 0 };
    static cilist io___85 = { 0, 6, 0, "(//10X,' C1=',F8.3,'C2=',F8.3)", 0 };


/* COMDECK SIZES */
/* *********************************************************************** */
/*   THIS FILE CONTAINS ALL THE ARRAY SIZES FOR USE IN MOPAC. */

/*     THERE ARE ONLY 5 PARAMETERS THAT THE PROGRAMMER NEED SET: */
/*     MAXHEV = MAXIMUM NUMBER OF HEAVY ATOMS (HEAVY: NON-HYDROGEN ATOMS) */
/*     MAXLIT = MAXIMUM NUMBER OF HYDROGEN ATOMS. */
/*     MAXTIM = DEFAULT TIME FOR A JOB. (SECONDS) */
/*     MAXDMP = DEFAULT TIME FOR AUTOMATIC RESTART FILE GENERATION (SECS) */
/*     ISYBYL = 1 IF MOPAC IS TO BE USED IN THE SYBYL PACKAGE, =0 OTHERWISE */
/*     SEE ALSO NMECI, NPULAY AND MESP AT THE END OF THIS FILE */


/* *********************************************************************** */

/*   THE FOLLOWING CODE DOES NOT NEED TO BE ALTERED BY THE PROGRAMMER */

/* *********************************************************************** */

/*    ALL OTHER PARAMETERS ARE DERIVED FUNCTIONS OF THESE TWO PARAMETERS */

/*      NAME                   DEFINITION */
/*     NUMATM         MAXIMUM NUMBER OF ATOMS ALLOWED. */
/*     MAXORB         MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/*     MAXPAR         MAXIMUM NUMBER OF PARAMETERS FOR OPTIMISATION. */
/*     N2ELEC         MAXIMUM NUMBER OF TWO ELECTRON INTEGRALS ALLOWED. */
/*     MPACK          AREA OF LOWER HALF TRIANGLE OF DENSITY MATRIX. */
/*     MORB2          SQUARE OF THE MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/*     MAXHES         AREA OF HESSIAN MATRIX */
/*     MAXALL         LARGER THAN MAXORB OR MAXPAR. */
/* *********************************************************************** */

/* *********************************************************************** */
/* DECK MOPAC */
/* *********************************************************************** */

/*  REACT1 DETERMINES THE TRANSITION STATE OF A CHEMICAL REACTION. */

/*   REACT WORKS BY USING TWO SYSTEMS SIMULTANEOUSLY, THE HEATS OF */
/*   FORMATION OF BOTH ARE CALCULATED, THEN THE MORE STABLE ONE */
/*   IS MOVED IN THE DIRECTION OF THE OTHER. AFTER A STEP THE */
/*   ENERGIES ARE COMPARED, AND THE NOW LOWER-ENERGY FORM IS MOVED */
/*   IN THE DIRECTION OF THE HIGHER-ENERGY FORM. THIS IS REPEATED */
/*   UNTIL THE SADDLE POINT IS REACHED. */

/*   IF ONE FORM IS MOVED 3 TIMES IN SUCCESSION, THEN THE HIGHER ENERGY */
/*   FORM IS RE-OPTIMIZED WITHOUT SHORTENING THE DISTANCE BETWEEN THE TWO */
/*   FORMS. THIS REDUCES THE CHANCE OF BEING CAUGHT ON THE SIDE OF A */
/*   TRANSITION STATE. */

/* *********************************************************************** */
    gold = 0.;
    linear = 0;
    iflag = 1;
    gok[0] = FALSE_;
    gok[1] = FALSE_;
    xyz = i_indx(keywrd_1.keywrd, " XYZ", (ftnlen)241, (ftnlen)4) != 0;
    gradnt = i_indx(keywrd_1.keywrd, "GRAD", (ftnlen)241, (ftnlen)4) != 0;
    i__ = i_indx(keywrd_1.keywrd, " BAR", (ftnlen)241, (ftnlen)4);
    stepmx = .15;
    if (i__ != 0) {
	stepmx = reada_(keywrd_1.keywrd, &i__, (ftnlen)241);
    }
    maxstp = 1000;

/*    READ IN THE SECOND GEOMETRY. */

    if (xyz) {
	getgeo_(&c__5, geokst_1.labels, reactn_1.geoa, geovar_1.loc, 
		geokst_1.na, geokst_1.nb, geokst_1.nc, istope_1.ams, &
		geokst_1.natoms, &int__);
    } else {
	getgeo_(&c__5, idum1, reactn_1.geoa, idummy, idum1, idum2, idum3, 
		istope_1.ams, &geokst_1.natoms, &int__);

/*  IF INTERNAL COORDINATES ARE TO BE USED, CHECK THE CONNECTIVITY */

	l = 0;
	i__1 = geokst_1.natoms;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (idum1[i__ - 1] != geokst_1.na[i__ - 1]) {
		++l;
		if (l == 1) {
		    s_wsfe(&io___18);
		    e_wsfe();
		}
		s_wsfe(&io___19);
		do_fio(&c__1, " FOR ATOM", (ftnlen)9);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, " THE BOND LABELS ARE DIFFERENT:      ", (
			ftnlen)37);
		do_fio(&c__1, (char *)&idum1[i__ - 1], (ftnlen)sizeof(integer)
			);
		do_fio(&c__1, " AND", (ftnlen)4);
		do_fio(&c__1, (char *)&geokst_1.na[i__ - 1], (ftnlen)sizeof(
			integer));
		e_wsfe();
	    }
	    if (idum2[i__ - 1] != geokst_1.nb[i__ - 1]) {
		++l;
		if (l == 1) {
		    s_wsfe(&io___20);
		    e_wsfe();
		}
		s_wsfe(&io___21);
		do_fio(&c__1, " FOR ATOM", (ftnlen)9);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, " THE BOND ANGLE LABELS ARE DIFFERENT:", (
			ftnlen)37);
		do_fio(&c__1, (char *)&idum2[i__ - 1], (ftnlen)sizeof(integer)
			);
		do_fio(&c__1, " AND", (ftnlen)4);
		do_fio(&c__1, (char *)&geokst_1.nb[i__ - 1], (ftnlen)sizeof(
			integer));
		e_wsfe();
	    }
	    if (idum3[i__ - 1] != geokst_1.nc[i__ - 1]) {
		++l;
		if (l == 1) {
		    s_wsfe(&io___22);
		    e_wsfe();
		}
		s_wsfe(&io___23);
		do_fio(&c__1, " FOR ATOM", (ftnlen)9);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, " THE DIHEDRAL LABELS ARE DIFFERENT:  ", (
			ftnlen)37);
		do_fio(&c__1, (char *)&idum3[i__ - 1], (ftnlen)sizeof(integer)
			);
		do_fio(&c__1, " AND", (ftnlen)4);
		do_fio(&c__1, (char *)&geokst_1.nc[i__ - 1], (ftnlen)sizeof(
			integer));
		e_wsfe();
	    }
/* L10: */
	}
	if (l != 0) {
	    s_wsfe(&io___24);
	    do_fio(&c__1, " CORRECT BEFORE RESUBMISSION", (ftnlen)28);
	    e_wsfe();
	}
	if (l != 0) {
	    s_stop("", (ftnlen)0);
	}
    }
    time0 = second_();

/*  SWAP FIRST AND SECOND GEOMETRIES AROUND */
/*  SO THAT GEOUT CAN OUTPUT DATA ON SECOND GEOMETRY. */

    numat2 = 0;
    i__1 = geokst_1.natoms;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (geokst_1.labels[i__ - 1] != 99) {
	    ++numat2;
	}
	x = reactn_1.geoa[i__ * 3 - 3];
	reactn_1.geoa[i__ * 3 - 3] = geom_1.geo[i__ * 3 - 3];
	geom_1.geo[i__ * 3 - 3] = x;
	x = reactn_1.geoa[i__ * 3 - 2] * .0174532925;
	reactn_1.geoa[i__ * 3 - 2] = geom_1.geo[i__ * 3 - 2];
	geom_1.geo[i__ * 3 - 2] = x;
	x = reactn_1.geoa[i__ * 3 - 1] * .0174532925;
	reactn_1.geoa[i__ * 3 - 1] = geom_1.geo[i__ * 3 - 1];
	geom_1.geo[i__ * 3 - 1] = x;
/* L20: */
    }
    if (numat2 != molkst_1.numat) {
	s_wsfe(&io___28);
	e_wsfe();
	s_wsfe(&io___29);
	do_fio(&c__1, (char *)&molkst_1.numat, (ftnlen)sizeof(integer));
	e_wsfe();
	s_wsfe(&io___30);
	do_fio(&c__1, (char *)&numat2, (ftnlen)sizeof(integer));
	e_wsfe();
	goto L280;
    }
    s_wsfe(&io___31);
    e_wsfe();
    if (geosym_1.ndep != 0) {
	symtry_();
    }
    geout_(&c__1);

/*     CONVERT TO CARTESIAN, IF NECESSARY */

    if (xyz) {
	gmetry_(geom_1.geo, coord);
	sumx = 0.;
	sumy = 0.;
	sumz = 0.;
	i__1 = molkst_1.numat;
	for (j = 1; j <= i__1; ++j) {
	    sumx += coord[j * 3 - 3];
	    sumy += coord[j * 3 - 2];
/* L30: */
	    sumz += coord[j * 3 - 1];
	}
	sumx /= molkst_1.numat;
	sumy /= molkst_1.numat;
	sumz /= molkst_1.numat;
	i__1 = molkst_1.numat;
	for (j = 1; j <= i__1; ++j) {
	    geom_1.geo[j * 3 - 3] = coord[j * 3 - 3] - sumx;
	    geom_1.geo[j * 3 - 2] = coord[j * 3 - 2] - sumy;
/* L40: */
	    geom_1.geo[j * 3 - 1] = coord[j * 3 - 1] - sumz;
	}
	s_wsfe(&io___36);
	e_wsfe();
	s_wsfe(&io___37);
	i__1 = molkst_1.numat;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    for (j = 1; j <= 3; ++j) {
		do_fio(&c__1, (char *)&geom_1.geo[j + i__ * 3 - 4], (ftnlen)
			sizeof(doublereal));
	    }
	}
	e_wsfe();
	sumx = 0.;
	sumy = 0.;
	sumz = 0.;
	i__1 = molkst_1.numat;
	for (j = 1; j <= i__1; ++j) {
	    sumx += reactn_1.geoa[j * 3 - 3];
	    sumy += reactn_1.geoa[j * 3 - 2];
/* L50: */
	    sumz += reactn_1.geoa[j * 3 - 1];
	}
	sum = 0.;
	sumx /= molkst_1.numat;
	sumy /= molkst_1.numat;
	sumz /= molkst_1.numat;
	i__1 = molkst_1.numat;
	for (j = 1; j <= i__1; ++j) {
	    reactn_1.geoa[j * 3 - 3] -= sumx;
	    reactn_1.geoa[j * 3 - 2] -= sumy;
	    reactn_1.geoa[j * 3 - 1] -= sumz;
/* Computing 2nd power */
	    d__1 = geom_1.geo[j * 3 - 3] - reactn_1.geoa[j * 3 - 3];
/* Computing 2nd power */
	    d__2 = geom_1.geo[j * 3 - 2] - reactn_1.geoa[j * 3 - 2];
/* Computing 2nd power */
	    d__3 = geom_1.geo[j * 3 - 1] - reactn_1.geoa[j * 3 - 1];
	    sum = sum + d__1 * d__1 + d__2 * d__2 + d__3 * d__3;
/* L60: */
	}
	for (l = 3; l >= 1; --l) {

/*     DOCKING IS DONE IN STEPS OF 16, 4, AND 1 DEGREES AT A TIME. */

	    i__1 = l - 1;
	    ca = cos(pow_di(&c_b64, &i__1) * .01745329);
/* Computing 2nd power */
	    d__2 = ca;
	    sa = sqrt((d__1 = 1. - d__2 * d__2, abs(d__1)));
	    for (j = 1; j <= 3; ++j) {
		ir = irot[(j << 1) - 2];
		jr = irot[(j << 1) - 1];
		for (i__ = 1; i__ <= 10; ++i__) {
		    summ = 0.;
		    i__1 = molkst_1.numat;
		    for (k = 1; k <= i__1; ++k) {
			x = ca * reactn_1.geoa[ir + k * 3 - 4] + sa * 
				reactn_1.geoa[jr + k * 3 - 4];
			reactn_1.geoa[jr + k * 3 - 4] = -sa * reactn_1.geoa[
				ir + k * 3 - 4] + ca * reactn_1.geoa[jr + k * 
				3 - 4];
			reactn_1.geoa[ir + k * 3 - 4] = x;
/* Computing 2nd power */
			d__1 = geom_1.geo[k * 3 - 3] - reactn_1.geoa[k * 3 - 
				3];
/* Computing 2nd power */
			d__2 = geom_1.geo[k * 3 - 2] - reactn_1.geoa[k * 3 - 
				2];
/* Computing 2nd power */
			d__3 = geom_1.geo[k * 3 - 1] - reactn_1.geoa[k * 3 - 
				1];
			summ = summ + d__1 * d__1 + d__2 * d__2 + d__3 * d__3;
/* L70: */
		    }
		    if (summ > sum) {
			if (i__ > 1) {
			    sa = -sa;
			    i__1 = molkst_1.numat;
			    for (k = 1; k <= i__1; ++k) {
				x = ca * reactn_1.geoa[ir + k * 3 - 4] + sa * 
					reactn_1.geoa[jr + k * 3 - 4];
				reactn_1.geoa[jr + k * 3 - 4] = -sa * 
					reactn_1.geoa[ir + k * 3 - 4] + ca * 
					reactn_1.geoa[jr + k * 3 - 4];
				reactn_1.geoa[ir + k * 3 - 4] = x;
/* L80: */
			    }
			    goto L100;
			}
			sa = -sa;
		    }
/* L90: */
		    sum = summ;
		}
L100:
		;
	    }
/* L110: */
	}
	s_wsfe(&io___45);
	e_wsfe();
	s_wsfe(&io___46);
	i__1 = molkst_1.numat;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    for (j = 1; j <= 3; ++j) {
		do_fio(&c__1, (char *)&reactn_1.geoa[j + i__ * 3 - 4], (
			ftnlen)sizeof(doublereal));
	    }
	}
	e_wsfe();
	s_wsfe(&io___47);
	do_fio(&c__1, (char *)&sum, (ftnlen)sizeof(doublereal));
	e_wsfe();
	s_wsfe(&io___48);
	e_wsfe();
	s_wsfe(&io___49);
	i__1 = molkst_1.numat;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    for (j = 1; j <= 3; ++j) {
		d__1 = reactn_1.geoa[j + i__ * 3 - 4] - geom_1.geo[j + i__ * 
			3 - 4];
		do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(doublereal));
	    }
	}
	e_wsfe();
	geokst_1.na[0] = 99;
	j = 0;
	geovar_1.nvar = 0;
	i__1 = geokst_1.natoms;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (geokst_1.labels[i__ - 1] != 99) {
		++j;
		for (k = 1; k <= 3; ++k) {
		    ++geovar_1.nvar;
		    geovar_1.loc[(geovar_1.nvar << 1) - 1] = k;
/* L120: */
		    geovar_1.loc[(geovar_1.nvar << 1) - 2] = j;
		}
		geokst_1.labels[j - 1] = geokst_1.labels[i__ - 1];
	    }
/* L130: */
	}
	geokst_1.natoms = molkst_1.numat;
    }

/*   XPARAM HOLDS THE VARIABLE PARAMETERS FOR GEOMETRY IN GEO */
/*   XOLD   HOLDS THE VARIABLE PARAMETERS FOR GEOMETRY IN GEOA */

    if (geovar_1.nvar == 0) {
	s_wsfe(&io___50);
	e_wsfe();
	s_stop("", (ftnlen)0);
    }
    sum = 0.;
    i__1 = geovar_1.nvar;
    for (i__ = 1; i__ <= i__1; ++i__) {
	grold[i__ - 1] = 1.;
	geovar_1.xparam[i__ - 1] = geom_1.geo[geovar_1.loc[(i__ << 1) - 1] + 
		geovar_1.loc[(i__ << 1) - 2] * 3 - 4];
	xold[i__ - 1] = reactn_1.geoa[geovar_1.loc[(i__ << 1) - 1] + 
		geovar_1.loc[(i__ << 1) - 2] * 3 - 4];
/* L140: */
/* Computing 2nd power */
	d__1 = geovar_1.xparam[i__ - 1] - xold[i__ - 1];
	sum += d__1 * d__1;
    }
    step0 = sqrt(sum);
    if (step0 < 1e-5) {
	s_wsfe(&io___54);
	do_fio(&c__1, " BOTH GEOMETRIES ARE IDENTICAL", (ftnlen)30);
	do_fio(&c__1, " A SADDLE CALCULATION INVOLVES A REACTANT AND A PRODU\
CT", (ftnlen)55);
	do_fio(&c__1, " THESE MUST BE DIFFERENT GEOMETRIES", (ftnlen)35);
	e_wsfe();
	s_stop("", (ftnlen)0);
    }
    one = 1.;
    dell = .1;
    eold = -2e3;
    time1 = second_();
    swap = 0.;
    i__1 = maxstp;
    for (iloop = 1; iloop <= i__1; ++iloop) {
	s_wsfe(&io___61);
	e_wsfe();

/*   THIS METHOD OF CALCULATING 'STEP' IS QUITE ARBITARY, AND NEEDS */
/*   TO BE IMPROVED BY INTELLIGENT GUESSWORK! */

	if (gradnt_1.gnorm < .001) {
	    gradnt_1.gnorm = .001;
	}
/* Computing MIN */
	d__1 = min(swap,.5), d__2 = 6. / gradnt_1.gnorm, d__1 = min(d__1,d__2)
		, d__1 = min(d__1,dell), d__2 = stepmx * step0 + .005;
	reactn_1.step = min(d__1,d__2);
/* Computing MIN */
	d__1 = .2, d__2 = reactn_1.step / step0;
	reactn_1.step = min(d__1,d__2) * step0;
	swap += 1.;
	dell += .1;
	s_wsfe(&io___62);
	d__1 = reactn_1.step / step0 * 100.;
	do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(doublereal));
	e_wsfe();
	step0 -= reactn_1.step;
	if (step0 < .01) {
	    goto L250;
	}
	reactn_1.step = step0;
	i__2 = geovar_1.nvar;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* L150: */
	    xstore[i__ - 1] = geovar_1.xparam[i__ - 1];
	}
	flepo_(geovar_1.xparam, &geovar_1.nvar, escf);
	if (linear == 0) {
	    linear = molkst_1.norbs * (molkst_1.norbs + 1) / 2;
	    i__2 = linear;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		pastor[i__ - 1] = densty_1.pa[i__ - 1];
/* L160: */
		pbstor[i__ - 1] = densty_1.pb[i__ - 1];
	    }
	}
	i__2 = geovar_1.nvar;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* L170: */
	    geovar_1.xparam[i__ - 1] = geom_1.geo[geovar_1.loc[(i__ << 1) - 1]
		     + geovar_1.loc[(i__ << 1) - 2] * 3 - 4];
	}
	if (iflag == 1) {
	    s_wsfe(&io___66);
	    do_fio(&c__1, (char *)&iloop, (ftnlen)sizeof(integer));
	    e_wsfe();
	} else {
	    s_wsfe(&io___67);
	    do_fio(&c__1, (char *)&iloop, (ftnlen)sizeof(integer));
	    e_wsfe();
	}
	s_wsfe(&io___68);
	do_fio(&c__1, (char *)&reactn_1.step, (ftnlen)sizeof(doublereal));
	e_wsfe();

/*   NOW TO CALCULATE THE "CORRECT" GRADIENTS, SWITCH OFF 'STEP'. */

	reactn_1.step = 0.;
	i__2 = geovar_1.nvar;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* L180: */
	    gradnt_1.grad[i__ - 1] = grold[i__ - 1];
	}
	compfg_(geovar_1.xparam, &c_true, &funct1, &c_true, gradnt_1.grad, &
		c_true);
	i__2 = geovar_1.nvar;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* L190: */
	    grold[i__ - 1] = gradnt_1.grad[i__ - 1];
	}
	if (gradnt) {
	    s_wsfe(&io___70);
	    e_wsfe();
	    s_wsfe(&io___71);
	    i__2 = geovar_1.nvar;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		do_fio(&c__1, (char *)&gradnt_1.grad[i__ - 1], (ftnlen)sizeof(
			doublereal));
	    }
	    e_wsfe();
	}
	s_wsfe(&io___72);
	do_fio(&c__1, (char *)&funct1, (ftnlen)sizeof(doublereal));
	e_wsfe();
	gradnt_1.gnorm = sqrt(dot_(gradnt_1.grad, gradnt_1.grad, &
		geovar_1.nvar));
	s_wsfe(&io___73);
	do_fio(&c__1, (char *)&gradnt_1.gnorm, (ftnlen)sizeof(doublereal));
	e_wsfe();
	gravec_1.cosine *= one;
	s_wsfe(&io___74);
	do_fio(&c__1, (char *)&gravec_1.cosine, (ftnlen)sizeof(doublereal));
	e_wsfe();
	geout_(&c__6);
	if (swap > 2.9 || iloop > 3 && gravec_1.cosine < 0. || *escf > eold) {
	    if (swap > 2.9) {
		swap = 0.;
	    } else {
		swap = .5;
	    }

/*   SWAP REACTANT AND PRODUCT AROUND */

	    finish = gok[0] && gok[1] && gravec_1.cosine < 0.;
	    if (finish) {
		s_wsfe(&io___76);
		e_wsfe();
		i__2 = geovar_1.nvar;
		for (i__ = 1; i__ <= i__2; ++i__) {
/* L200: */
		    geovar_1.xparam[i__ - 1] = xstore[i__ - 1];
		}
		compfg_(geovar_1.xparam, &c_true, &funct1, &c_true, 
			gradnt_1.grad, &c_true);
		s_wsfe(&io___77);
		e_wsfe();
		writmo_(&time0, &funct1);
	    }
	    time2 = second_();
	    s_wsfe(&io___79);
	    d__1 = time2 - time1;
	    do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(doublereal));
	    e_wsfe();
	    time1 = time2;
	    s_wsfe(&io___80);
	    e_wsfe();
	    iflag = 1 - iflag;
	    one = -1.;
	    eold = *escf;
	    sum = gold;
	    gold = gradnt_1.gnorm;
	    i__ = (integer) (one * .5 + 1.7);
	    if (gradnt_1.gnorm > 10.) {
		gok[i__ - 1] = TRUE_;
	    }
	    gradnt_1.gnorm = sum;
	    i__2 = geokst_1.natoms;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		for (j = 1; j <= 3; ++j) {
		    x = geom_1.geo[j + i__ * 3 - 4];
		    geom_1.geo[j + i__ * 3 - 4] = reactn_1.geoa[j + i__ * 3 - 
			    4];
/* L210: */
		    reactn_1.geoa[j + i__ * 3 - 4] = x;
		}
	    }
	    i__2 = geovar_1.nvar;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		x = xold[i__ - 1];
		xold[i__ - 1] = geovar_1.xparam[i__ - 1];
/* L220: */
		geovar_1.xparam[i__ - 1] = x;
	    }


/*    SWAP AROUND THE DENSITY MATRICES. */

	    i__2 = linear;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		x = pastor[i__ - 1];
		pastor[i__ - 1] = densty_1.pa[i__ - 1];
		densty_1.pa[i__ - 1] = x;
		x = pbstor[i__ - 1];
		pbstor[i__ - 1] = densty_1.pb[i__ - 1];
		densty_1.pb[i__ - 1] = x;
		densty_1.p[i__ - 1] = densty_1.pa[i__ - 1] + densty_1.pb[i__ 
			- 1];
/* L230: */
	    }
	    if (finish) {
		goto L250;
	    }
	} else {
	    one = 1.;
	}
/* L240: */
    }
L250:
    s_wsfe(&io___81);
    e_wsfe();
    gold = sqrt(dot_(gradnt_1.grad, gradnt_1.grad, &geovar_1.nvar));
    compfg_(geovar_1.xparam, &c_true, &funct1, &c_true, gradnt_1.grad, &
	    c_true);
    gradnt_1.gnorm = sqrt(dot_(gradnt_1.grad, gradnt_1.grad, &geovar_1.nvar));
    i__1 = geovar_1.nvar;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* L260: */
	grold[i__ - 1] = geovar_1.xparam[i__ - 1];
    }
    writmo_(&time0, &funct1);

/* THE GEOMETRIES HAVE (A) BEEN OPTIMIZED CORRECTLY, OR */
/*                     (B) BOTH ENDED UP ON THE SAME SIDE OF THE T.S. */

/*  TRANSITION STATE LIES BETWEEN THE TWO GEOMETRIES */

    c1 = gold / (gold + gradnt_1.gnorm);
    c2 = 1. - c1;
    s_wsfe(&io___84);
    e_wsfe();
    s_wsfe(&io___85);
    do_fio(&c__1, (char *)&c1, (ftnlen)sizeof(doublereal));
    do_fio(&c__1, (char *)&c2, (ftnlen)sizeof(doublereal));
    e_wsfe();
    i__1 = geovar_1.nvar;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* L270: */
	geovar_1.xparam[i__ - 1] = c1 * grold[i__ - 1] + c2 * xold[i__ - 1];
    }
    reactn_1.step = 0.;
    compfg_(geovar_1.xparam, &c_true, &funct1, &c_true, gradnt_1.grad, &
	    c_true);
    writmo_(&time0, &funct1);
L280:
    return 0;
} /* react1_ */

#undef idummy
#undef coord