File: ctransform.cpp

package info (click to toggle)
ghemical 0.82-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 9,448 kB
  • ctags: 18,571
  • sloc: ansic: 68,828; cpp: 51,774; fortran: 35,324; sh: 2,505; makefile: 475; perl: 70
file content (994 lines) | stat: -rw-r--r-- 31,501 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
/**********************************************************************
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
***********************************************************************/

//THIS
#include "ctransform.h"

namespace OpenBabel {

/*!
**\brief Constructor
*/
OBCoordTrans::OBCoordTrans()
  {
    _trans[0] = 0.0f; _trans[1] = 0.0f; _trans[2] = 0.0f;
    _euler[0] = 0.0f; _euler[1] = 0.0f; _euler[2] = 0.0f;
    _rmat[0] = 1.0f; _rmat[1] = 0.0f; _rmat[2] = 0.0f;
    _rmat[3] = 0.0f; _rmat[4] = 1.0f; _rmat[5] = 0.0f;
    _rmat[6] = 0.0f; _rmat[7] = 0.0f; _rmat[8] = 1.0f;
  }

/*!
**\brief Copy constructor
*/
OBCoordTrans::OBCoordTrans(const OBCoordTrans& cp)
  {
    *this = cp;
  }

/*!
**\brief Copy constructor
*/
OBCoordTrans::~OBCoordTrans()
  {
  }

/*!
**\brief Assignment operator
*/ 
OBCoordTrans& OBCoordTrans::operator=(const OBCoordTrans& cp)
  {
    _trans[0] = cp._trans[0];
    _trans[1] = cp._trans[1];
    _trans[2] = cp._trans[2];
    _euler[0] = cp._euler[0];
    _euler[1] = cp._euler[1];
    _euler[2] = cp._euler[2];
    _rmat[0] = cp._rmat[0];
    _rmat[1] = cp._rmat[1];
    _rmat[2] = cp._rmat[2];
    _rmat[3] = cp._rmat[3];
    _rmat[4] = cp._rmat[4];
    _rmat[5] = cp._rmat[5];
    _rmat[6] = cp._rmat[6];
    _rmat[7] = cp._rmat[7];
    _rmat[8] = cp._rmat[8];
    return *this;
  }

/*!
**\brief Clears the object as if it were just constructed
*/ 
void OBCoordTrans::Clear()
  {
    _trans[0] = 0.0f; _trans[1] = 0.0f; _trans[2] = 0.0f;
    _euler[0] = 0.0f; _euler[1] = 0.0f; _euler[2] = 0.0f;
    _rmat[0] = 1.0f; _rmat[1] = 0.0f; _rmat[2] = 0.0f;
    _rmat[3] = 0.0f; _rmat[4] = 1.0f; _rmat[5] = 0.0f;
    _rmat[6] = 0.0f; _rmat[7] = 0.0f; _rmat[8] = 1.0f;
  }

/*!
**\brief Writes the object to a binary character array
**\param ccc character array to write too (preallocated)
**\return The number of bytes written
*/
unsigned int OBCoordTrans::WriteBinary(char* ccc)
  {
    unsigned int idx=0;
    idx += OB_io_write_binary(&ccc[idx], (char*)&_trans[0], sizeof(float), 3);
    idx += OB_io_write_binary(&ccc[idx], (char*)&_euler[0], sizeof(float), 3);
    return idx;
  }

/*!
**\brief Reads the object from a binary character array
**\param ccc character array to read from (preallocated)
**\return the number of bytes read
*/
unsigned int OBCoordTrans::ReadBinary(char* ccc)
  {
    unsigned int idx=0;
    idx += OB_io_read_binary(&ccc[idx], (char*)&_trans[0], sizeof(float), 3);
    idx += OB_io_read_binary(&ccc[idx], (char*)&_euler[0], sizeof(float), 3);
    EulerToRmatrix(_euler,_rmat);
    return idx;
  }

/*!
**\brief Write the object to an output stream
**\param ostr The output stream
*/
void OBCoordTrans::WriteBinary(ostream& ostr)
  {
    OB_io_write_binary(ostr, (char*) &_trans[0], sizeof(float), 3);
    OB_io_write_binary(ostr, (char*) &_euler[0], sizeof(float), 3);
  }

/*!
**\brief Read the object from an input stream
**\param istr The input stream
*/
void OBCoordTrans::ReadBinary(istream& istr)
  {
    OB_io_read_binary(istr, (char*) &_trans[0], sizeof(float), 3);
    OB_io_read_binary(istr, (char*) &_euler[0], sizeof(float), 3);
    EulerToRmatrix(_euler,_rmat);
  }


/*!
**\brief Changes this transform to the orginal transform followed
**by an additional transform.
**\param ct The additional coordinate transformation.
**\return A transform equivilant to the original transform followed
**by the transform given in ct.  Note that the communative property
**does not apply so this is \b not the same as applying ct then the
**original transform.
*/
OBCoordTrans& OBCoordTrans::operator+=(const OBCoordTrans& ct)
  {
    float xyz[12];
    unsigned int i;
    for (i=0 ; i<12 ; i++) xyz[i] = 0.0f;
    xyz[3*1+0] = 1.0f;
    xyz[3*2+1] = 1.0f;
    xyz[3*3+2] = 1.0f;

    Transform(xyz,4);
    ct.Transform(xyz,4);
    Setup(xyz);

    return *this;
  }

/*!
**\brief Combine two transformations.
**\param ct2 Second transformation
**\return A transformation equivilant to applying (*this) and then ct2.
**\note Obviously the communative property does not apply hence,
**ct1+ct2 is \b not the same as ct2+ct1.
*/
OBCoordTrans OBCoordTrans::operator+(const OBCoordTrans& ct2) const
  {
    float xyz[12];
    unsigned int i;
    for (i=0 ; i<12 ; i++) xyz[i] = 0.0f;
    xyz[3*1+0] = 1.0f;
    xyz[3*2+1] = 1.0f;
    xyz[3*3+2] = 1.0f;

    OBCoordTrans ct;
    Transform(xyz,4);
    ct2.Transform(xyz,4);
    ct.Setup(xyz);
    return ct;
  }


/*!
**\brief Sets up a coordinate transformation from an arbitrary set of coordinates
**in the initial and final reference frame.
**\param init_xyz An array with the coordinates in the initial reference frame.
**\param finial_xyz An array with the coordinate in the final reference frame.
**\param N Number of coordinates.  Note that this procedure \b will deal with
**the case of N = 0,1 or 2.  In the case of N=0 the identity transform is returned.
**In the case of N=1 the appropriate translation, without and translation is
**returned.  In the case of N=2 there are multiple degenerate transformations,
**and a correct, but arbitrary, transformation is returned.  
**\note init_xyz and final_xyz must be identical sets of coordinates except for
**the frame of reference.
*/
void OBCoordTrans::Setup(float *init_xyz, float *final_xyz, unsigned int N)
  {
    Clear();

    float xyz1[12],xyz2[12];
    unsigned int i,j;

    //Get first coordinate
    if (N) {
        for (i=0 ; i<3 ; i++) {
            xyz1[i] = init_xyz[i];
            xyz2[i] = final_xyz[i];
          } 
      }
    else return;

    //Get second coordinate
    if (N>1) {
        float dist,maxdist;
        unsigned int id=1;
        maxdist = 0.0;
        for (i=1 ; i<N ; i++) {
            for (dist=0.0,j=0 ; j<3 ; j++) 
                dist += (xyz1[j]-init_xyz[3*i+j])*(xyz1[j]-init_xyz[3*i+j]);
            dist = sqrt(dist);
            if (dist > maxdist) {maxdist = dist; id = i;} 
          }
        for (i=0 ; i<3 ; i++) {
            xyz1[3+i] = init_xyz[3*id+i];
            xyz2[3+i] = final_xyz[3*id+i];
          }
      }
    else {
        float euler[3],trans[3];
        for (i=0 ; i<3 ; i++) {
            euler[i] = 0.0f;
            trans[i] = xyz2[i] - xyz1[i];
          }
        SetupEulerTranslation(euler,trans);
        return;
      }



    //Get third coordinate
    if (N>2) {
      float mag,maxcross;
      float xx[3],yy[3],cr[3];
      unsigned int ic=1;
      for (j=0 ; j<3 ; j++) xx[j] = xyz1[3+j]-xyz1[j];
      maxcross = 0.0f;
      for (i=1 ; i<N ; i++) {
           for (j=0 ; j<3 ; j++) yy[j] = init_xyz[3*i+j] - xyz1[j];
           cr[0] =  xx[1]*yy[2] - xx[2]*yy[1];
           cr[1] = -xx[0]*yy[2] + xx[2]*yy[0];
           cr[2] =  xx[0]*yy[1] - xx[1]*yy[0];
           mag = sqrt(cr[0]*cr[0] + cr[1]*cr[1] + cr[2]*cr[2]);
           if (mag > maxcross) {maxcross=mag; ic = i;}
         }
        for(i=0 ; i<3 ; i++) {
            xyz1[6+i] = init_xyz[3*ic+i];
            xyz2[6+i] = final_xyz[3*ic+i];
          }
       }
    else {//Deal with case of just two coordinates (just make up an arbitrary non-degenerate third one)
       float xx[3],yy[3];
       xx[0] = xyz1[3+0] - xyz1[0]; xx[1] = xyz1[3+1] - xyz1[1]; xx[2] = xyz1[3+2] - xyz1[2];
       yy[0] = xx[2]; yy[1] = xx[0]; yy[2] = xx[1];
       xyz1[6+0] = yy[0] + xyz1[0]; xyz1[6+1] = yy[1] + xyz1[1]; xyz1[6+2] = yy[2] + xyz1[2];
 
       xx[0] = xyz2[3+0] - xyz2[0]; xx[1] = xyz2[3+1] - xyz2[1]; xx[2] = xyz2[3+2] - xyz2[2];
       yy[0] = xx[2]; yy[1] = xx[0]; yy[2] = xx[1];
       xyz2[6+0] = yy[0] + xyz2[0]; xyz2[6+1] = yy[1] + xyz2[1]; xyz2[6+2] = yy[2] + xyz2[2];
      }
 
    //If we have gotten this far then we have a set of three non-colinear point in two different
    //reference frames (xyz1 and xyz2).  We are now going to convert these coordinates into a set
    //of 4 coordinates such that (c2-c1),(c3-c1) and (c4-c1) are unit vectors of an arbitrary 3rd
    //reference frame.  These coordinates can then used to create transformations from the initial
    //and finial reference frames to this third reference frame.

    //Get the 4 coordinates in the initial frame
        float mag,dot;
        float xx1[3],yy1[3],zz1[3];
        //Normalize x unit vector
        mag = 0.0f;
        for (i=0 ; i<3 ; i++) xx1[i] = xyz1[3+i] - xyz1[i];
        for (i=0 ; i<3 ; i++) mag += xx1[i]*xx1[i];
        mag = sqrt(mag);
        for (i=0 ; i<3 ; i++) {
            xx1[i] /=mag;
            xyz1[3+i] = xx1[i] + xyz1[i];
          }

        //Get the y vector
        dot = 0.0f;
        for (i=0 ; i<3 ; i++) yy1[i] = xyz1[6+i] - xyz1[i];
        for (i=0 ; i<3 ; i++) dot += xx1[i]*yy1[i]; 
        for (i=0 ; i<3 ; i++) yy1[i] -= xx1[i]*dot;

        //Normalize the y vector
        mag = 0.0f;
        for (i=0 ; i<3 ; i++) mag += yy1[i]*yy1[i];
        mag = sqrt(mag);
        for (i=0 ; i<3 ; i++) {
            yy1[i] /=mag;
            xyz1[6+i] = yy1[i] + xyz1[i];
          }

        //Get the z unit vector
        zz1[0] =  xx1[1]*yy1[2] - xx1[2]*yy1[1];
        zz1[1] = -xx1[0]*yy1[2] + xx1[2]*yy1[0];
        zz1[2] =  xx1[0]*yy1[1] - xx1[1]*yy1[0];
        for (i=0 ; i<3 ; i++) xyz1[9+i] = zz1[i] + xyz1[i];  
 
 
    //Get the 4 coordinates in the final reference frame
        float xx2[3],yy2[3],zz2[3];
        //Normalize x unit vector
        mag = 0.0f;
        for (i=0 ; i<3 ; i++) xx2[i] = xyz2[3+i] - xyz2[i];
        for (i=0 ; i<3 ; i++) mag += xx2[i]*xx2[i];
        mag = sqrt(mag);
        for (i=0 ; i<3 ; i++) {
            xx2[i] /=mag;
            xyz2[3+i] = xx2[i] + xyz2[i];
          }
 
        //Get the y vector
        dot = 0.0f;
        for (i=0 ; i<3 ; i++) yy2[i] = xyz2[6+i] - xyz2[i];
        for (i=0 ; i<3 ; i++) dot += xx2[i]*yy2[i];
        for (i=0 ; i<3 ; i++) yy2[i] -= xx2[i]*dot;
 
        //Normalize the y vector
        mag = 0.0f;
        for (i=0 ; i<3 ; i++) mag += yy2[i]*yy2[i];
        mag = sqrt(mag);
        for (i=0 ; i<3 ; i++) {
            yy2[i] /=mag;
            xyz2[6+i] = yy2[i] + xyz2[i];
          }
 
        //Get the z unit vector
        zz2[0] =  xx2[1]*yy2[2] - xx2[2]*yy2[1];
        zz2[1] = -xx2[0]*yy2[2] + xx2[2]*yy2[0];
        zz2[2] =  xx2[0]*yy2[1] - xx2[1]*yy2[0];
        for (i=0 ; i<3 ; i++) xyz2[9+i] = zz2[i] + xyz2[i];
 
    //Get transformations from third reference frame to initial and finial reference frames
    OBCoordTrans cti,ctf;
    cti.Setup(xyz1);
    ctf.Setup(xyz2); 

    //Invert the transformation from the third reference frame to the initial frame
    cti.Invert();

    //Set the transformation between the initial and finial reference frames.  This is
    //done by combining the transformation from the initial frame to the third frame with
    //the transformation from the third frame to the final frame.
    *this = cti + ctf;

    return;
  }

/*!
**\brief Get's an angle given it's sine and cosine.
**\param cs cosine of the angle
**\param sn sine of the angle
**\return Angle in radians
*/
double OBCoordTrans::Angle(double sn, double cs)
  {
    double angle=0.0;
    if (fabs(cs) < fabs(sn)) {
        angle = acos(cs);
        if      (sn < 0.0f && angle < PI) angle = 2.0*PI - angle;
        else if (sn > 0.0f && angle > PI) angle = 2.0*PI - angle;
      }
    else {
        angle = asin(sn);
        if (angle < PI) {
            if      (cs < 0.0f && angle < 0.5*PI) angle = PI - angle;
            else if (cs > 0.0f && angle > 0.5*PI) angle = PI - angle;
          }
        else {
            if (cs < 0.0f && angle > 1.5*PI) angle = 3.0*PI - angle;
            if (cs > 0.0f && angle < 1.5*PI) angle = 3.0*PI - angle;
          }
      }
    return angle;
  }

/*!
**\brief Inverts this objects transformation.  (i.e.,
**instead of converting from reference frame 1 to 2
**it now converts from 2 to 1.)
*/
void OBCoordTrans::Invert()
  {
    float xyz[12];
    unsigned int i;
    for (i=0 ; i<12 ; i++) xyz[i] = 0.0f;
    xyz[3*1+0] = 1.0f;
    xyz[3*2+1] = 1.0f;
    xyz[3*3+2] = 1.0f;

    //Apply reverse translation
    for (i=0 ; i<4 ; i++) {
        xyz[3*i+0] -= _trans[0];
        xyz[3*i+1] -= _trans[1];
        xyz[3*i+2] -= _trans[2];
      }

    //Apply reverse rotation
    ApplyEulerInvert(_euler,xyz,4);

    //Setup new transformation
    Setup(xyz);
  }


/*!
**\brief Returns a \b rotation and \b translation
**(applied in that order) coresponding to this objects
**transformation.
**\param euler A length 3 array that will be 
**returned with euler angles of the rotation.
**The angles are applied in the following order
**around the following axis.  euler[0] rotation
**about the z-axis, euler[1] rotation about the
**x-axis and euler[2] rotation about the z-axis.
**\param trans A length 3 array that will be returned
**with the x,y and z components of the translation.
*/
void OBCoordTrans::GetEulerTranslation(float *euler, float *trans) const
  {
    unsigned int i;
    for (i=0 ; i<3 ; i++) {
        euler[i] = _euler[i];
        trans[i] = _trans[i];
      }
  }

/*!
**\brief Returns a \b translation and \b rotation
**(applied in that order) coresponding to this objects
**transformation.
**\param trans A length 3 array that will be returned
**with the x,y and z components of the translation.
**\param euler A length 3 array that will be
**returned with euler angles of the rotation.
**The angles are applied in the following order
**around the following axis.  euler[0] rotation
**about the z-axis, euler[1] rotation about the
**x-axis and euler[2] rotation about the z-axis.
*/
void OBCoordTrans::GetTranslationEuler(float *trans, float *euler) const
  {
    //Get rotation
    euler[0] = _euler[0];
    euler[1] = _euler[1];
    euler[2] = _euler[2];

    //Get Translation
    trans[0] = 0.0f;
    trans[1] = 0.0f;
    trans[2] = 0.0f;
    Transform(trans,1);
    ApplyEulerInvert(euler,trans,1);
  }

/*!
**\brief Returns a \b rotation and \b translation
**(applied in that order) coresponding to this objects
**transformation.
**\param rmat A length 9 array that will be returned
**with the elements of a rotation matrix.  rmat[3*i+j]
**is the value of the element in the i'th row and j'th column.
**\param trans A length 3 array that will be returned
**with the x,y and z components of the translation.
*/
void OBCoordTrans::GetRmatrixTranslation(float *rmat, float *trans) const
  {
    unsigned int i;
    for (i=0 ; i<3 ; i++) trans[i] = _trans[i];
    for (i=0 ; i<9 ; i++) rmat[i] = _rmat[i];
  }

/*!
**\brief Returns a \b rotation and \b translation
**(applied in that order) coresponding to this objects
**transformation.
**\param rmatrix A Matrix3x3 that will be returned with
**the rotation.
**\param tvec A Vector that will be returned with the translation.
*/
void OBCoordTrans::GetRmatrixTranslation(Matrix3x3& rmatrix, Vector& tvec)
  {
    float rmat[9],trans[3];
    GetRmatrixTranslation(rmat,trans); 
    unsigned int irow,icolumn;
    for (irow=0 ; irow<3 ; irow++) for (icolumn=0 ; icolumn<3 ; icolumn++) {
        rmatrix.Set(irow,icolumn,rmat[3*irow+icolumn]);
      }
    tvec.Set(trans);
  }

/*!
**\brief Returns a \b translation and \b rotation
**(applied in that order) coresponding to this objects
**transformation.
**\param trans A length 3 array that will be returned
**with the x,y and z components of the translation.
**\param rmat A length 9 array that will be returned
**with the elements of a rotation matrix.  rmat[3*i+j]
**is the value of the element in the i'th row and j'th column.
*/
void OBCoordTrans::GetTranslationRmatrix(float *trans, float *rmat) const
  {
    float euler[3];
    GetTranslationEuler(trans,euler);
    EulerToRmatrix(euler,rmat);
  }

/*!
**\brief Returns a \b translation and \b rotation
**(applied in that order) coresponding to this objects
**transformation.
**\param tvec A Vector that will be returned with the translation.
**\param rmatrix A Matrix3x3 that will be returned with
**the rotation.
*/
void OBCoordTrans::GetTranslationRmatrix(Vector& tvec, Matrix3x3& rmatrix)
  {
    float rmat[9],trans[3];
    GetTranslationRmatrix(trans,rmat);
    unsigned int irow,icolumn;
    for (irow=0 ; irow<3 ; irow++) for (icolumn=0 ; icolumn<3 ; icolumn++) {
        rmatrix.Set(irow,icolumn,rmat[3*irow+icolumn]);
      }
    tvec.Set(trans);
  }

/*!
**\brief Sets up a rotation matrix from three euler angles
**\param euler A length 3 array with euler angles.  euler[0]
**is a rotation about the z-axis, euler[1] is a rotation about
**the x-axis and euler[2] is a rotation about the z-axis.  The
**Euler rotations are applied in the order listed.
**\b IMPORTANT: Angles are in \b radians.
**\param rmat A length 9 array representing the rotation matrix.
**rmat[3*i+j] is the value of the element in the i'th row and j'th column.
*/
void OBCoordTrans::EulerToRmatrix(float *euler, float *rmat) const
  {
    float xyz[9];
    unsigned int i,j;
    for (i=0 ; i<9 ; i++) xyz[i] = 0.0f;
    xyz[3*0+0] = 1.0f;
    xyz[3*1+1] = 1.0f;
    xyz[3*2+2] = 1.0f;
    ApplyEuler(euler,xyz,3);
    for (i=0 ; i<3 ; i++) for (j=0 ; j<3 ; j++) rmat[3*i+j] = xyz[3*j+i]; 
  }


/*!
**\brief Sets up this objects transformation based on a specified
**\b rotation and \b translation (applied in that order).
**\param euler A length 3 array with euler angles.  euler[0]
**is a rotation about the z-axis, euler[1] is a rotation about
**the x-axis and euler[2] is a rotation about the z-axis.  The
**Euler rotations are applied in the order listed.
**\b IMPORTANT: Angles are in \b radians.
**\param trans A length 3 array with the x,y and z translations.
**\note This member function is distinct from
**\link SetupTranslationEuler() \endlink.  The transformation setup
**in this function applies the rotation before the translation.
*/
void OBCoordTrans::SetupEulerTranslation(float *euler, float *trans)
  {
    //unsigned int i;
    //for (i=0 ; i<3 ; i++) {_euler[i] = euler[i]; _trans[i] = trans[i];}
    //SetRmatrix();

    float xyz[12];
    unsigned int i;
    for (i=0 ; i<12 ; i++) xyz[i] = 0.0f;
    xyz[3*1+0] = 1.0f;
    xyz[3*2+1] = 1.0f;
    xyz[3*3+2] = 1.0f;
 
    ApplyEuler(euler,xyz,4);
    ApplyTranslation(trans,xyz,4);
    Setup(xyz);
  }

/*!
**\brief Sets up this objects transformation based on a specified
**\b translation and \b rotation (applied in that order).
**\param trans A length 3 array with the x,y and z translations.
**\param euler length 3 array with euler angles.  euler[0]
**is a rotation about the z-axis, euler[1] is a rotation about
**the x-axis and euler[2] is a rotation about the z-axis.  The
**Euler rotations are applied in the order listed.
**\b IMPORTANT: Angles are in \b radians.
**\note This member function is distinct from
**\link SetupEulerTranslation() \endlink.  The transformation setup
**in this function applies the translation before the rotation.
*/
void OBCoordTrans::SetupTranslationEuler(float *trans, float *euler)
  {
    float xyz[12];
    unsigned int i;
    for (i=0 ; i<12 ; i++) xyz[i] = 0.0f;
    xyz[3*1+0] = 1.0f;
    xyz[3*2+1] = 1.0f;
    xyz[3*3+2] = 1.0f;

    ApplyTranslation(trans,xyz,4);
    ApplyEuler(euler,xyz,4);
    Setup(xyz);
  }

/*!
**\brief Sets up this objects transformation based on a specified
**\b rotation and \b translation (applied in that order).
**\param rmat A length 9 array representing the rotation matrix. 
**rmat[3*i+j] is the value of the element in the i'th row and j'th column.
**\param trans A length 3 array with the x,y and z translations.
**\note This member function is distinct from
**\link SetupTranslationRmatrix() \endlink.  This transformation setup
**in this function applies the rotation before the translation.
*/
void OBCoordTrans::SetupRmatrixTranslation(float *rmat, float *trans)
  {
    float xyz[12];
    unsigned int i;
    for (i=0 ; i<12 ; i++) xyz[i] = 0.0f;
    xyz[3*1+0] = 1.0f;
    xyz[3*2+1] = 1.0f;
    xyz[3*3+2] = 1.0f;

    ApplyRmatrix(rmat,xyz,4);
    ApplyTranslation(trans,xyz,4);
    Setup(xyz);
  }

/*!
**\brief Sets up this objects transformation based on a specified
**\b rotation and \b translation (applied in that order).
**\param rmatrix A Matrix3x3 rotation matrix.
**\param tvec A Vector holding the translation
**\note This member function is distinct from
**\link SetupTranslationRmatrix() \endlink.  This transformation setup
**in this function applies the rotation before the translation.
*/
void OBCoordTrans::SetupRmatrixTranslation(Matrix3x3& rmatrix, Vector& tvec)
  {
    float rmat[9],trans[3];
    unsigned int irow,icolumn;
    for (irow=0 ; irow<3 ; irow++) for (icolumn=0 ; icolumn<3 ; icolumn++) {
        rmat[3*irow+icolumn] = rmatrix.Get(irow,icolumn);
      }
    tvec.Get(trans);
    SetupRmatrixTranslation(rmat,trans);
  }

/*!
**\brief Sets up this objects transformation based on a specified
**\b translation and \b rotation (applied in that order).
**\param rmat A length 9 array representing the rotation matrix.
**rmat[3*i+j] is the value of the element in the i'th row and j'th column.
**\param trans A length 3 array with the x,y and z translations.
**\note This member function is distinct from
**\link SetupRmatrixTranslation() \endlink.  This transformation setup
**in this function applies the translation before the rotation.
*/
void OBCoordTrans::SetupTranslationRmatrix(float *trans, float *rmat)
  {
    float xyz[12];
    unsigned int i;
    for (i=0 ; i<12 ; i++) xyz[i] = 0.0f;
    xyz[3*1+0] = 1.0f;
    xyz[3*2+1] = 1.0f;
    xyz[3*3+2] = 1.0f;
 
    ApplyTranslation(trans,xyz,4);
    ApplyRmatrix(rmat,xyz,4);
    Setup(xyz);
  }

/*!
**\brief Sets up this objects transformation based on a specified
**\b translation and \b rotation (applied in that order).
**\param rmatrix A Matrix3x3 rotation matrix.
**\param tvec A Vector holding the translation
**\note This member function is distinct from
**\link SetupRmatrixTranslation() \endlink.  This transformation setup
**in this function applies the translation before the rotation.
*/
void OBCoordTrans::SetupTranslationRmatrix(Vector& tvec, Matrix3x3& rmatrix)
  {
    float rmat[9],trans[3];
    unsigned int irow,icolumn;
    for (irow=0 ; irow<3 ; irow++) for (icolumn=0 ; icolumn<3 ; icolumn++) {
        rmat[3*irow+icolumn] = rmatrix.Get(irow,icolumn);
      }
    tvec.Get(trans);
    SetupTranslationRmatrix(trans,rmat);
  }

/*!
**\brief Applies this objects transformation to a set of coordinates
**\param xyz Array of coordinates to be transformed
**\param N Number of coordinates in xyz array
*/
void OBCoordTrans::Transform(float *xyz, unsigned int N) const
  {
    unsigned int i;
    float x,y,z;
    for (i=0 ; i<N ; i++) {
        x = xyz[3*i+0];
        y = xyz[3*i+1];
        z = xyz[3*i+2];
        xyz[3*i+0] = _rmat[0]*x + _rmat[1]*y + _rmat[2]*z + _trans[0];
        xyz[3*i+1] = _rmat[3]*x + _rmat[4]*y + _rmat[5]*z + _trans[1];
        xyz[3*i+2] = _rmat[6]*x + _rmat[7]*y + _rmat[8]*z + _trans[2];
      } 
  }

/*!
**\brief Applies a translation (no rotation) to a set of coordates.
**param trans A length 3 array holding the x,y and z translation
**\param xyz Array of coordinates to be transformed
**\param N Number of coordinates in xyz array
*/
void OBCoordTrans::ApplyTranslation(float *trans, float *xyz, unsigned int N) const
  {
    unsigned int i;
    for (i=0 ; i<N ; i++) {
        xyz[3*i+0] += trans[0];
        xyz[3*i+1] += trans[1];
        xyz[3*i+2] += trans[2];
      }
  }

/*!
**\brief Applies a rotation (no translation) to a set of coordinates.
**\param rmat A length 9 array representing the rotation matrix. 
**rmat[3*i+j] is the value of the element in the i'th row and j'th column.
**\param xyz Array of coordinates to be transformed
**\param N Number of coordinates in xyz array
*/
void OBCoordTrans::ApplyRmatrix(float *rmat, float *xyz, unsigned int N) const
  {
    unsigned int i;
    float x,y,z;
    for (i=0 ; i<N ; i++) {
        x = rmat[0]*xyz[3*i+0] + rmat[1]*xyz[3*i+1] + rmat[2]*xyz[3*i+2];
        y = rmat[3]*xyz[3*i+0] + rmat[4]*xyz[3*i+1] + rmat[5]*xyz[3*i+2];
        z = rmat[6]*xyz[3*i+0] + rmat[7]*xyz[3*i+1] + rmat[8]*xyz[3*i+2];
        xyz[3*i+0] = x;
        xyz[3*i+1] = y;
        xyz[3*i+2] = z;
      }
  }

/*!
**\brief Applies an euler rotation (no translation) in reverse
**to a set of coordinates.
**\param euler A length 3 array with the euler angles.  euler[0]
**is a rotation about the z-axis, euler[1] is a rotation about
**the x-axis and euler[2] is a rotation about the z-axis.  In
**general the rotations are applied in the order listed, however,
**in this procedure they are applied in reverse order.  
**\b IMPORTANT: Angles are in \b radians.
**\param xyz Array of coordinates to be transformed
**\param N Number of coordinates in xyz array
*/
void OBCoordTrans::ApplyEulerInvert(float *euler, float *xyz, unsigned int N) const
  {
    float cs0 = cos(euler[0]);
    float cs1 = cos(euler[1]);
    float cs2 = cos(euler[2]);
    float sn0 = sin(euler[0]);
    float sn1 = sin(euler[1]);
    float sn2 = sin(euler[2]);

    //Reverse third Euler angle
    unsigned int i;
    float xx,yy;
    for (i=0 ; i<N ; i++) {
        xx = xyz[3*i+0];
        yy = xyz[3*i+1];
        xyz[3*i+0] = cs2*xx - sn2*yy;
        xyz[3*i+1] = cs2*yy + sn2*xx;
      }

    //Reverse second Euler angle
    float zz;
    for (i=0 ; i<N ; i++) {
        yy = xyz[3*i+1];
        zz = xyz[3*i+2];
        xyz[3*i+1] = cs1*yy - sn1*zz;
        xyz[3*i+2] = cs1*zz + sn1*yy;
      }

    //Reverse first Euler angle
    for (i=0 ; i<N ; i++) {
        xx = xyz[3*i+0];
        yy = xyz[3*i+1];
        xyz[3*i+0] = cs0*xx - sn0*yy;
        xyz[3*i+1] = cs0*yy + sn0*xx;
      }
  }

/*!
**\brief Applies an euler rotation (no translation)
**to a set of coordinates.
**\param euler A length 3 array with the euler angles.  euler[0]
**is a rotation about the z-axis, euler[1] is a rotation about
**the x-axis and euler[2] is a rotation about the z-axis.  The
**rotations are applied in the order listed.
**\b IMPORTANT: Angles are in \b radians.
**\param xyz Array of coordinates to be transformed
**\param N Number of coordinates in xyz array
**/
void OBCoordTrans::ApplyEuler(float *euler, float *xyz, unsigned int N) const
  {
    float cs0 = cos(euler[0]);
    float cs1 = cos(euler[1]);
    float cs2 = cos(euler[2]);
    float sn0 = sin(euler[0]);
    float sn1 = sin(euler[1]);
    float sn2 = sin(euler[2]);

    unsigned int i;
    
    //Apply first Euler Angle (rotation about z-axis)
    float xx,yy;
    for (i=0 ; i<N ; i++) {
        xx = xyz[3*i+0];
        yy = xyz[3*i+1];
        xyz[3*i+0] = cs0*xx + sn0*yy;
        xyz[3*i+1] = cs0*yy - sn0*xx;
      }

    //Apply second Euler Angle (rotation about the x-axis)
    float zz;
    for (i=0 ; i<N ; i++) {
        yy = xyz[3*i+1];
        zz = xyz[3*i+2];
        xyz[3*i+1] = cs1*yy + sn1*zz;
        xyz[3*i+2] = cs1*zz - sn1*yy;
      }

    //Apply third Euler Angle (rotation about the z-axis)
    for (i=0 ; i<N ; i++) {
        xx = xyz[3*i+0];
        yy = xyz[3*i+1];
        xyz[3*i+0] = cs2*xx + sn2*yy;
        xyz[3*i+1] = cs2*yy - sn2*xx;
      }

  }

/*!
**\brief Core function to setup the coordinate transformation
**\param in_xyz A length 12 array containing 4 coordinates
**(0,0,0), (1,0,0), (0,1,0) and (0,0,1) from the initial 
**reference frame transformed into the final reference frame.
*/
bool OBCoordTrans::Setup(float *in_xyz)
  {
    //Copy coordinate array
    double xyz[12];
    double *y=&xyz[3*2];
    double *z=&xyz[3*3];
    unsigned int i;
    for (i=0 ; i<12 ; i++) xyz[i] = in_xyz[i];

    //Set translation
    _trans[0] = xyz[0];
    _trans[1] = xyz[1];
    _trans[2] = xyz[2];

    //DEBUG
    //char buffer[1000];
    //cout << "DEBUG : Initial coordinates" << endl;
    //for (i=0 ; i<4 ; i++) {sprintf(buffer,"DEBUG : (%10.6f,%10.6f,%10.6f)",xyz[3*i+0],xyz[3*i+1],xyz[3*i+2]); cout << buffer << endl;} cout << endl;

    //Undo translation
    for (i=0 ; i<4 ; i++) {
        xyz[3*i+0] -= _trans[0]; 
        xyz[3*i+1] -= _trans[1]; 
        xyz[3*i+2] -= _trans[2]; 
      }

    //DEBUG
    //cout << "DEBUG : Undid translation coordinates" << endl;
    //for (i=0 ; i<4 ; i++) {sprintf(buffer,"DEBUG : (%10.6f,%10.6f,%10.6f)",xyz[3*i+0],xyz[3*i+1],xyz[3*i+2]); cout << buffer << endl;} cout << endl;

    //Find the angle of the rotated z unit vector with
    //the y axis IN THE XY PLANE. (i.e., the third Euler angle)
    double sn,cs;
    double mag;
    mag = sqrt(z[0]*z[0] + z[1]*z[1]);
    if (mag > 0.000001) {
        cs = z[1]/mag;
        sn = z[0]/mag;
        _euler[2] = (float) Angle(sn,cs);
      }
    else {
        cs = 1.0f;
        sn = 0.0f;
        _euler[2] = 0.0f;
      }

    //Undo the rotation from the third Euler angle
    double xx,yy;
    for (i=0 ; i<4 ; i++) {
        xx = xyz[3*i+0];
        yy = xyz[3*i+1]; 
        xyz[3*i+0] = cs*xx - sn*yy;
        xyz[3*i+1] = cs*yy + sn*xx;
      }

    //DEBUG
    //cout << "DEBUG : Undid third Euler rotation : " << _euler[2] << endl;
    //for (i=0 ; i<4 ; i++) {sprintf(buffer,"DEBUG : (%10.6f,%10.6f,%10.6f)",xyz[3*i+0],xyz[3*i+1],xyz[3*i+2]); cout << buffer << endl;} cout << endl;

    //Find the angle of the rotated z unit vector with
    //the z axis.  (i.e., the second Euler angle)
    cs = z[2];
    sn = z[1];
    _euler[1] = (float) Angle(sn,cs);

    //Undo the rotation from the second Euler angle
    double zz;
    for (i=0 ; i<4 ; i++) {
        yy = xyz[3*i+1];
        zz = xyz[3*i+2];
        xyz[3*i+1] = cs*yy - sn*zz;
        xyz[3*i+2] = cs*zz + sn*yy;
      } 

    //DEBUG
    //cout << "DEBUG : Undid third Euler rotation : " << _euler[2] << endl;
    //for (i=0 ; i<4 ; i++) {sprintf(buffer,"DEBUG : (%10.6f,%10.6f,%10.6f)",xyz[3*i+0],xyz[3*i+1],xyz[3*i+2]); cout << buffer << endl;} cout << endl;

    //Find the angle of the rotated y unit vector with
    //the y axis (i.e., the first Euler angle)
    cs = y[1];
    sn = y[0];
    _euler[0] = (float) Angle(sn,cs);

    //Find the rotation matrix coresponding to the euler angles
    EulerToRmatrix(_euler,_rmat);

    //Undo the rotation from the first Euler angle
    //This is unnecessary except as a check to make
    //sure we were given valid input.
    for (i=0 ; i<4 ; i++) {
        xx = xyz[3*i+0];
        yy = xyz[3*i+1];
        xyz[3*i+0] = cs*xx - sn*yy;
        xyz[3*i+1] = cs*yy + sn*xx;
      }

    //DEBUG
    //cout << "DEBUG : Undid first Euler rotation : " << _euler[2] << endl;
    //for (i=0 ; i<4 ; i++) {sprintf(buffer,"DEBUG : (%10.6f,%10.6f,%10.6f)",xyz[3*i+0],xyz[3*i+1],xyz[3*i+2]); cout << buffer << endl;} cout << endl;

    bool error=false;
    float tol=0.0001f;
    if (fabs(xyz[0]) > tol) error = true;
    if (fabs(xyz[1]) > tol) error = true;
    if (fabs(xyz[2]) > tol) error = true;
    if (fabs(xyz[3*1+0] - 1.0) > tol) error = true;
    if (fabs(xyz[3*2+1] - 1.0) > tol) error = true;
    if (fabs(xyz[3*3+2] - 1.0) > tol) error = true;
    if (error) {cerr << "WARNING! OBCoordTrans::Setup(float*) probable invalid input" << endl; return false;}

    return true;
  }


}//End OpenEye namespace