File: axis.c

package info (click to toggle)
ghemical 1.01-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 10,984 kB
  • ctags: 19,443
  • sloc: ansic: 69,073; cpp: 60,583; fortran: 35,324; sh: 5,419; makefile: 506; perl: 91
file content (310 lines) | stat: -rw-r--r-- 9,498 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/* axis.f -- translated by f2c (version 19991025).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    char keywrd[241];
} keywrd_;

#define keywrd_1 keywrd_

struct {
    integer numcal;
} numcal_;

#define numcal_1 numcal_

struct {
    doublereal atmass[120];
} atmass_;

#define atmass_1 atmass_

/* Table of constant values */

static integer c__1 = 1;
static integer c__3 = 3;

/* Subroutine */ int axis_(coord, numat, a, b, c__, sumw, mass, evec)
doublereal *coord;
integer *numat;
doublereal *a, *b, *c__, *sumw;
integer *mass;
doublereal *evec;
{
    /* Initialized data */

    static doublereal t[6] = { 0.,0.,0.,0.,0.,0. };
    static integer icalcn = 0;

    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;

    /* Builtin functions */
    integer s_wsfe(), do_fio(), e_wsfe(), i_indx();

    /* Local variables */
    static integer i__, j;
    static doublereal x[120], y[120], z__[120];
    static logical first;
    static doublereal sumwx, sumwy, sumwz, const1, const2, xyzmom[3], eig[3], 
	    rot[3];
    extern /* Subroutine */ int rsp_();
    static doublereal sum;

    /* Fortran I/O blocks */
    static cilist io___10 = { 0, 6, 0, "(/10X,'MOLECULAR WEIGHT =',F8.2,/)", 
	    0 };
    static cilist io___15 = { 0, 6, 0, "(//10X,' PRINCIPAL MOMENTS OF INERTI\
A IN CM(-1)',/)", 0 };
    static cilist io___18 = { 0, 6, 0, "(10X,'A =',F12.6,'   B =',F12.6,    \
              '   C =',F12.6,/)", 0 };
    static cilist io___19 = { 0, 6, 0, "(//10X,' PRINCIPAL MOMENTS OF INERTI\
A IN ',            'UNITS OF 10**(-40)*GRAM-CM**2',/)", 0 };
    static cilist io___20 = { 0, 6, 0, "(10X,'A =',F12.6,'   B =',F12.6,    \
              '   C =',F12.6,/)", 0 };


/* COMDECK SIZES */
/* *********************************************************************** */
/*   THIS FILE CONTAINS ALL THE ARRAY SIZES FOR USE IN MOPAC. */

/*     THERE ARE ONLY 5 PARAMETERS THAT THE PROGRAMMER NEED SET: */
/*     MAXHEV = MAXIMUM NUMBER OF HEAVY ATOMS (HEAVY: NON-HYDROGEN ATOMS) */
/*     MAXLIT = MAXIMUM NUMBER OF HYDROGEN ATOMS. */
/*     MAXTIM = DEFAULT TIME FOR A JOB. (SECONDS) */
/*     MAXDMP = DEFAULT TIME FOR AUTOMATIC RESTART FILE GENERATION (SECS) */
/*     ISYBYL = 1 IF MOPAC IS TO BE USED IN THE SYBYL PACKAGE, =0 OTHERWISE */
/*     SEE ALSO NMECI, NPULAY AND MESP AT THE END OF THIS FILE */


/* *********************************************************************** */

/*   THE FOLLOWING CODE DOES NOT NEED TO BE ALTERED BY THE PROGRAMMER */

/* *********************************************************************** */

/*    ALL OTHER PARAMETERS ARE DERIVED FUNCTIONS OF THESE TWO PARAMETERS */

/*      NAME                   DEFINITION */
/*     NUMATM         MAXIMUM NUMBER OF ATOMS ALLOWED. */
/*     MAXORB         MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/*     MAXPAR         MAXIMUM NUMBER OF PARAMETERS FOR OPTIMISATION. */
/*     N2ELEC         MAXIMUM NUMBER OF TWO ELECTRON INTEGRALS ALLOWED. */
/*     MPACK          AREA OF LOWER HALF TRIANGLE OF DENSITY MATRIX. */
/*     MORB2          SQUARE OF THE MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/*     MAXHES         AREA OF HESSIAN MATRIX */
/*     MAXALL         LARGER THAN MAXORB OR MAXPAR. */
/* *********************************************************************** */

/* *********************************************************************** */
/* DECK MOPAC */
/* *********************************************************************** */

/*  AXIS CALCULATES THE THREE MOMENTS OF INERTIA AND THE MOLECULAR */
/*       WEIGHT.  THE MOMENTS OF INERTIA ARE RETURNED IN A, B, AND C. */
/*       THE MOLECULAR WEIGHT IN SUMW. */
/*       THE UNITS OF INERTIA ARE 10**(-40)GRAM-CM**2, */
/*       AND MOL.WEIGHT IN ATOMIC-MASS-UNITS. (AMU'S) */
/* *********************************************************************** */
    /* Parameter adjustments */
    coord -= 4;
    evec -= 4;

    /* Function Body */
    if (icalcn != numcal_1.numcal) {
	icalcn = numcal_1.numcal;
	first = TRUE_;
    }
/* *********************************************************************** */
/*     CONST1 =  10**40/(N*A*A) */
/*               N = AVERGADRO'S NUMBER */
/*               A = CM IN AN ANGSTROM */
/*               10**40 IS TO ALLOW UNITS TO BE 10**(-40)GRAM-CM**2 */

/* *********************************************************************** */
    const1 = 1.66053;
/* *********************************************************************** */

/*     CONST2 = CONVERSION FACTOR FROM ANGSTROM-AMU TO CM**(-1) */

/*            = (PLANCK'S CONSTANT*N*10**16)/(8*PI*PI*C) */
/*            = 6.62618*10**(-27)[ERG-SEC]*6.02205*10**23*10**16/ */
/*              (8*(3.1415926535)**2*2.997925*10**10[CM/SEC]) */

/* *********************************************************************** */
    const2 = 16.8576522;
/*    FIRST WE CENTRE THE MOLECULE ABOUT THE CENTRE OF GRAVITY, */
/*    THIS DEPENDS ON THE ISOTOPIC MASSES, AND THE CARTESIAN GEOMETRY. */

    *sumw = 1e-20;
    sumwx = 0.;
    sumwy = 0.;
    sumwz = 0.;

    if (*mass > 0) {
	i__1 = *numat;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    *sumw += atmass_1.atmass[i__ - 1];
	    sumwx += atmass_1.atmass[i__ - 1] * coord[i__ * 3 + 1];
	    sumwy += atmass_1.atmass[i__ - 1] * coord[i__ * 3 + 2];
	    sumwz += atmass_1.atmass[i__ - 1] * coord[i__ * 3 + 3];
/* L10: */
	}
    } else {
	*sumw += (doublereal) (*numat);
	i__1 = *numat;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    sumwx += coord[i__ * 3 + 1];
	    sumwy += coord[i__ * 3 + 2];
	    sumwz += coord[i__ * 3 + 3];
/* L20: */
	}
    }

    if (*mass > 0 && first) {
	s_wsfe(&io___10);
	d__1 = min(99999.99,*sumw);
	do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(doublereal));
	e_wsfe();
    }
    sumwx /= *sumw;
    sumwy /= *sumw;
    sumwz /= *sumw;
    i__1 = *numat;
    for (i__ = 1; i__ <= i__1; ++i__) {
	x[i__ - 1] = coord[i__ * 3 + 1] - sumwx;
	y[i__ - 1] = coord[i__ * 3 + 2] - sumwy;
/* L30: */
	z__[i__ - 1] = coord[i__ * 3 + 3] - sumwz;
    }
/* *********************************************************************** */

/*    MATRIX FOR MOMENTS OF INERTIA IS OF FORM */

/*           |   Y**2+Z**2                         | */
/*           |    -Y*X       Z**2+X**2             | -I =0 */
/*           |    -Z*X        -Z*Y       X**2+Y**2 | */

/* *********************************************************************** */

/* $DOIT ASIS */
    for (i__ = 1; i__ <= 6; ++i__) {
/* L40: */
	t[i__ - 1] = (doublereal) i__ * 1e-10;
    }

    if (*mass > 0) {
	i__1 = *numat;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
	    d__1 = y[i__ - 1];
/* Computing 2nd power */
	    d__2 = z__[i__ - 1];
	    t[0] += atmass_1.atmass[i__ - 1] * (d__1 * d__1 + d__2 * d__2);
	    t[1] -= atmass_1.atmass[i__ - 1] * x[i__ - 1] * y[i__ - 1];
/* Computing 2nd power */
	    d__1 = z__[i__ - 1];
/* Computing 2nd power */
	    d__2 = x[i__ - 1];
	    t[2] += atmass_1.atmass[i__ - 1] * (d__1 * d__1 + d__2 * d__2);
	    t[3] -= atmass_1.atmass[i__ - 1] * z__[i__ - 1] * x[i__ - 1];
	    t[4] -= atmass_1.atmass[i__ - 1] * y[i__ - 1] * z__[i__ - 1];
/* Computing 2nd power */
	    d__1 = x[i__ - 1];
/* Computing 2nd power */
	    d__2 = y[i__ - 1];
	    t[5] += atmass_1.atmass[i__ - 1] * (d__1 * d__1 + d__2 * d__2);
/* L50: */
	}
    } else {
	i__1 = *numat;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
	    d__1 = y[i__ - 1];
/* Computing 2nd power */
	    d__2 = z__[i__ - 1];
	    t[0] += d__1 * d__1 + d__2 * d__2;
	    t[1] -= x[i__ - 1] * y[i__ - 1];
/* Computing 2nd power */
	    d__1 = z__[i__ - 1];
/* Computing 2nd power */
	    d__2 = x[i__ - 1];
	    t[2] += d__1 * d__1 + d__2 * d__2;
	    t[3] -= z__[i__ - 1] * x[i__ - 1];
	    t[4] -= y[i__ - 1] * z__[i__ - 1];
/* Computing 2nd power */
	    d__1 = x[i__ - 1];
/* Computing 2nd power */
	    d__2 = y[i__ - 1];
	    t[5] += d__1 * d__1 + d__2 * d__2;
/* L60: */
	}
    }

    rsp_(t, &c__3, &c__3, eig, &evec[4]);
    if (*mass > 0 && first && i_indx(keywrd_1.keywrd, "RC=", (ftnlen)241, (
	    ftnlen)3) == 0) {
	s_wsfe(&io___15);
	e_wsfe();
/* $DOIT ASIS */
	for (i__ = 1; i__ <= 3; ++i__) {
	    if (eig[i__ - 1] < 3e-4) {
		eig[i__ - 1] = 0.;
		rot[i__ - 1] = 0.;
	    } else {
		rot[i__ - 1] = const2 / eig[i__ - 1];
	    }
/* L70: */
	    xyzmom[i__ - 1] = eig[i__ - 1] * const1;
	}
	s_wsfe(&io___18);
	for (i__ = 1; i__ <= 3; ++i__) {
	    do_fio(&c__1, (char *)&rot[i__ - 1], (ftnlen)sizeof(doublereal));
	}
	e_wsfe();
	if (i_indx(keywrd_1.keywrd, "RC=", (ftnlen)241, (ftnlen)3) == 0) {
	    s_wsfe(&io___19);
	    e_wsfe();
	}
	s_wsfe(&io___20);
	for (i__ = 1; i__ <= 3; ++i__) {
	    do_fio(&c__1, (char *)&xyzmom[i__ - 1], (ftnlen)sizeof(doublereal)
		    );
	}
	e_wsfe();
	*c__ = rot[0];
	*b = rot[1];
	*a = rot[2];
    }

/*   NOW TO ORIENT THE MOLECULE SO THE CHIRALITY IS PRESERVED */

    sum = evec[4] * (evec[8] * evec[12] - evec[9] * evec[11]) + evec[7] * (
	    evec[11] * evec[6] - evec[5] * evec[12]) + evec[10] * (evec[5] * 
	    evec[9] - evec[8] * evec[6]);
    if (sum < 0.) {
/* $DOIT ASIS */
	for (j = 1; j <= 3; ++j) {
/* L80: */
	    evec[j + 3] = -evec[j + 3];
	}
    }
    i__1 = *numat;
    for (i__ = 1; i__ <= i__1; ++i__) {
	coord[i__ * 3 + 1] = x[i__ - 1];
	coord[i__ * 3 + 2] = y[i__ - 1];
	coord[i__ * 3 + 3] = z__[i__ - 1];
/* L90: */
    }
    if (*mass > 0) {
	first = FALSE_;
    }
} /* axis_ */