1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
/* axis.f -- translated by f2c (version 19991025).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
char keywrd[241];
} keywrd_;
#define keywrd_1 keywrd_
struct {
integer numcal;
} numcal_;
#define numcal_1 numcal_
struct {
doublereal atmass[120];
} atmass_;
#define atmass_1 atmass_
/* Table of constant values */
static integer c__1 = 1;
static integer c__3 = 3;
/* Subroutine */ int axis_(coord, numat, a, b, c__, sumw, mass, evec)
doublereal *coord;
integer *numat;
doublereal *a, *b, *c__, *sumw;
integer *mass;
doublereal *evec;
{
/* Initialized data */
static doublereal t[6] = { 0.,0.,0.,0.,0.,0. };
static integer icalcn = 0;
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
/* Builtin functions */
integer s_wsfe(), do_fio(), e_wsfe(), i_indx();
/* Local variables */
static integer i__, j;
static doublereal x[120], y[120], z__[120];
static logical first;
static doublereal sumwx, sumwy, sumwz, const1, const2, xyzmom[3], eig[3],
rot[3];
extern /* Subroutine */ int rsp_();
static doublereal sum;
/* Fortran I/O blocks */
static cilist io___10 = { 0, 6, 0, "(/10X,'MOLECULAR WEIGHT =',F8.2,/)",
0 };
static cilist io___15 = { 0, 6, 0, "(//10X,' PRINCIPAL MOMENTS OF INERTI\
A IN CM(-1)',/)", 0 };
static cilist io___18 = { 0, 6, 0, "(10X,'A =',F12.6,' B =',F12.6, \
' C =',F12.6,/)", 0 };
static cilist io___19 = { 0, 6, 0, "(//10X,' PRINCIPAL MOMENTS OF INERTI\
A IN ', 'UNITS OF 10**(-40)*GRAM-CM**2',/)", 0 };
static cilist io___20 = { 0, 6, 0, "(10X,'A =',F12.6,' B =',F12.6, \
' C =',F12.6,/)", 0 };
/* COMDECK SIZES */
/* *********************************************************************** */
/* THIS FILE CONTAINS ALL THE ARRAY SIZES FOR USE IN MOPAC. */
/* THERE ARE ONLY 5 PARAMETERS THAT THE PROGRAMMER NEED SET: */
/* MAXHEV = MAXIMUM NUMBER OF HEAVY ATOMS (HEAVY: NON-HYDROGEN ATOMS) */
/* MAXLIT = MAXIMUM NUMBER OF HYDROGEN ATOMS. */
/* MAXTIM = DEFAULT TIME FOR A JOB. (SECONDS) */
/* MAXDMP = DEFAULT TIME FOR AUTOMATIC RESTART FILE GENERATION (SECS) */
/* ISYBYL = 1 IF MOPAC IS TO BE USED IN THE SYBYL PACKAGE, =0 OTHERWISE */
/* SEE ALSO NMECI, NPULAY AND MESP AT THE END OF THIS FILE */
/* *********************************************************************** */
/* THE FOLLOWING CODE DOES NOT NEED TO BE ALTERED BY THE PROGRAMMER */
/* *********************************************************************** */
/* ALL OTHER PARAMETERS ARE DERIVED FUNCTIONS OF THESE TWO PARAMETERS */
/* NAME DEFINITION */
/* NUMATM MAXIMUM NUMBER OF ATOMS ALLOWED. */
/* MAXORB MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXPAR MAXIMUM NUMBER OF PARAMETERS FOR OPTIMISATION. */
/* N2ELEC MAXIMUM NUMBER OF TWO ELECTRON INTEGRALS ALLOWED. */
/* MPACK AREA OF LOWER HALF TRIANGLE OF DENSITY MATRIX. */
/* MORB2 SQUARE OF THE MAXIMUM NUMBER OF ORBITALS ALLOWED. */
/* MAXHES AREA OF HESSIAN MATRIX */
/* MAXALL LARGER THAN MAXORB OR MAXPAR. */
/* *********************************************************************** */
/* *********************************************************************** */
/* DECK MOPAC */
/* *********************************************************************** */
/* AXIS CALCULATES THE THREE MOMENTS OF INERTIA AND THE MOLECULAR */
/* WEIGHT. THE MOMENTS OF INERTIA ARE RETURNED IN A, B, AND C. */
/* THE MOLECULAR WEIGHT IN SUMW. */
/* THE UNITS OF INERTIA ARE 10**(-40)GRAM-CM**2, */
/* AND MOL.WEIGHT IN ATOMIC-MASS-UNITS. (AMU'S) */
/* *********************************************************************** */
/* Parameter adjustments */
coord -= 4;
evec -= 4;
/* Function Body */
if (icalcn != numcal_1.numcal) {
icalcn = numcal_1.numcal;
first = TRUE_;
}
/* *********************************************************************** */
/* CONST1 = 10**40/(N*A*A) */
/* N = AVERGADRO'S NUMBER */
/* A = CM IN AN ANGSTROM */
/* 10**40 IS TO ALLOW UNITS TO BE 10**(-40)GRAM-CM**2 */
/* *********************************************************************** */
const1 = 1.66053;
/* *********************************************************************** */
/* CONST2 = CONVERSION FACTOR FROM ANGSTROM-AMU TO CM**(-1) */
/* = (PLANCK'S CONSTANT*N*10**16)/(8*PI*PI*C) */
/* = 6.62618*10**(-27)[ERG-SEC]*6.02205*10**23*10**16/ */
/* (8*(3.1415926535)**2*2.997925*10**10[CM/SEC]) */
/* *********************************************************************** */
const2 = 16.8576522;
/* FIRST WE CENTRE THE MOLECULE ABOUT THE CENTRE OF GRAVITY, */
/* THIS DEPENDS ON THE ISOTOPIC MASSES, AND THE CARTESIAN GEOMETRY. */
*sumw = 1e-20;
sumwx = 0.;
sumwy = 0.;
sumwz = 0.;
if (*mass > 0) {
i__1 = *numat;
for (i__ = 1; i__ <= i__1; ++i__) {
*sumw += atmass_1.atmass[i__ - 1];
sumwx += atmass_1.atmass[i__ - 1] * coord[i__ * 3 + 1];
sumwy += atmass_1.atmass[i__ - 1] * coord[i__ * 3 + 2];
sumwz += atmass_1.atmass[i__ - 1] * coord[i__ * 3 + 3];
/* L10: */
}
} else {
*sumw += (doublereal) (*numat);
i__1 = *numat;
for (i__ = 1; i__ <= i__1; ++i__) {
sumwx += coord[i__ * 3 + 1];
sumwy += coord[i__ * 3 + 2];
sumwz += coord[i__ * 3 + 3];
/* L20: */
}
}
if (*mass > 0 && first) {
s_wsfe(&io___10);
d__1 = min(99999.99,*sumw);
do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(doublereal));
e_wsfe();
}
sumwx /= *sumw;
sumwy /= *sumw;
sumwz /= *sumw;
i__1 = *numat;
for (i__ = 1; i__ <= i__1; ++i__) {
x[i__ - 1] = coord[i__ * 3 + 1] - sumwx;
y[i__ - 1] = coord[i__ * 3 + 2] - sumwy;
/* L30: */
z__[i__ - 1] = coord[i__ * 3 + 3] - sumwz;
}
/* *********************************************************************** */
/* MATRIX FOR MOMENTS OF INERTIA IS OF FORM */
/* | Y**2+Z**2 | */
/* | -Y*X Z**2+X**2 | -I =0 */
/* | -Z*X -Z*Y X**2+Y**2 | */
/* *********************************************************************** */
/* $DOIT ASIS */
for (i__ = 1; i__ <= 6; ++i__) {
/* L40: */
t[i__ - 1] = (doublereal) i__ * 1e-10;
}
if (*mass > 0) {
i__1 = *numat;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
d__1 = y[i__ - 1];
/* Computing 2nd power */
d__2 = z__[i__ - 1];
t[0] += atmass_1.atmass[i__ - 1] * (d__1 * d__1 + d__2 * d__2);
t[1] -= atmass_1.atmass[i__ - 1] * x[i__ - 1] * y[i__ - 1];
/* Computing 2nd power */
d__1 = z__[i__ - 1];
/* Computing 2nd power */
d__2 = x[i__ - 1];
t[2] += atmass_1.atmass[i__ - 1] * (d__1 * d__1 + d__2 * d__2);
t[3] -= atmass_1.atmass[i__ - 1] * z__[i__ - 1] * x[i__ - 1];
t[4] -= atmass_1.atmass[i__ - 1] * y[i__ - 1] * z__[i__ - 1];
/* Computing 2nd power */
d__1 = x[i__ - 1];
/* Computing 2nd power */
d__2 = y[i__ - 1];
t[5] += atmass_1.atmass[i__ - 1] * (d__1 * d__1 + d__2 * d__2);
/* L50: */
}
} else {
i__1 = *numat;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing 2nd power */
d__1 = y[i__ - 1];
/* Computing 2nd power */
d__2 = z__[i__ - 1];
t[0] += d__1 * d__1 + d__2 * d__2;
t[1] -= x[i__ - 1] * y[i__ - 1];
/* Computing 2nd power */
d__1 = z__[i__ - 1];
/* Computing 2nd power */
d__2 = x[i__ - 1];
t[2] += d__1 * d__1 + d__2 * d__2;
t[3] -= z__[i__ - 1] * x[i__ - 1];
t[4] -= y[i__ - 1] * z__[i__ - 1];
/* Computing 2nd power */
d__1 = x[i__ - 1];
/* Computing 2nd power */
d__2 = y[i__ - 1];
t[5] += d__1 * d__1 + d__2 * d__2;
/* L60: */
}
}
rsp_(t, &c__3, &c__3, eig, &evec[4]);
if (*mass > 0 && first && i_indx(keywrd_1.keywrd, "RC=", (ftnlen)241, (
ftnlen)3) == 0) {
s_wsfe(&io___15);
e_wsfe();
/* $DOIT ASIS */
for (i__ = 1; i__ <= 3; ++i__) {
if (eig[i__ - 1] < 3e-4) {
eig[i__ - 1] = 0.;
rot[i__ - 1] = 0.;
} else {
rot[i__ - 1] = const2 / eig[i__ - 1];
}
/* L70: */
xyzmom[i__ - 1] = eig[i__ - 1] * const1;
}
s_wsfe(&io___18);
for (i__ = 1; i__ <= 3; ++i__) {
do_fio(&c__1, (char *)&rot[i__ - 1], (ftnlen)sizeof(doublereal));
}
e_wsfe();
if (i_indx(keywrd_1.keywrd, "RC=", (ftnlen)241, (ftnlen)3) == 0) {
s_wsfe(&io___19);
e_wsfe();
}
s_wsfe(&io___20);
for (i__ = 1; i__ <= 3; ++i__) {
do_fio(&c__1, (char *)&xyzmom[i__ - 1], (ftnlen)sizeof(doublereal)
);
}
e_wsfe();
*c__ = rot[0];
*b = rot[1];
*a = rot[2];
}
/* NOW TO ORIENT THE MOLECULE SO THE CHIRALITY IS PRESERVED */
sum = evec[4] * (evec[8] * evec[12] - evec[9] * evec[11]) + evec[7] * (
evec[11] * evec[6] - evec[5] * evec[12]) + evec[10] * (evec[5] *
evec[9] - evec[8] * evec[6]);
if (sum < 0.) {
/* $DOIT ASIS */
for (j = 1; j <= 3; ++j) {
/* L80: */
evec[j + 3] = -evec[j + 3];
}
}
i__1 = *numat;
for (i__ = 1; i__ <= i__1; ++i__) {
coord[i__ * 3 + 1] = x[i__ - 1];
coord[i__ * 3 + 2] = y[i__ - 1];
coord[i__ * 3 + 3] = z__[i__ - 1];
/* L90: */
}
if (*mass > 0) {
first = FALSE_;
}
} /* axis_ */
|